
An Lp di¤erentiable non-di¤erentiable function

J. Marshall Ash

Abstract. There is a a set E of positive Lebesgue measure and a function
nowhere di¤erentiable on E which is di¤erentible in the Lp sense for every
positive p at each point of E. For every p 2 (0;1] and every positive integer
k there is a set E = E(k; p) of positive measure and a function which for every
q < p has k Lq Peano derivatives at every point of E despite not having an
Lp kth derivative at any point of E.

A real-valued function f of a real variable is di¤erentiable at x if there is a real
number f 0 (x) such that

jf (x+ h)� f (x)� f 0 (x)hj = o (h) as h! 0:

Fix p 2 (0;1). A function is di¤erentiable in the Lp sense at x if there is a real
number f 0p (x) such thatf (x+ h)� f (x)� f 0p (x)hp = o (h) as h! 0;

where kg (h)kp =
�
1
h

R h
�h jg (t)j

p
dt
�1=p

.

We have an in�nite family of generalized �rst derivatives indexed by the para-
meter p: Most generalized derivatives are not equivalent to the ordinary derivative
at a single point, but many are equivalent on an almost everywhere basis. For ex-
ample, the symmetric derivative, de�ned by f 0s (x) = limh!0

f(x+h)�f(x�h)
2h , is zero

for the absolute value function at x = 0 even though that function is not di¤eren-
tiable at x = 0, but this phenomenon which occurs at the single point x = 0 never
occurs on a set of positive measure: there cannot exist a set of positive measure
E and a function g so that g0s (x) exists at all points of E and g0 (x) exists at no
points of E.[K, page 217] In this sense the symmetric derivative is equivalent to
ordinary di¤erentiation. So a natural question to ask here is whether in this sense
the various Lp derivatives are di¤erent from ordinary di¤erentiation and from one
another. The point of this paper is to answer �yes�to this question.

If p1 < p2 and f is Lp2 di¤erentiable at x, then f is Lp1 di¤erentiable at x;
since by Holder�s inequality,f (x+ h)� f (x)� f 0p2 (x)hp1 � 2 1

p1
� 1
p2

f (x+ h)� f (x)� f 0p2 (x)hp2 = o (h)
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so that f 0p1 (x) exists and equals f
0
p2 (x). It may be useful to think of a scale of

derivatives indexed by p, the higher the value of p, the better the behavior. The
best behavior, ordinary di¤erentiability, occurs when p = 1. Sometimes the scale
is extended by placing the approximate derivative at p = 0.

A function f has a kth Peano derivative at x if there are real numbers f i (x) ; i =
0; 1; 2; : : : ; k; such that����f (x+ h)� f0 (x)� f1 (x)h� � � � � fk (x) hkk!

���� = o �hk� as h! 0:

Fix p 2 (0;1). A function f has a kth Peano derivative in the Lp sense at x if
there are real numbers f ip (x) ; i = 0; 1; 2; : : : ; k; such thatf (x+ h)� f0p (x)� f1p (x)h� � � � � fkp (x) hkk!


p

= o
�
hk
�

as h! 0:

The same p-scale mentioned for �rst derivatives also holds for kth Peano ones
as well. Whatever the value of k, when p 6= q, Lp kth order Peano di¤erentiability
is not a.e. equivalent to Lq kth order Peano di¤erentiability; this is the content of
Theorems 2 and 3 below.

The �rst extensive discussion of the Lp Peano derivative that I am aware of
appeared in reference [CZ]. Di¤erentiation in the Lp sense for the characteristic
function of a set is very closely related to the concept of super density, which is
discussed in reference [LMZ].

Theorem 1. There is a set E of positive Lebesgue measure and a function
nowhere di¤erentiable on E which is di¤erentiable in the Lp sense for every positive
p at each point of E.

Proof. Note that the characteristic function of the rational numbers provides
a trivial example since it is nowhere di¤erentiable, but is Lp di¤erentiable to 0
at every irrational point. To avoid such a triviality, we further specify that every
element of the equivalence class de�ning the Lp function should also fail to be
di¤erentiable on E, i.e. changing the function on a set of measure 0 should not
improve the di¤erentiability of the function.

Order the rational numbers into a sequence and for n = 1; 2; : : : , let Gn be an
open interval centered at the nth rational of length 2�n

2

. Let C be the complement
of [iGi. Since j[iGij �

P
2�n

2

<1, jCj =1. Let � be the characteristic function
of C. Let I (x; h) = [x� h; x+ h].

1. � is not di¤erentiable at almost every point of C. Let C1 = fx 2 C : x is a
point of density of Cg. Note that jCnC1j = 0. Let x 2 C1. If h is su¢ ciently small,
jI (x; h) \ Cj > h=2 so the essential lim sup of � is 1. On the other hand, since for
any h > 0, the interval I (x; h) contains a rational number and hence a subinterval
on which � = 0 so the essential lim inf of � is 0. Thus � has no limiting value at x
and so all the more is not di¤erentiable there.

2. � does have a zero Lp derivative for every positive p at almost every point
of C1. This full measured subset of C1 will be a set of positive measure and is the
set promised in the statement of the theorem. Suppose that for each p > 0, � is Lp

di¤erentiable on Cp, a full-measured subset of C1: Then letting Ap = C1nCp, jApj =
0. Let A = [An and C2 = C1nA. Then � is not di¤erentiable on C2, but is Lp
di¤erentiable on C2 for every p > 0, since by de�nition � is Ldpe di¤erentiable and
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Holder�s inequality implies Lp di¤erentiability since p � dpe. Thus it is su¢ cient
to �x p and show that Ap has measure 0:

On Cp we have 
1

h

Z h

�h
j� (x+ t)� � (x)� 0 � tjp dt

!1=p
= o (h) ;

or, equivalently,

(0.1)
Z h

�h
j� (x+ t)� � (x)� 0 � tjp dt = o

�
hp+1

�
;

as h ! 0. To show that jApj = 0, it su¢ ces to show that for each � > 0, jApj < �.
Fix such an � and pick n so large that

(0.2) n > p+ 1

and so large that (n+ 1) 2�n+1 < �: Let Bp = [ni=1 fx 2 C1 : dist (x;Gi) < 2�ng [�
[j>n

�
x 2 C1 : dist (x;Gj) < 2�j

	�
. Then jBpj � (2 � 2�n)n +

P
j>n 2 � 2�j =

(n+ 1) 2�n+1 < �, so it remains to show that (0.1) holds for x 2 C1nBp so that
Ap � Bp. Since x 2 C, � (x) = 1 and the absolute value of the left hand side is

` =

Z x+h

x�h
j� (s)� 1jp ds = jCc \ Ij ;

where I = [x � h; x + h]. Assume h < 2�n. Let Gj be the �rst complementary
interval that meets I. Since x =2 Bp, j > n. Since 2�(i+1)

2 � 1
22
�i2 and 1 + 2�1 +

2�2 + � � � = 2,

` � j[i�jGij �
X
i�j

2�i
2

� 2 � 2�j
2

= 2
�
2�j
�j � 2hj :

The last inequality holds because x =2 Bp implies 2�j � dist (x;Gj) and Gj \
I (x; h) 6= ? implies dist (x;Gj) � h. Since j > n > p + 1, hj is o

�
hp+1

�
and

relation (0.1) follows. �

This example splits ordinary di¤erentiation from all �nite Lp di¤erentiation.
Given any p > 0, we can also create a function fp for which there is a set E
of positive measure on which fp is di¤erentiable in the Lq sense for every q <
p; but fp is not di¤erentiable at any point of E in the Lp sense. We do this
by making a �fat Cantor set� the ith stage complementary open intervals being
centered at all (2j + 1) =2n and having measure 2�i(p+1). The details are slightly
more complicated. Theorem 3 below does this and a little bit more.

Note that the following theorem in particular separates the kth Peano derivative
from all Lp kth Peano derivatives, 0 < p <1.

Theorem 2. There is a set E of positive Lebesgue measure and a function
having no limit at each point of E which has a kth Peano derivative in the Lp sense
for every natural number k and every positive p at each point of E.

Proof. The function � and the subset of C of full measure appearing in the
proof of the previous theorem are su¢ cient for this theorem also. In fact, for x 2 C
set f0p (x) = f (x) = 1 for p 2 (0;1); and set f ip (x) = 0, for i = 1; 2; : : : and
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p 2 (0;1). The de�ning condition for having a kth Lp Peano derivative at such an
x is  

1

h

Z h

�h

����f (x+ t)� 1� 0t� � � � � 0 tkk!
����p dt

!1=p
= o

�
hk
�

or Z h

�h
jf (x+ t)� 1jp dt = o

�
hkp+1

�
:

The reasoning and calculations above remain unchanged, except that n must be
chosen larger than kp+ 1 instead of larger than p+ 1. �

Theorem 3. Let p > 0 and k be a positive integer. There is a set E of positive
Lebesgue measure and a bounded function nowhere Peano di¤erentiable of order k
in the Lp sense on E which is Peano di¤erentiable of order k in the Lq sense for
every positive q < p at each point of E.

Proof. The case p = 1 and k = 1 was treated �rst. Then followed the
case p = 1 and general k: The required example for p �nite is the characteristic
function of a �fat Cantor set� with the nth stage complementary open intervals
being centered at all (2j + 1) =2n and having measure ckp2�n(kp+1), where ckp =
2kp � 1. The details follow.

For N = 1; 2; 3; : : : ; the complementary intervals of rank N will be the open in-
tervals GiN , i = 1; 2; : : : ; 2N�1, where the center of GiN is centered at (2i� 1) =2N
and jGiN j = ckp2

�N(kp+1). The center to center distance between contiguous in-
tervals of rank N is 2 � 1

2N
= 21�N . It will be convenient to work on [0; 1] thought

of as a torus so that in particular G1N and G(2N�1)N are contiguous.

Let C =
�
[1n=1 [2

n�1

i=1 Gin

�c
, � = characteristic function of C, x 2 C, and

h > 0. Note jCj = 1� jCcj and jCcj �
P1

n=1 2
n�1ckp2

�n(kp+1) = 1=2, so jCj > 0.
Then for any p > 0,Z h

�h

����� (x+ t)� � (x)� 0 � t� 0 t22 � � � � � 0 tkk!
����p dt = Z h

�h
j� (x+ t)� 1jp dt(0.3)

= jI \ Ccj ;

where I = [x � h; x + h]. Find m so that 2�m � h < 2�m+1. We have for some

j,
j

2m
� x <

j + 1

2m
. The complementary interval G centered at the element of�

j

2m
;
j + 1

2m

�
having even numerator has rank at most m� 1 so that the half of G

interior to
�
j

2m
;
j + 1

2m

�
has measure at least 12

ckp
2(kp+1)(m�1) . Thus

jI \ Ccj � ckp
2

�
1

2m�1

�kp+1
� ckp

2
hkp+1:

We show below that when q < p, the �rst k Peano Lq derivatives of � are 0 at a.e.
x 2 C, so by Holder�s inequality, if the Lp Peano derivatives exist at all, they must
be zero. However, combining this inequality with equation (0.3) shows that 

1

h

Z h

�h

����� (x+ t)� � (x)� 0 � t� 0 t22! � � � � � 0 tkk!
����p dt

! 1
p

>
�ckp
2

� 1
p

hk



Lp DERIVATIVE 5

which is not o
�
hk
�
so � does not have a kth Lp Peano derivative at a.e. x 2 C.

By the same reasoning as in the L1 case above, it is enough to prove that if
q < p are �xed, and if � > 0 is �xed, then there is a set A = A (p; q; �), A � C such
that jAj < � and for every x 2 CnA,

j[x� h; x+ h] \ Ccj = o
�
hkq+1

�
:

(In the reduction to the su¢ ciency of this assertion, one needs to establish this
estimate directly for a countable set of q�s that belong to (0; p) and approach p.)

Pick n such that 3
n < �. Then for each positive integer i, let Ai be the points

of C which are �close�to the complementary intervals of rank i; explicitly, for rank

i, i � n: let Ai = [2i�1k=1 fx 2 C : dist(x;Gki) <
1

n2
1

2n
g; and for rank j, j > n : let

Aj = [2
j�1

k=1 fx 2 C : dist(x;Gkj) <
1

j2
1

2j
g. Let A = [1i=1Ai, then

jAj �
nX
i=1

jAij+
1X

i=n+1

jAij

=
2

n2
1

2n

0@ nX
j=1

2j�1

1A+ 1X
i=n+1

2

i2
1

2i
2i�1

=
2

n2
1

2n
(2n � 1) +

1X
i=n+1

1

i2

� 2

n2
+

Z 1

n

x�2dx =
2

n2
+
1

n
<
3

n
< �:

Let x 2 CnA and �x h > 0 so small that h <
1

n2
1

2n
. Let I = [x � h; x + h]: Let

G be the �rst complementary interval intersecting I and let ` be the rank of G so
that jGj = ckp

2(kp+1)`
. Note that ` � n + 1 since h is too small to allow any G of

rank � n to intersect I. Since G intersects I,

(0.4) h >
1

`2
1

2`
:

Let m = blog2 hc so that 2�m � h < 2�m+1;

(0.5) m . log (1=h) :

Let a (s) be the number of elements of rank s that intersect I. Excluding
the left-most and right-most elements, a (s) � 2 centers of rank s intervals are
in I and each of the a (s) � 3 distances between these centers is 2 12s , whence
(a (s)� 3) 2�s+1 � 2h, so

(0.6) a (s) � 3 + 2sh:

Since h < 21�m, it follows that

(0.7) if s < m, then a (s) � 4:
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If ` < m, use inequalities (0.7) and (0.6) to obtain

jI \ Ccj �
1X
s=`

a (s) ckp2
�(kp+1)s

�
m�1X
s=`

4 � ckp2�(kp+1)s + 3
1X
s=m

ckp2
�(kp+1)s + h

1X
s=m

ckp2
�kps(0.8)

. 2�(kp+1)` + h2�kpm;
where A . B means that for some constant C (k; p), A � C (k; p)B. From this and
inequalities (0.4) and (0.5) we have

jI \ Ccj . `2kp+2
�
1

`22`

�kp+1
+ h

�
1

2m�1

�kp
� m2kp+2hkp+1 + hkp+1

. log2kp+2 (1=h)hkp+1

= o
�
hkq+1

�
:

If ` � m, the estimate is even simpler; we get

jI \ Ccj �
1X
s=m

a (s) ckp2
�(kp+1)s . hkp+1 = o

�
hkq+1

�
:

�
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