# Chapter 6

# **Riesz Representation Theorems**

#### 6.1 Dual Spaces

DEFINITION 6.1.1. Let V and W be vector spaces over  $\mathbb{R}$ . We let

 $L(V,W) = \{T: V \to W \mid T \text{ is linear}\}.$ 

The space  $L(V, \mathbb{R})$  is denoted by  $V^{\sharp}$  and elements of  $V^{\sharp}$  are called linear functionals.

EXAMPLE **6.1.2.** 1) Let  $V = \mathbb{R}^n$ . Then we can identify  $\mathbb{R}^{\sharp}$  with  $\mathbb{R}$  as follows: For each  $\mathbf{a} = (a_1, a_2, \dots, a_n)$  define  $\phi_{\mathbf{a}} : \mathbb{R}^n \to \mathbb{R}$  by

$$\phi_{\mathbf{a}}((x_1, x_2, \dots, x_n)) = \mathbf{x} \cdot \mathbf{a} = \sum_{i=1}^n x_i a_i.$$

2) Let (X, d) be a compact metric space. Let  $x_0 \in X$ . Define  $\phi_{x_0} : C(X) \to \mathbb{R}$  by

$$\phi_{x_0}(f) = f(x_0).$$

Then  $\phi_{x_0} \in C(X)^{\sharp}$ .

DEFINITION 6.1.3. Let  $(V, \|\cdot\|_V)$  and  $(W, \|\cdot\|_W)$  be normed linear spaces. Let  $T: V \to W$  be linear. We say that T is bounded is

$$\sup_{\|x\|_V \le 1} \{ \| T(x) \|_W \} < \infty.$$

In this case, we write

$$|| T || = \sup_{\|x\|_V \le 1} \{|| T(x) ||_W \}$$

Otherwise, we say that T is unbounded.

The next result establishes the fundamental criterion for when a linear map between normed linear spaces is continuous. It's proof is left as an exercise.

THEOREM 6.1.4. Let  $(V, \|\cdot\|_V)$  and  $(W, \|\cdot\|_W)$  be normed linear spaces. Let  $T: V \to W$  be linear. Then the following are equivalent.

- 1) T is continuous.
- 2) T is continuous at 0.

2) T is bounded.

*Proof.* 1)  $\Rightarrow$  2) This is immediate.

2)  $\Rightarrow$  3) Assume that T is continuous at 0. Let  $\delta$  be such that if  $||x||_V \leq \delta$ , then  $||T(x)||_W$ . It follows easily that  $||T|| \leq \frac{1}{\delta}$ .

3)  $\Rightarrow$  1) Note that we may assume that ||T|| > 0 otherwise T = 0 and hence is obviously continuous. Let  $x_0 \in V$  and let  $\epsilon > 0$ . Let  $\delta = \frac{\epsilon}{||T||}$ . Then if  $||x - x_0||_V < \delta$ , we have

$$|| T(x) - T(x_0) ||_W = || T(x - x_0) ||_W \le || T || \cdot || x - x_0 ||_V < \epsilon.$$

- REMARK 6.1.5. 1) Let  $(V, \|\cdot\|_V)$  and  $(W, \|\cdot\|_W)$  be normed linear spaces. Let  $T : V \to W$  be linear. Then we can easily deduce from the previous theorem that . if T is bounded, then T is uniformly continuous.
  - 2) Let

 $B(V,W) = \{T : X \to Y | T \text{ is linear and } T \text{ is bounded} \}.$ 

Let  $T_1$  and  $T_2$  be in B(V, W). Then if  $x \in V$ , we have

$$\| T_1 + T_2(x) \|_W = \| T_1(x) + T_2(x) \|_W$$
  

$$\leq \| T_1(x) \|_W + \| T_2(x) \|_W$$
  

$$\leq \| T_1 \| \| x \|_V + \| T_1 \| \| x \|_V$$
  

$$= (\| T_1 \| + \| T_2 \|) \| x \|_V.$$

As such  $T_1 + T_2 \in B(V, W)$  and in particular

$$|| T_1 + T_2 || \le || T_1 || + || T_1 ||$$

It follows that  $(B(V, W), \|\cdot\|)$  is also a normed linear space.

THEOREM 6.1.6. Assume that  $(W, \|\cdot\|_W)$  be a Banach space. Then so is  $(B(V, W), \|\cdot\|)$ . Proof. Assume that  $\{T_n\}$  is Cauchy. Let  $x \in V$ . Since

$$|| T_n(x) - T_m(x) ||_W \le || T_n - T_2 || || x ||_V$$

it follows easily that  $\{T_n(x)\}$  is also Cauchy in W. As such we can define  $T_0$  by

$$T_0(x) = \lim_{n \to \infty} T_n(x).$$

To see that  $T_0$  is linear observe that

$$T_0(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y)$$
  
= 
$$\lim_{n \to \infty} \alpha T_n(x) + \beta T_n(y)$$
  
= 
$$\alpha T_0(x) + \beta T_0(y)$$

To see that  $T_0$  is bounded first observe that being Cauchy,  $\{T_n\}$  is bounded. Hence we can find an M > 0such that  $||T_n|| \le M$  for each  $n \in \mathbb{N}$ . Moreover, since  $||T_0(x)||_W = \lim_{n \to \infty} ||T_n(x)|| \le M ||x||_V$ , we have that  $||T_0|| \le M$ . Now let  $\epsilon > 0$  and choose an  $N \in \mathbb{N}$  so that if  $n, m \geq N$ , then

$$\|T_n - T_m\| < \epsilon$$

Let  $x \in V$  with  $||x||_V \leq 1$ . Then since  $||T_n(x) - T_m(x)||_W < \epsilon$  for each  $m \geq N$ , we have

$$||T_n(x) - T_0(x)||_W = \lim_{m \to \infty} ||T_n(x) - T_m(x)||_W \le \epsilon.$$

In particular

$$T_0 = \lim_{n \to \infty} T_n$$

in B(X, Y).

DEFINITION 6.1.7. Let  $(V, \|\cdot\|)$  be a normed linear space. The space  $B(V, \mathbb{R})$  is called the dual space of V and is denoted by  $V^*$ .

EXAMPLE 6.1.8. 1) Let  $V = \mathbb{R}^n$  with the usual norm  $\|\cdot\|_2$ . For each  $\mathbf{a} = (a_1, a_2, \dots, a_n)$  we defined  $\phi_{\mathbf{a}} : \mathbb{R}^n \to \mathbb{R}$  by

$$\phi_{\mathbf{a}}((x_1, x_2, \dots, x_n)) = \mathbf{x} \cdot \mathbf{a} = \sum_{i=1}^n x_i a_i.$$

Then in fact  $\phi_{\mathbf{a}} \in \mathbb{R}^{n^*}$  and

$$\|\phi_{\mathbf{a}}\| = \|\mathbf{a}\|_2.$$

2) Let (X, d) be a compact metric space. Again, if  $x_0 \in X$  and we define  $\phi_{x_0} : (C(X), \|\cdot\|_{\infty}) \to \mathbb{R}$  by

$$\phi_{x_0}(f) = f(x_0),$$

then  $\phi_{x_0} \in C(X)^*$ . In this case  $\|\phi_{x_0}\|$ .

3) Let  $(X, \mathcal{A}, \mu)$  be a measure space and let  $1 \le p \le \infty$  with  $\frac{1}{p} + \frac{1}{q} = 1$ . Hölder's Inequality allows us to define for each  $g \in L_q(X, \mathcal{A}, \mu)$  and element  $\phi_g \in L_p(X, \mathcal{A}, \mu)^{\sharp}$  by

$$\phi_g(f) = \int fg \, d\mu$$

Moreover, Hölder's Inequality also shows that  $\phi_g \in L_p(X, \mathcal{A}, \mu)^*$  with

$$\|\phi_g\| \le \|g\|_p.$$

Note that  $\phi_g$  has the additional property that if  $g \ge 0$   $\mu$ -a.e., then  $\phi_g(f) \ge 0$  whenever  $f \in L_p(X, \mathcal{A}, \mu)$  and  $f \ge 0$   $\mu$ -a.e.

4) Let (X, d) be a compact measure space and let  $\mu$  be a finite regular signed measure on  $\mathcal{B}(X)$ . Define  $\phi_{\mu} \in C(X)^{\sharp}$  by

$$\phi_{\mu}(f) = \int f \, d\mu.$$

Since

$$|\phi_{\mu}(f)| \le \int |f| \, d|\mu| \le ||f||_{\infty} ||\mu||_{meas}$$

we see that in fact  $\phi_{\mu} \in C(X)^*$  and  $\|\phi_{\mu}\| \leq \|\mu\|_{meas}$ .

We note again that  $\phi_{\mu}$  has the additional property that if  $\mu$  is a positive measure on  $\mathcal{B}(X)$ , then  $\phi_{\mu}(f) \geq 0$  whenever  $f \in C(X)$  and  $f \geq 0$ . Furthermore, in this case since

$$\phi_{\mu}(1) = \int 1 \, d\mu = \mu(X) = \|\mu\|_{meas}$$

if  $\mu$  is a positive measure we have

$$\|\phi_{\mu}\| = \|\mu\|_{meas}.$$

PROBLEM **6.1.9.** In Examples 3) and 4) above we have shown respectively that every element in  $L_q(X, \mathcal{A}, \mu)$ determines a continuous functional on  $L_p(X, \mathcal{A}, \mu)$  and that if (X, d) is a compact metric space, then every finite regular signed measure on  $\mathcal{B}(X)$  determines a continuous linear functional on C(X). It is natural to ask:

Do all continuous linear functionals on  $L_p(X, \mathcal{A}, \mu)$  and C(X) arise in this fashion?

#### 6.2 Riesz Representation Theorem for $L^p(X, \mathcal{A}, \mu)$

In this section we will focus on the following problem:

PROBLEM **6.2.1.** What is  $L^p(X, \mathcal{A}, \mu)^*$ ?

We have already established most of the following result:

LEMMA **6.2.2.** If  $(X, \mathcal{A}, \mu)$  is a measure space and if  $1 \le p \le \infty$  with  $\frac{1}{p} + \frac{1}{q} = 1$ , then for every  $g \in L^q(X, \mu)$  the map  $\Gamma_g : L^p(X, \mu) \to \mathbb{R}$  defined by  $\Gamma_g(f) = \int_X f g \, d\mu$  is a continuous linear functional on  $L^p(X, \mu)$ . Further,  $\|\Gamma_g\| \le \|g\|_q$  and if  $1 then <math>\|\Gamma_g\| = \|g\|_q$ .

Proof. Assignment.

If  $(X, \mu)$  is  $\sigma$ -finite, then equality holds for p = 1 as well.

LEMMA **6.2.3.** Let  $(X, \mathcal{A}, \mu)$  be a finite measure space and if  $1 \leq p < \infty$ . Let g be an integrable function such that there exists a constant M with  $|\int g\varphi \, d\mu \leq M ||\varphi||_p$  for all simple functions  $\varphi$ . Then  $g \in L^q(X, \mu)$ , where  $\frac{1}{p} + \frac{1}{q} = 1$ .

Proof. Assume that p > 1. Let  $\psi_n$  be a sequence of simple functions with  $\psi_n \nearrow |g|^q$ . Let  $\varphi_n = (\psi_n)^{\frac{1}{p}} \operatorname{sgn}(g)$ . Then  $\varphi_n$  is also simple and  $\|\varphi_n\|_p = (\int \psi_n d\mu)^{\frac{1}{p}}$ . Since  $|\varphi_n g| \ge |\varphi_n| |\psi_n|^{\frac{1}{q}} = |\psi_n|$ , we have

$$\int \psi_n \, d\mu \le \int \varphi_n g \, d\mu \le M \|\varphi_n\|_p = M \left(\int \psi_n d\mu\right)^{\frac{1}{p}}$$

Therefore  $\int \psi_n d\mu \leq M^q$ . By the Monotone Convergence Theorem we get that  $\|g\|_q \leq M$ , so  $g \in L^q(X, \mu)$ . If p = 1, then we need to show that g is bounded almost everywhere. Let  $E = \{x \in X | |g(x)| > M\}$ . Let  $f = \frac{1}{\mu(E)}\chi_E \operatorname{sgn}(g)$ . Then f is a simple function and  $\|f\|_1 = 1$ . This is a contradiction.

LEMMA 6.2.4. Let  $1 \leq p < \infty$ . Let  $\{E_n\}$  be a sequence of disjoint sets. Let  $\{f_n\} \subseteq L^p(X,\mu)$  be such that  $f_n(x) = 0$  if  $x \notin E_n$  for each  $n \geq 1$ . Let  $f = \sum_{n=1}^{\infty} f_n$ . Then  $f \in L^p(X,\mu)$  if and only if  $\sum_{n=1}^{\infty} \|f\|_p^p < \infty$ . In this case,  $\|f\|_p^p = \sum_{n=1}^{\infty} \|f\|_p^p$ .

Proof. Exercise.

THEOREM 6.2.5 [RIESZ REPRESENTATION THEOREM, I]. Let  $\Gamma \in L^p(X,\mu)^*$ , where  $1 \le p < \infty$  and  $\mu$  is  $\sigma$ -finite. Then if  $\frac{1}{p} + \frac{1}{q} = 1$ , there exists a unique  $g \in L^q(X,\mu)^*$  such that

$$\Gamma(f) = \int_X fg \, d\mu = \phi_g(f)$$

Moreover,  $\|\Gamma\| = \|g\|_q$ .

Proof. Assume that  $\mu$  is finite. Then every bounded measurable function is in  $L^p(X,\mu)$ . Define  $\lambda : \mathcal{A} \to \mathbb{R} : E \mapsto \Gamma(\chi_E)$ . Let  $\{E_n\} \subseteq \mathcal{A}$  be a sequence of disjoint sets, and let  $E = \bigcup_{n=1}^{\infty} E_n$ . Let  $\alpha_n = \operatorname{sgn}\Gamma(\chi_{E_n})$  and  $f = \sum_{n=1}^{\infty} \alpha_n \chi_{E_n}$ . Then  $f \in L^p(X,\mu)$  and  $\Gamma(f) = \sum_{n=1}^{\infty} |\lambda(E_n)| < \infty$  and so  $\sum_{n=1}^{\infty} |\lambda(E_n)| = \Gamma(\chi_E) = \lambda(E)$ . Therefore  $\lambda$  is a finite signed measure. Clearly, if  $\mu(E) = 0$  then  $\chi_E = 0$  almost everywhere, so  $\lambda(E) - \Gamma(0) = 0$ . Therefore  $|\lambda| \ll \mu$ . By the Radon-Nikodym Theorem, there is an integrable function g such that  $\lambda(E) = \int_E g \, d\mu$  for all  $E \in \mathcal{A}$ . If  $\varphi$  is simple, then  $\Gamma(\varphi) = \int \varphi g \, d\mu$  by linearity of the integral. But  $|\Gamma(\varphi)| \leq ||\Gamma|| ||\varphi||_p$  for all simple functions  $\varphi$ , so  $g \in L^q(X,\mu)$  by the lemma above. Now  $\Gamma - \phi_g \in L^p(X,\mu)^*$  and  $\Gamma - \phi_g = 0$  on the space of simple functions. Since the simple functions are dense in  $L^p(X,\mu), \Gamma - \phi_g = 0$  on  $L^P(X,\mu)$ , so  $\Gamma = \phi_g$ . We have that  $||\Gamma|| = ||\phi_g|| = ||g||_q$  as before.

Now asume that  $\mu$  is  $\sigma$ -finite. We can write  $X = \bigcup_{n=1}^{\infty} X_n$ , where  $\mu(X_n) < \infty$  and  $X_n \subseteq X_{n+1}$  for all  $n \ge 1$ . For each  $n \ge 1$ , the proof above gives us  $g_n \in L^q(X,\mu)$ , vanishing outside  $X_n$ , such that  $\Gamma(f) = \int fg \, d\mu$  for all  $f \in L^p(X,\mu)$  vanishing off of  $X_n$ . Moreover,  $\|g_n\|_q \le \|\Gamma\|$ . By the uniqueness of the  $g_n$ 's, we can assume that  $g_{n+1} = g_n$  on  $X_n$ . Let  $g(x) = \lim_{n \to \infty} g_n(x)$ . We have that  $|g_n| \nearrow |g|$ . By the Monotone Convergence Theorem

$$\int |g|^q \, d\mu = \lim_{n \to \infty} \int |g_n|^q \, d\mu \le \|\Gamma\|q$$

Hence  $g \in L^q(X,\mu)$ . Let  $f \in L^p(X,\mu)$  and  $f_n = f\chi_{X_n}$ . Then  $f_n \to f$  pointwise and  $f_n \in L^p(X,\mu)$  for all  $n \ge 1$ . Since  $|fg| \in L^1(X,\mu)$  and  $f_ng| \le |fg|$ , the Lebesque Dominated Convergence Theorem shows

$$\int fg \, d\mu = \lim_{n \to \infty} \int f_n g \, d\mu = \lim_{n \to \infty} \int f_n g_n \, d\mu = \lim_{n \to \infty} \Gamma(f_n) = \Gamma(f)$$

If p = 1, then we cannot drop the assumption of  $\sigma$ -finiteness.

THEOREM 6.2.6 [RIESZ REPRESENTATION THEOREM, II]. Let  $\Gamma \in L^p(X,\mu)^*$ , where  $1 . Then if <math>\frac{1}{p} + \frac{1}{q} = 1$ , there exists a unique  $g \in L^q(X,\mu)$  such that

$$\Gamma(f) = \int fg \, d\mu$$

for all  $f \in L^p(X, \mu)$ . Moreover,  $\|\Gamma\| = \|g\|_q$ .

Proof. Let  $E \subseteq X$  be  $\sigma$ -finite. then there exists a unique  $g_E \in L^q(X, \mu)$ , vanishing outside of E, such that  $\Gamma(f) = \int f g_E d\mu$  for all  $g \in L^p(X, \mu)$  vanishing outside of E. Moreover, if  $A \subseteq E$ , then  $g_A = g_E$  almost everywhere on A. For each  $\sigma$ -finite set E let  $\lambda(E) = \int |g_E|^q d\mu$ . If  $A \subseteq E$ , then  $\lambda(A) \leq \lambda(E) \leq ||\Gamma||^q$ . Let  $M = \sup\{\lambda(E)|E \text{ is } \sigma\text{-finite}\}$ . Let  $\{E_n\}$  be a sequence of  $\sigma$ -finite sets such that  $\lim_{n\to\infty} \lambda(E_n) = M$ . If  $H = \bigcup_{n=1}^{\infty} E_n$  then H is  $\sigma$ -finite and  $\lambda(H) = M$ . If E is  $\sigma$ -finite with  $H \subseteq E$ , then  $g_E = g_H$  almost everywhere on H. But

$$\int |g_E|^q d\mu = \lambda(E) \le \lambda(H) = \int |g_H|^q d\mu$$

so  $g_E = 0$  almost everywhere on  $E \setminus H$ . Let  $g = g_{H\chi H}$ . Then  $g \in L^q(X, \mu)$  and if E is  $\sigma$ -finite with  $H \subseteq E$ then  $g_E = g$  almost everywhere. If  $f \in L^p(X, \mu)$ , then let  $E = \{x \in X | f(x) \neq 0\}$ . E is  $\sigma$ -finite and hence  $E_1 = E \cup H$  is  $\sigma$ -finite. Hence

$$\Gamma(f) = \int fg_{E_1} \, d\mu = \int fg \, d\mu = \phi_g(f)$$

Therefore  $\Gamma = \phi_g$  and as before  $\|\Gamma\| = \|g\|_q$ .

We have shown that if  $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$ , then for any measure space  $(X, \mathcal{A}, \mu), L^p(X, \mu)^* \cong L^q(X, \mu)$ . If  $\mu$  is  $\sigma$ -finite, then  $L^1(X, \mu)^* \cong L^{\infty}(X, \mu)$ . What happens when  $p = \infty$ ?  $L^1(X, \mu) \hookrightarrow L^{\infty}(X, \mu)^*$ , but this embedding is not usually surjective. There exists a compact Hausdorff space  $\Omega$  such that  $L^{\infty}(X, \mu) \cong C(\Omega)$ . What is  $C(\Omega)$ ?

Let  $\varphi : [a, b] \to \mathbb{R}$  be defined by  $\varphi(f) = f(x_0)$ . Then  $\varphi \in C[a, b]^*$ , and  $\|\varphi\| = 1$ . Let  $\mu_{x_0}$  be the measure on [a, b] of the point mass  $x_0$ . If  $g \in L^1([a, b], m)$ , then  $\varphi_g(f) = \int_a^b fg \, dm$  is a linear functional on C[a, b], and  $\|\varphi_g\| \leq \|g\|_1$ . g is the Radon-Nikodym derivative of an absolutely continuous measure  $\mu$  on [a, b], and  $\varphi_g(f) = \int f \, d\mu$ . If  $\mu \in \text{Meas}[a, b]$ , then  $\varphi_n(f) = \int f \, d\mu$  is a bounded linear functional on C[a, b], with  $\|\varphi_{\mu}\| \leq \|\mu\|_{\text{Meas}}$ .

### 6.3 Riesz Representation Theorem for C([a,b])

THEOREM 6.3.1. [Jordan Decomposition Theorem]

Let  $\Gamma \in C([a,b])^*$ . Then there exist positive linear functionals  $\Gamma^+, \Gamma^- \in C([a,b])^*$  such that

$$\Gamma = \Gamma^+ - \Gamma^-$$

and

$$\| \Gamma \| = \Gamma^+(1) + \Gamma^-(1).$$

*Proof.* Assume that  $f \ge 0$ . Define

$$\Gamma^+(f) = \sup_{0 \le \phi \le f} \Gamma(\varphi).$$

Then  $\Gamma^+(f) \ge 0$  and  $\Gamma^+(f) \ge \Gamma(f)$ . It is also easy to see that if  $c \ge 0$ , then  $\Gamma^+(cf) = c\Gamma^+(f)$ . Let  $f, g \ge 0$ . If  $0 \le \phi \le f$  and  $0 \le \psi \le g$ , then  $0 \le \phi + \psi \le f + g$  so

$$\Gamma(\phi) + \Gamma(\psi) \le \Gamma^+(f+g)$$

and hence,

$$\Gamma^+(f) + \Gamma^+(g) \le \Gamma^+(f+g)$$

If  $0 \le \psi \le f + g$ , then let  $\varphi = inf\{f, \psi\}$  and  $\xi = \psi - \varphi$ . Then  $0 \le \varphi \le f$  and  $0 \le \xi \le g$ . It follows that

 $\Gamma(\psi) = \Gamma(\varphi) + \Gamma(\xi) \le \Gamma^+(f) + \Gamma^+(g).$ 

This shows that

$$\Gamma^+(f+g) \le \Gamma^+(f) + \Gamma^+(g)$$

Therefore,

$$\Gamma^+(f+g) = \Gamma^+(f) + \Gamma^+(g)$$

Let  $f \in C[a, b]$ . Let  $\alpha, \beta$  be such that  $f + \alpha 1 \ge 0$  and  $f + \beta 1 \ge 0$ . Then

$$\Gamma^{+}(f + \alpha 1 + \beta 1) = \Gamma^{+}(f + \alpha 1) + \Gamma^{+}(\beta 1)$$
$$= \Gamma^{+}(f + \beta 1) + \Gamma^{+}(\alpha 1)$$

This shows that

$$\Gamma^+(f+\alpha 1) - \Gamma^+(\alpha 1) = \Gamma^+(f+\beta 1) - \Gamma^+(\beta 1)$$

As such , if we let

$$\Gamma^+(f) = \Gamma^+(f + \alpha 1) - \Gamma^+(\alpha 1),$$

then  $\Gamma^+$  is well defined.

Let  $f, g \in C[a, b]$ . Let  $\alpha, \beta$  be chosen so that  $f + \alpha 1 \ge 0$  and  $g + \beta 1 \ge 0$ . Then  $f + g + (\alpha + \beta) 1 \ge 0$  so

$$\begin{split} \Gamma^{+}(f+g) &= \Gamma^{+}(f+g+(\alpha+\beta)1) - \Gamma^{+}((\alpha+\beta)1) \\ &= \Gamma^{+}(f+\alpha 1) + \Gamma^{+}(g+\beta 1) - \Gamma^{+}((\alpha+\beta)1) \\ &= \Gamma^{+}(f+\alpha 1) - \Gamma^{+}(\alpha 1) + \Gamma^{+}(g+\beta 1) - \Gamma^{+}(\beta)1) \\ &= \Gamma^{+}(f) + \Gamma^{+}(g). \end{split}$$

That is  $\Gamma^+$  is additive.

It is also clear that  $\Gamma^+(cf) = c\Gamma^+(f)$  when  $c \ge 0$ . But since  $\Gamma^+(-f) + \Gamma^+(f) = \Gamma^+(0) = 0$ , we get that

$$\Gamma^+(-f) = -\Gamma^+(f)$$

so  $\Gamma^+$  is linear.

 $\operatorname{Let}$ 

$$\Gamma^- = \Gamma^+ - \Gamma$$

Since it is clear that  $\Gamma^+(f) \ge \Gamma(f)$  if  $f \ge 0$ ,  $\Gamma^-$  is also positive.

We know that

$$\| \Gamma \| \le \| \Gamma^+ \| + \| \Gamma^- = \Gamma^+(1) + \Gamma^-(1)$$

Let  $0 \le \psi \le 1$ . Then  $|| 2\psi - 1 ||_{\infty} \le 1$ . As such

$$\| \Gamma \| \ge \Gamma(2\psi - 1) = 2\Gamma(\psi) - \Gamma(1)$$

and therefore

$$\| \Gamma \| \geq 2\Gamma^+(1) - \Gamma(1)$$
  
=  $\Gamma^+(1) + \Gamma^-(1)$ 

Hence

$$\| \Gamma \| = \Gamma^+(1) + \Gamma^-(1).$$

THEOREM 6.3.2. [Riesz Representation Theorem for C([a, b])]

Let  $\Gamma \in C([a,b])^*$ . Then there exists a unique finite signed measure  $\mu$  on the Borel subsets of [a,b] such that

$$\Gamma(f) = \int_{[a,b]} f \, d\mu$$

for each  $f \in C([a, b])$ . Moreover,  $|| \Gamma || = | \mu | ([a, b])$ .

*Proof.* First, we will assume that  $\Gamma$  is positive.

For  $a \leq t < b$  and for n large enough so that  $t + \frac{1}{n} \leq b$ , let

$$\varphi_{t,n}(x) = \begin{cases} 1 & \text{if } x \in [a,t] \\ 1 - n(x-t) & \text{if } x \in (t,t+\frac{1}{n}] \\ 0 & \text{if } x \in (t+\frac{1}{n},b] \end{cases}$$





$$g(t) = \begin{cases} 0 & \text{if } t < a \\ \lim_{n \to \infty} \Gamma(\varphi_{t,n}) & \text{if } t \in [a,b) \\ \Gamma(1) & \text{if } t \ge b \end{cases}$$

Moreover, if  $t_1 > t$ , we have

$$\varphi_{t,m} \le \varphi_{t_1,n}.$$



Since  $\Gamma$  is positive, g(t) is monotonically increasing.

It is clear that g(t) is right continuous if t < a or if  $t \ge b$ . Assume that  $t \in [a, b)$ . Let  $\epsilon > 0$  and choose n large enough so that

$$n > \max(2, \frac{\|\Gamma\|}{\epsilon})$$

and

$$g(t) \le \Gamma(\varphi_{t,n}) \le g(t) + \epsilon$$

$$\psi_n(x) = \begin{cases} 1 & \text{if } x \in [a, t + \frac{1}{n^2}] \\ 1 - \frac{n^2}{n-2}(x - t - \frac{1}{n^2}) & \text{if } x \in (t + \frac{1}{n^2}, t + \frac{1}{n} - \frac{1}{n^2}] \\ 0 & \text{if } x \in (t + \frac{1}{n} - \frac{1}{n^2}, b] \end{cases}$$

Then

•

$$\|\psi_n - \varphi_{t,n}\|_{\infty} \leq \frac{1}{n}$$



Therefore,

$$\Gamma(\psi_n) \le \Gamma(\varphi_{t,n}) + \frac{1}{n} \parallel \Gamma \parallel \le g(t) + 2\epsilon.$$

This means that

$$g(t) \le g(t + \frac{1}{n^2}) \le g(t) + 2\epsilon.$$

However, as g(t) is increasing, this is sufficient to show that g(t) is right continuous.

The Hahn Extension Theorem gives a Borel measure  $\mu$  such that  $\mu((\alpha, \beta)) = g(\beta) - g(\alpha)$ . In particular, if  $a \leq c \leq b$ , then

$$\mu([a,c]) = \mu((a-1,c]) = g(c).$$

Let  $f \in C([a, b])$  and let  $\epsilon > 0$ . Let  $\delta$  be such that if  $|x - y| < \delta$  and  $x, y \in [a, b]$ , then

$$\mid f(x) - f(y) \mid < \epsilon$$

Let  $P = \{a = t_0, t_1, \dots, t_m = b\}$  be a partition with  $\sup(t_k - t_{k-1}) < \frac{\delta}{2}$ . Then choose *n* large enough so that  $\frac{2}{n} < \inf(t_k - t_{k-1})$  and

\*) 
$$g(t_k) \leq \Gamma(\varphi_{t,n}) \leq g(t_k) + \frac{\epsilon}{m \|f\|_{\infty}}.$$

Next, we let

$$f_1(x) = f(t_1)\varphi_{t_1,n} + \sum_{k=2}^m f(t_k)(\varphi_{t_k,n} - \varphi_{t_{k-1},n})$$

and

$$f_2(x) = f(t_1)\chi_{[t_0,t_1]} + \sum_{k=2}^m f(t_k)\chi_{[t_{k-1},t_k]})$$

Note that  $f_1$  is continuous and piecewise linear.  $f_2$  is a step function. It is also true that both  $f_1$  and  $f_2$  agree with f(x) at each point  $t_k$  for  $k \ge 1$ . Moreover, the function  $f_1$  takes on values between  $f(t_{k-1})$  and  $f(t_k)$  on the interval  $[t_{k-1}, t_k]$ . As such

$$\| f_1 - f \|_{\infty} \le \epsilon$$

and

$$\sup\{|f_2(x) - f(x)| \mid x \in [a, b]\} \le \epsilon.$$

From this we conclude that

$$|\Gamma(f) - \Gamma(f_1)| \le \epsilon \parallel \Gamma \parallel .$$

We use (\*) to see that for  $2 \le k \le m$ 

$$|\Gamma(\varphi_{t_k,n} - \varphi_{t_{k-1},n}) - (g(t_k) - g(t_{k-1}))| \le \frac{\epsilon}{m \parallel f \parallel_{\infty}}$$

Next, we apply  $\Gamma$  to  $f_1$  and integrate  $f_2$  with respect to  $\mu$  to get

(

$$|\Gamma(f_1) - \int_{[a,b]} f_2 \, d\mu \mid \leq \epsilon$$

We also have that

$$\int_{[a,b]} f_2 \, d\mu - \int_{[a,b]} f \, d\mu \mid \leq \epsilon \mu([a,b]).$$

Therefore,

$$\mid \Gamma(f) - \int_{[a,b]} f \, d\mu \mid \leq \epsilon (2 \parallel \Gamma \parallel + \mu([a,b]).$$

Since  $\epsilon$  is arbitrary,

$$\Gamma(f) = \int_{[a,b]} f \, d\mu$$

for each  $f \in C[a, b]$ . Moreover,  $\|\Gamma\| = \Gamma(1) = |\mu| ([a, b])$ .

The general result follows from the previous theorem.

## **6.4** Riesz Representation Theorem for $C(\Omega)$

In this section we will briefly discuss how to extend the Riesz Representation to  $C(\Omega)$  when  $(\Omega, d)$  is a compact metric space. In fact we can state this extension in greater generality:

THEOREM 6.4.1. [Riesz Representation Theorem for  $C(\Omega)$ ] Let  $(\Omega, \tau)$  be a compact Hausdorff space. Let  $\Gamma \in C(\Omega)^*$ . Then there exists a unique finite regular signed measure  $\mu$  on the Borel subsets of  $\Omega$  such that

$$\Gamma(f) = \int_{\Omega} f \, d\mu$$

for each  $f \in C(\Omega)$ . Moreover,  $\|\Gamma\| = |\mu| (\Omega)$ .

REMARK **6.4.2.** Let  $\mu \in Meas(\Omega, \mathcal{B}(\Omega))$ . If  $\Gamma_{\mu}$  is defined by

$$\Gamma_{\mu}(f) = \int_{\Omega} f \, d\mu \qquad (*)$$

for each  $f \in C(\Omega)$ , then  $\Gamma_{\mu} \in C(\Omega)^*$  and

$$\|\Gamma_{\mu}\| = |\mu| (\Omega) = \|\mu\|_{meas}.$$

**PROBLEM 6.4.3.** For the converse how do we construct the measure  $\mu$ ?

**Sketch:** We will sketch a solution in the special case where  $(\Omega, d)$  is a compact metric space.

By the Jordan Decomposition Theorem, we may again assume that  $\Gamma$  is positive.

**Key Observation:** Let  $K \subseteq \Omega$  be compact. Assume that  $\{\varphi_n\}$  is a sequence of continuous functions such that

$$0 \le \varphi_{n+1}(t) \le \varphi_n(t) \le 1$$

for every  $t \in \Omega$  with

$$\lim_{n\to\infty}\varphi_n=\chi_K$$

pointwise. Then

 $\lim_{n \to \infty} \Gamma(\varphi_n)$ 

exists. Moreover, if  $\mu$  is a measure satisfying (\*), then the Lebesgue Dominated Convergence Theorem shows that

$$\mu(K) = \int_{\Omega} \chi_K \, d\mu = \lim_{n \to \infty} \int_{\Omega} \varphi_n \, d\mu = \lim_{n \to \infty} \Gamma(\varphi_n)$$

From here, let K be compact. For each  $n \in \mathbb{N}$  let

$$U_n = \bigcup_{x \in K} B(x, \frac{1}{n})$$

and let  $F_n = \Omega \setminus U_n$ . Then define

$$\varphi_n(x) = \frac{dist(x, F_n)}{dist(x, F_n) + dist(x, K)}$$

where  $dist(x, A) = inf\{d(x, y) | y \in A\}$ . Then  $\varphi_n(x) = 1$  if  $x \in K$  and  $\varphi_n(x) = 0$  if  $x \in F_n$ . Hence  $\varphi_n \to \chi_K$  pointwise.

Moreover since  $\{dist(x, F_n)\}$  is decreasing, we get

$$0 \le \varphi_{n+1}(t) \le \varphi_n(t) \le 1.$$