Chapter 6

Riesz Representation Theorems

6.1 Dual Spaces

Definition 6.1.1. Let V and W be vector spaces over \mathbb{R}. We let

$$
L(V, W)=\{T: V \rightarrow W \mid T \text { is linear }\} .
$$

The space $L(V, \mathbb{R})$ is denoted by V^{\sharp} and elements of V^{\sharp} are called linear functionals.

EXAMPLE 6.1.2. 1) Let $V=\mathbb{R}^{n}$. Then we can identify \mathbb{R}^{\sharp} with \mathbb{R} as follows:
For each $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ define $\phi_{\mathbf{a}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\phi_{\mathbf{a}}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\mathbf{x} \cdot \mathbf{a}=\sum_{i=1}^{n} x_{i} a_{i}
$$

2) Let (X, d) be a compact metric space. Let $x_{0} \in X$. Define $\phi_{x_{0}}: C(X) \rightarrow \mathbb{R}$ by

$$
\phi_{x_{0}}(f)=f\left(x_{0}\right)
$$

Then $\phi_{x_{0}} \in C(X)^{\sharp}$.

Definition 6.1.3. Let $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ be normed linear spaces. Let $T: V \rightarrow W$ be linear. We say that T is bounded is

$$
\sup _{\|x\|_{V} \leq 1}\left\{\|T(x)\|_{W}\right\}<\infty
$$

In this case, we write

$$
\|T\|=\sup _{\|x\|_{V} \leq 1}\left\{\|T(x)\|_{W}\right\}
$$

Otherwise, we say that T is unbounded.
The next result establishes the fundamental criterion for when a linear map between normed linear spaces is continuous. It's proof is left as an exercise.

Theorem 6.1.4. Let $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ be normed linear spaces. Let $T: V \rightarrow W$ be linear. Then the following are equivalent.

1) T is continuous.
2) T is continuous at 0 .
3) T is bounded.

Proof. 1) $\Rightarrow 2$) This is immediate.
$2) \Rightarrow 3)$ Assume that T is continuous at 0 . Let δ be such that if $\|x\|_{V} \leq \delta$, then $\|T(x)\|_{W}$. It follows easily that $\|T\| \leq \frac{1}{\delta}$.
$3) \Rightarrow 1)$ Note that we may assume that $\|T\|>0$ otherwise $T=0$ and hence is obviously continuous. Let $x_{0} \in V$ and let $\epsilon>0$. Let $\delta=\frac{\epsilon}{\|T\|}$. Then if $\left\|x-x_{0}\right\|_{V}<\delta$, we have

$$
\left\|T(x)-T\left(x_{0}\right)\right\|_{W}=\left\|T\left(x-x_{0}\right)\right\|_{W} \leq\|T\| \cdot\left\|x-x_{0}\right\|_{V}<\epsilon
$$

REMARK 6.1.5. 1) Let $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ be normed linear spaces. Let $T: V \rightarrow W$ be linear. Then we can easily deduce from the previous theorem that . if T is bounded, then T is uniformly continuous.
2) Let

$$
B(V, W)=\{T: X \rightarrow Y \mid T \text { is linear and } T \text { is bounded }\} .
$$

Let T_{1} and T_{2} be in $B(V, W)$. Then if $x \in V$, we have

$$
\begin{aligned}
\left\|T_{1}+T_{2}(x)\right\|_{W} & =\left\|T_{1}(x)+T_{2}(x)\right\|_{W} \\
& \leq\left\|T_{1}(x)\right\|_{W}+\left\|T_{2}(x)\right\|_{W} \\
& \leq\left\|T_{1}\right\|\|x\|_{V}+\left\|T_{1}\right\|\|x\|_{V} \\
& =\left(\left\|T_{1}\right\|+\left\|T_{2}\right\|\right)\|x\|_{V}
\end{aligned}
$$

As such $T_{1}+T_{2} \in B(V, W)$ and in particular

$$
\left\|T_{1}+T_{2}\right\| \leq\left\|T_{1}\right\|+\left\|T_{1}\right\|
$$

It follows that $(B(V, W),\|\cdot\|)$ is also a normed linear space.

Theorem 6.1.6. Assume that $\left(W,\|\cdot\|_{W}\right)$ be a Banach space. Then so is $(B(V, W),\|\cdot\|)$.
Proof. Assume that $\left\{T_{n}\right\}$ is Cauchy. Let $x \in V$. Since

$$
\left\|T_{n}(x)-T_{m}(x)\right\|_{W} \leq\left\|T_{n}-T_{2}\right\|\|x\|_{V}
$$

it follows easily that $\left\{T_{n}(x)\right\}$ is also Cauchy in W. As such we can define T_{0} by

$$
T_{0}(x)=\lim _{n \rightarrow \infty} T_{n}(x)
$$

To see that T_{0} is linear observe that

$$
\begin{aligned}
T_{0}(\alpha x+\beta y) & =\lim _{n \rightarrow \infty} T_{n}(\alpha x+\beta y) \\
& =\lim _{n \rightarrow \infty} \alpha T_{n}(x)+\beta T_{n}(y) \\
& =\alpha T_{0}(x)+\beta T_{0}(y)
\end{aligned}
$$

To see that T_{0} is bounded first observe that being Cauchy, $\left\{T_{n}\right\}$ is bounded. Hence we can find an $M>0$ such that $\left\|T_{n}\right\| \leq M$ for each $n \in \mathbb{N}$. Moreover, since $\left\|T_{0}(x)\right\|_{W}=\lim _{n \rightarrow \infty}\left\|T_{n}(x)\right\| \leq M\|x\|_{V}$, we have that $\left\|T_{0}\right\| \leq M$.

Now let $\epsilon>0$ and choose an $N \in \mathbb{N}$ so that if $n, m \geq N$, then

$$
\left\|T_{n}-T_{m}\right\|<\epsilon
$$

Let $x \in V$ with $\|x\|_{V} \leq 1$. Then since $\left\|T_{n}(x)-T_{m}(x)\right\|_{W}<\epsilon$ for each $m \geq N$, we have

$$
\left\|T_{n}(x)-T_{0}(x)\right\|_{W}=\lim _{m \rightarrow \infty}\left\|T_{n}(x)-T_{m}(x)\right\|_{W} \leq \epsilon
$$

In particular

$$
T_{0}=\lim _{n \rightarrow \infty} T_{n}
$$

in $B(X, Y)$.

Definition 6.1.7. Let $(V,\|\cdot\|)$ be a normed linear space. The space $B(V, \mathbb{R})$ is called the dual space of V and is denoted by V^{*}.

EXAMPLE 6.1.8. 1) Let $V=\mathbb{R}^{n}$ with the usual norm $\|\cdot\|_{2}$. For each $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ we defined $\phi_{\mathbf{a}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\phi_{\mathbf{a}}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\mathbf{x} \cdot \mathbf{a}=\sum_{i=1}^{n} x_{i} a_{i}
$$

Then in fact $\phi_{\mathbf{a}} \in \mathbb{R}^{n^{*}}$ and

$$
\left\|\phi_{\mathbf{a}}\right\|=\|\mathbf{a}\|_{2}
$$

2) Let (X, d) be a compact metric space. Again, if $x_{0} \in X$ and we define $\phi_{x_{0}}:\left(C(X),\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}$ by

$$
\phi_{x_{0}}(f)=f\left(x_{0}\right),
$$

then $\phi_{x_{0}} \in C(X)^{*}$. In this case $\left\|\phi_{x_{0}}\right\|$.
3) Let (X, \mathcal{A}, μ) be a measure space and let $1 \leq p \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Hölder's Inequality allows us to define for each $g \in L_{q}(X, \mathcal{A}, \mu)$ and element $\phi_{g} \in L_{p}(X, \mathcal{A}, \mu)^{\sharp}$ by

$$
\phi_{g}(f)=\int f g d \mu
$$

Moreover, Hölder's Inequality also shows that $\phi_{g} \in L_{p}(X, \mathcal{A}, \mu)^{*}$ with

$$
\left\|\phi_{g}\right\| \leq\|g\|_{p}
$$

Note that ϕ_{g} has the additional property that if $g \geq 0 \mu$-a.e., then $\phi_{g}(f) \geq 0$ whenever $f \in L_{p}(X, \mathcal{A}, \mu)$ and $f \geq 0 \mu$-a.e.
4) Let (X, d) be a compact measure space and let μ be a finite regular signed measure on $\mathcal{B}(X)$. Define $\phi_{\mu} \in C(X)^{\#}$ by

$$
\phi_{\mu}(f)=\int f d \mu
$$

Since

$$
\left|\phi_{\mu}(f)\right| \leq \int|f| d|\mu| \leq\|f\|_{\infty}\|\mu\|_{\text {meas }}
$$

we see that in fact $\phi_{\mu} \in C(X)^{*}$ and $\left\|\phi_{\mu}\right\| \leq\|\mu\|_{\text {meas }}$.

We note again that ϕ_{μ} has the additional property that if μ is a positive measure on $\mathcal{B}(X)$, then $\phi_{\mu}(f) \geq 0$ whenever $f \in C(X)$ and $f \geq 0$. Furthermore, in this case since

$$
\phi_{\mu}(1)=\int 1 d \mu=\mu(X)=\|\mu\|_{\text {meas }}
$$

if μ is a positve measure we have

$$
\left\|\phi_{\mu}\right\|=\|\mu\|_{\text {meas }}
$$

Problem 6.1.9. In Examples 3) and 4) above we have shown respectively that every element in $L_{q}(X, \mathcal{A}, \mu)$ determines a continuous functional on $L_{p}(X, \mathcal{A}, \mu)$ and that if (X, d) is a compact metric space, then every finite regular signed measure on $\mathcal{B}(X)$ determines a continuous linear functional on $C(X)$. It is natural to ask:

Do all continuous linear functionals on $L_{p}(X, \mathcal{A}, \mu)$ and $C(X)$ arise in this fashion?

6.2 Riesz Representation Theorem for $L^{p}(X, \mathcal{A}, \mu)$

In this section we will focus on the following problem:

Problem 6.2.1. What is $L^{p}(X, \mathcal{A}, \mu)^{*}$?
We have already established most of the following result:

Lemma 6.2.2. If (X, \mathcal{A}, μ) is a measure space and if $1 \leq p \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$, then for every $g \in L^{q}(X, \mu)$ the map $\Gamma_{g}: L^{p}(X, \mu) \rightarrow \mathbb{R}$ defined by $\Gamma_{g}(f)=\int_{X} f g d \mu$ is a continuous linear functional on $L^{p}(X, \mu)$. Further, $\left\|\Gamma_{g}\right\| \leq\|g\|_{q}$ and if $1<p \leq \infty$ then $\left\|\Gamma_{g}\right\|=\|g\|_{q}$.

Proof. Assignment.
If (X, μ) is σ-finite, then equality holds for $p=1$ as well.

LEMMA 6.2.3. Let (X, \mathcal{A}, μ) be a finite measure space and if $1 \leq p<\infty$. Let g be an integrable function such that there exists a constant M with $\mid \int g \varphi d \mu \leq M\|\varphi\|_{p}$ for all simple functions φ. Then $g \in L^{q}(X, \mu)$, where $\frac{1}{p}+\frac{1}{q}=1$.

Proof. Assume that $p>1$. Let ψ_{n} be a sequence of simple functions with $\psi_{n} \nearrow|g|^{q}$. Let $\varphi_{n}=\left(\psi_{n}\right)^{\frac{1}{p}} \operatorname{Sgn}(g)$. Then φ_{n} is also simple and $\left\|\varphi_{n}\right\|_{p}=\left(\int \psi_{n} d \mu\right)^{\frac{1}{p}}$. Since $\left|\varphi_{n} g\right| \geq\left|\varphi_{n}\right|\left|\psi_{n}\right|^{\frac{1}{q}}=\left|\psi_{n}\right|$, we have

$$
\int \psi_{n} d \mu \leq \int \varphi_{n} g d \mu \leq M\left\|\varphi_{n}\right\|_{p}=M\left(\int \psi_{n} d \mu\right)^{\frac{1}{p}}
$$

Therefore $\int \psi_{n} d \mu \leq M^{q}$. By the Monotone Convergence Theorem we get that $\|g\|_{q} \leq M$, so $g \in L^{q}(X, \mu)$. If $p=1$, then we need to show that g is bounded almost everywhere. Let $E=\{x \in X| | g(x) \mid>M\}$. Let $f=\frac{1}{\mu(E)} \chi_{E} \operatorname{sgn}(g)$. Then f is a simple function and $\|f\|_{1}=1$. This is a contradiction.

LEMMA 6.2.4. Let $1 \leq p<\infty$. Let $\left\{E_{n}\right\}$ be a sequence of disjoint sets. Let $\left\{f_{n}\right\} \subseteq L^{p}(X, \mu)$ be such that $f_{n}(x)=0$ if $x \notin E_{n}$ for each $n \geq 1$. Let $f=\sum_{n=1}^{\infty} f_{n}$. Then $f \in L^{p}(X, \mu)$ if and only if $\sum_{n=1}^{\infty}\|f\|_{p}^{p}<\infty$. In this case, $\|f\|_{p}^{p}=\sum_{n=1}^{\infty}\|f\|_{p}^{p}$.

Proof. Exercise.

Theorem 6.2.5 [Riesz Representation Theorem, I]. Let $\Gamma \in L^{p}(X, \mu)^{*}$, where $1 \leq p<\infty$ and μ is σ-finite. Then if $\frac{1}{p}+\frac{1}{q}=1$, there exists a unique $g \in L^{q}(X, \mu)^{*}$ such that

$$
\Gamma(f)=\int_{X} f g d \mu=\phi_{g}(f)
$$

Moreover, $\|\Gamma\|=\|g\|_{q}$.
Proof. Assume that μ is finite. Then every bounded measurable function is in $L^{p}(X, \mu)$. Define $\lambda: \mathcal{A} \rightarrow$ $\mathbb{R}: E \mapsto \Gamma\left(\chi_{E}\right)$. Let $\left\{E_{n}\right\} \subseteq \mathcal{A}$ be a sequence of disjoint sets, and let $E=\bigcup_{n=1}^{\infty} E_{n}$. Let $\alpha_{n}=\operatorname{sgn} \Gamma\left(\chi_{E_{n}}\right)$ and $f=\sum_{n=1}^{\infty} \alpha_{n} \chi_{E_{n}}$. Then $f \in L^{p}(X, \mu)$ and $\Gamma(f)=\sum_{n=1}^{\infty}\left|\lambda\left(E_{n}\right)\right|<\infty$ and so $\sum_{n=1}^{\infty}\left|\lambda\left(E_{n}\right)\right|=\Gamma\left(\chi_{E}\right)=$ $\lambda(E)$. Therefore λ is a finite signed measure. Clearly, if $\mu(E)=0$ then $\chi_{E}=0$ almost everywhere, so $\lambda(E)-\Gamma(0)=0$. Therefore $|\lambda| \ll \mu$. By the Radon-Nikodym Theorem, there is an integrable function g such that $\lambda(E)=\int_{E} g d \mu$ for all $E \in \mathcal{A}$. If φ is simple, then $\Gamma(\varphi)=\int \varphi g d \mu$ by linearity of the integral. But $|\Gamma(\varphi)| \leq\|\Gamma\|\|\varphi\|_{p}$ for all simple functions φ, so $g \in L^{q}(X, \mu)$ by the lemma above. Now $\Gamma-\phi_{g} \in L^{p}(X, \mu)^{*}$ and $\Gamma-\phi_{g}=0$ on the space of simple functions. Since the simple functions are dense in $L^{p}(X, \mu), \Gamma-\phi_{g}=0$ on $L^{P}(X, \mu)$, so $\Gamma=\phi_{g}$. We have that $\|\Gamma\|=\left\|\phi_{g}\right\|=\|g\|_{q}$ as before.

Now asume that μ is σ-finite. We can write $X=\bigcup_{n=1}^{\infty} X_{n}$, where $\mu\left(X_{n}\right)<\infty$ and $X_{n} \subseteq X_{n+1}$ for all $n \geq 1$. For each $n \geq 1$, the proof above gives us $g_{n} \in L^{q}(X, \mu)$, vanishing outside X_{n}, such that $\Gamma(f)=\int f g d \mu$ for all $f \in L^{p}(X, \mu)$ vanishing off of X_{n}. Moreover, $\left\|g_{n}\right\|_{q} \leq\|\Gamma\|$. By the uniqueness of the g_{n} 's, we can assume that $g_{n+1}=g_{n}$ on X_{n}. Let $g(x)=\lim _{n \rightarrow \infty} g_{n}(x)$. We have that $\left|g_{n}\right| \nearrow|g|$. By the Monotone Convergence Theorem

$$
\int|g|^{q} d \mu=\lim _{n \rightarrow \infty} \int\left|g_{n}\right|^{q} d \mu \leq\|\Gamma\| q
$$

Hence $g \in L^{q}(X, \mu)$. Let $f \in L^{p}(X, \mu)$ and $f_{n}=f \chi_{X_{n}}$. Then $f_{n} \rightarrow f$ pointwise and $f_{n} \in L^{p}(X, \mu)$ for all $n \geq 1$. Since $|f g| \in L^{1}(X, \mu)$ and $f_{n} g|\leq|f g|$, the Lebesque Dominated Convergence Theorem shows

$$
\int f g d \mu=\lim _{n \rightarrow \infty} \int f_{n} g d \mu=\lim _{n \rightarrow \infty} \int f_{n} g_{n} d \mu=\lim _{n \rightarrow \infty} \Gamma\left(f_{n}\right)=\Gamma(f)
$$

If $p=1$, then we cannot drop the assumption of σ-finiteness.

Theorem 6.2.6 [Riesz Representation Theorem, II]. Let $\Gamma \in L^{p}(X, \mu)^{*}$, where $1<p<\infty$. Then if $\frac{1}{p}+\frac{1}{q}=1$, there exists a unique $g \in L^{q}(X, \mu)$ such that

$$
\Gamma(f)=\int f g d \mu
$$

for all $f \in L^{p}(X, \mu)$. Moreover, $\|\Gamma\|=\|g\|_{q}$.
Proof. Let $E \subseteq X$ be σ-finite. then there exists a unique $g_{E} \in L^{q}(X, \mu)$, vanishing outside of E, such that $\Gamma(f)=\int f g_{E} d \mu$ for all $g \in L^{p}(X, \mu)$ vanishing outside of E. Moreover, if $A \subseteq E$, then $g_{A}=g_{E}$ almost everywhere on A. For each σ-finite set E let $\lambda(E)=\int\left|g_{E}\right|^{q} d \mu$. If $A \subseteq E$, then $\lambda(A) \leq \lambda(E) \leq\|\Gamma\|^{q}$. Let $M=\sup \{\lambda(E) \mid E$ is σ-finite $\}$. Let $\left\{E_{n}\right\}$ be a sequence of σ-finite sets such that $\lim _{n \rightarrow \infty} \lambda\left(E_{n}\right)=M$. If $H=\bigcup_{n=1}^{\infty} E_{n}$ then H is σ-finite and $\lambda(H)=M$. If E is σ-finite with $H \subseteq E$, then $g_{E}=g_{H}$ almost everywhere on H. But

$$
\int\left|g_{E}\right|^{q} d \mu=\lambda(E) \leq \lambda(H)=\int\left|g_{H}\right|^{q} d \mu
$$

so $g_{E}=0$ almost everywhere on $E \backslash H$. Let $g=g_{H \chi H}$. Then $g \in L^{q}(X, \mu)$ and if E is σ-finite with $H \subseteq E$ then $g_{E}=g$ almost everywhere. If $f \in L^{p}(X, \mu)$, then let $E=\{x \in X \mid f(x) \neq 0\}$. E is σ-finite and hence $E_{1}=E \cup H$ is σ-finite. Hence

$$
\Gamma(f)=\int f g_{E_{1}} d \mu=\int f g d \mu=\phi_{g}(f)
$$

Therefore $\Gamma=\phi_{g}$ and as before $\|\Gamma\|=\|g\|_{q}$.
We have shown that if $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$, then for any measure space $(X, \mathcal{A}, \mu), L^{p}(X, \mu)^{*} \cong$ $L^{q}(X, \mu)$. If μ is σ-finite, then $L^{1}(X, \mu)^{*} \cong L^{\infty}(X, \mu)$. What happens when $p=\infty$? $L^{1}(X, \mu) \hookrightarrow L^{\infty}(X, \mu)^{*}$, but this embedding is not usually surjective. There exists a compact Hausdorff space Ω such that $L^{\infty}(X, \mu) \cong$ $C(\Omega)$. What is $C(\Omega)$?

Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be defined by $\varphi(f)=f\left(x_{0}\right)$. Then $\varphi \in C[a, b]^{*}$, and $\|\varphi\|=1$. Let $\mu_{x_{0}}$ be the measure on $[a, b]$ of the point mass x_{0}. If $g \in L^{1}([a, b], m)$, then $\varphi_{g}(f)=\int_{a}^{b} f g d m$ is a linear functional on $C[a, b]$, and $\left\|\varphi_{g}\right\| \leq\|g\|_{1} . g$ is the Radon-Nikodym derivative of an absolutely continuous measure μ on $[a, b]$, and $\varphi_{g}(f)=\int f d \mu$. If $\mu \in \operatorname{Meas}[a, b]$, then $\varphi_{n}(f)=\int f d \mu$ is a bounded linear functional on $C[a, b]$, with $\left\|\varphi_{\mu}\right\| \leq\|\mu\|_{\text {Meas }}$.

6.3 Riesz Representation Theorem for C([a,b])

Theorem 6.3.1. [Jordan Decomposition Theorem]
Let $\Gamma \in C([a, b])^{*}$. Then there exist positive linear functionals $\Gamma^{+}, \Gamma^{-} \in C([a, b])^{*}$ such that

$$
\Gamma=\Gamma^{+}-\Gamma^{-}
$$

and

$$
\|\Gamma\|=\Gamma^{+}(1)+\Gamma^{-}(1)
$$

Proof. Assume that $f \geq 0$. Define

$$
\Gamma^{+}(f)=\sup _{0 \leq \phi \leq f} \Gamma(\varphi)
$$

Then $\Gamma^{+}(f) \geq 0$ and $\Gamma^{+}(f) \geq \Gamma(f)$. It is also easy to see that if $c \geq 0$, then $\Gamma^{+}(c f)=c \Gamma^{+}(f)$.
Let $f, g \geq 0$. If $0 \leq \phi \leq f$ and $0 \leq \psi \leq g$, then $0 \leq \phi+\psi \leq f+g$ so

$$
\Gamma(\phi)+\Gamma(\psi) \leq \Gamma^{+}(f+g)
$$

and hence,

$$
\Gamma^{+}(f)+\Gamma^{+}(g) \leq \Gamma^{+}(f+g)
$$

If $0 \leq \psi \leq f+g$, then let $\varphi=\inf \{f, \psi\}$ and $\xi=\psi-\varphi$. Then $0 \leq \varphi \leq f$ and $0 \leq \xi \leq g$. It follows that

$$
\Gamma(\psi)=\Gamma(\varphi)+\Gamma(\xi) \leq \Gamma^{+}(f)+\Gamma^{+}(g)
$$

This shows that

$$
\Gamma^{+}(f+g) \leq \Gamma^{+}(f)+\Gamma^{+}(g)
$$

Therefore,

$$
\Gamma^{+}(f+g)=\Gamma^{+}(f)+\Gamma^{+}(g)
$$

Let $f \in C[a, b]$. Let α, β be such that $f+\alpha 1 \geq 0$ and $f+\beta 1 \geq 0$. Then

$$
\begin{aligned}
\Gamma^{+}(f+\alpha 1+\beta 1) & =\Gamma^{+}(f+\alpha 1)+\Gamma^{+}(\beta 1) \\
& =\Gamma^{+}(f+\beta 1)+\Gamma^{+}(\alpha 1)
\end{aligned}
$$

This shows that

$$
\Gamma^{+}(f+\alpha 1)-\Gamma^{+}(\alpha 1)=\Gamma^{+}(f+\beta 1)-\Gamma^{+}(\beta 1)
$$

As such, if we let

$$
\Gamma^{+}(f)=\Gamma^{+}(f+\alpha 1)-\Gamma^{+}(\alpha 1),
$$

then Γ^{+}is well defined.
Let $f, g \in C[a, b]$. Let α, β be chosen so that $f+\alpha 1 \geq 0$ and $g+\beta 1 \geq 0$. Then $f+g+(\alpha+\beta) 1 \geq 0$ so

$$
\begin{aligned}
\Gamma^{+}(f+g) & =\Gamma^{+}(f+g+(\alpha+\beta) 1)-\Gamma^{+}((\alpha+\beta) 1) \\
& =\Gamma^{+}(f+\alpha 1)+\Gamma^{+}(g+\beta 1)-\Gamma^{+}((\alpha+\beta) 1) \\
& \left.=\Gamma^{+}(f+\alpha 1)-\Gamma^{+}(\alpha 1)+\Gamma^{+}(g+\beta 1)-\Gamma^{+}(\beta) 1\right) \\
& =\Gamma^{+}(f)+\Gamma^{+}(g)
\end{aligned}
$$

That is Γ^{+}is additive.
It is also clear that $\Gamma^{+}(c f)=c \Gamma^{+}(f)$ when $c \geq 0$. But since $\Gamma^{+}(-f)+\Gamma^{+}(f)=\Gamma^{+}(0)=0$, we get that

$$
\Gamma^{+}(-f)=-\Gamma^{+}(f)
$$

so Γ^{+}is linear.
Let

$$
\Gamma^{-}=\Gamma^{+}-\Gamma
$$

Since it is clear that $\Gamma^{+}(f) \geq \Gamma(f)$ if $f \geq 0, \Gamma^{-}$is also positive.
We know that

$$
\|\Gamma\| \leq\left\|\Gamma^{+}\right\|+\| \Gamma^{-}=\Gamma^{+}(1)+\Gamma^{-}(1)
$$

Let $0 \leq \psi \leq 1$. Then $\|2 \psi-1\|_{\infty} \leq 1$. As such

$$
\|\Gamma\| \geq \Gamma(2 \psi-1)=2 \Gamma(\psi)-\Gamma(1)
$$

and therefore

$$
\begin{aligned}
\|\Gamma\| & \geq 2 \Gamma^{+}(1)-\Gamma(1) \\
& =\Gamma^{+}(1)+\Gamma^{-}(1)
\end{aligned}
$$

Hence

$$
\|\Gamma\|=\Gamma^{+}(1)+\Gamma^{-}(1) .
$$

Theorem 6.3.2. [Riesz Representation Theorem for $C([a, b])$]
Let $\Gamma \in C([a, b])^{*}$. Then there exists a unique finite signed measure μ on the Borel subsets of $[a, b]$ such that

$$
\Gamma(f)=\int_{[a, b]} f d \mu
$$

for each $f \in C([a, b])$. Moreover, $\|\Gamma\|=|\mu|([a, b])$.
Proof. First, we will assume that Γ is positive.
For $a \leq t<b$ and for n large enough so that $t+\frac{1}{n} \leq b$, let

$$
\varphi_{t, n}(x)= \begin{cases}1 & \text { if } x \in[a, t] \\ 1-n(x-t) & \text { if } x \in\left(t, t+\frac{1}{n}\right] \\ 0 & \text { if } x \in\left(t+\frac{1}{n}, b\right]\end{cases}
$$

Note that if $n \leq m$, then

$$
0 \leq \varphi_{t, m} \leq \varphi_{t, n} \leq 1
$$

It follows that $\left\{\Gamma\left(\varphi_{t, n}\right)\right\}$ is decreasing and bounded below by 0 . Therefore, we can define

$$
g(t)= \begin{cases}0 & \text { if } t<a \\ \lim _{n \rightarrow \infty} \Gamma\left(\varphi_{t, n}\right) & \text { if } t \in[a, b) \\ \Gamma(1) & \text { if } t \geq b\end{cases}
$$

Moreover, if $t_{1}>t$, we have

$$
\varphi_{t, m} \leq \varphi_{t_{1}, n}
$$

Since Γ is positive, $g(t)$ is monotonically increasing.
It is clear that $g(t)$ is right continuous if $t<a$ or if $t \geq b$. Assume that $t \in[a, b)$. Let $\epsilon>0$ and choose n large enough so that

$$
n>\max \left(2, \frac{\|\Gamma\|}{\epsilon}\right)
$$

and

$$
g(t) \leq \Gamma\left(\varphi_{t, n}\right) \leq g(t)+\epsilon
$$

Let

$$
\psi_{n}(x)= \begin{cases}1 & \text { if } x \in\left[a, t+\frac{1}{n^{2}}\right] \\ 1-\frac{n^{2}}{n-2}\left(x-t-\frac{1}{n^{2}}\right) & \text { if } x \in\left(t+\frac{1}{n^{2}}, t+\frac{1}{n}-\frac{1}{n^{2}}\right] \\ 0 & \text { if } x \in\left(t+\frac{1}{n}-\frac{1}{n^{2}}, b\right]\end{cases}
$$

Then

$$
\left\|\psi_{n}-\varphi_{t, n}\right\|_{\infty} \leq \frac{1}{n}
$$

Therefore,

$$
\Gamma\left(\psi_{n}\right) \leq \Gamma\left(\varphi_{t, n}\right)+\frac{1}{n}\|\Gamma\| \leq g(t)+2 \epsilon
$$

This means that

$$
g(t) \leq g\left(t+\frac{1}{n^{2}}\right) \leq g(t)+2 \epsilon
$$

However, as $g(t)$ is increasing, this is sufficient to show that $g(t)$ is right continuous.
The Hahn Extension Theorem gives a Borel measure μ such that $\mu((\alpha, \beta])=g(\beta)-g(\alpha)$. In particular, if $a \leq c \leq b$, then

$$
\mu([a, c])=\mu((a-1, c])=g(c)
$$

Let $f \in C([a, b])$ and let $\epsilon>0$. Let δ be such that if $|x-y|<\delta$ and $x, y \in[a, b]$, then

$$
|f(x)-f(y)|<\epsilon
$$

Let $P=\left\{a=t_{0}, t_{1}, \ldots, t_{m}=b\right\}$ be a partition with $\sup \left(t_{k}-t_{k-1}\right)<\frac{\delta}{2}$. Then choose n large enough so that $\frac{2}{n}<\inf \left(t_{k}-t_{k-1}\right)$ and

$$
\begin{equation*}
g\left(t_{k}\right) \leq \Gamma\left(\varphi_{t, n}\right) \leq g\left(t_{k}\right)+\frac{\epsilon}{m\|f\|_{\infty}} \tag{*}
\end{equation*}
$$

Next, we let

$$
f_{1}(x)=f\left(t_{1}\right) \varphi_{t_{1}, n}+\sum_{k=2}^{m} f\left(t_{k}\right)\left(\varphi_{t_{k}, n}-\varphi_{t_{k-1}, n}\right)
$$

and

$$
\left.f_{2}(x)=f\left(t_{1}\right) \chi_{\left[t_{0}, t_{1}\right]}+\sum_{k=2}^{m} f\left(t_{k}\right) \chi_{\left[t_{k-1}, t_{k}\right]}\right)
$$

Note that f_{1} is continuous and piecewise linear. f_{2} is a step function. It is also true that both f_{1} and f_{2} agree with $f(x)$ at each point t_{k} for $k \geq 1$. Moreover, the function f_{1} takes on values between $f\left(t_{k-1}\right.$ and $f\left(t_{k}\right)$ on the interval $\left[t_{k-1}, t_{k}\right]$. As such

$$
\left\|f_{1}-f\right\|_{\infty} \leq \epsilon
$$

and

$$
\sup \left\{\mid f_{2}(x)-f(x) \| x \in[a, b]\right\} \leq \epsilon
$$

From this we conclude that

$$
\left|\Gamma(f)-\Gamma\left(f_{1}\right)\right| \leq \epsilon\|\Gamma\| .
$$

We use $\left(^{*}\right)$ to see that for $2 \leq k \leq m$

$$
\left|\Gamma\left(\varphi_{t_{k}, n}-\varphi_{t_{k-1}, n}\right)-\left(g\left(t_{k}\right)-g\left(t_{k-1}\right)\right)\right| \leq \frac{\epsilon}{m\|f\|_{\infty}}
$$

Next, we apply Γ to f_{1} and integrate f_{2} with respect to μ to get

$$
\left|\Gamma\left(f_{1}\right)-\int_{[a, b]} f_{2} d \mu\right| \leq \epsilon
$$

We also have that

$$
\int_{[a, b]} f_{2} d \mu-\int_{[a, b]} f d \mu \mid \leq \epsilon \mu([a, b])
$$

Therefore,

$$
\left|\Gamma(f)-\int_{[a, b]} f d \mu\right| \leq \epsilon(2\|\Gamma\|+\mu([a, b])
$$

Since ϵ is arbitrary,

$$
\Gamma(f)=\int_{[a, b]} f d \mu
$$

for each $f \in C[a, b]$. Moreover, $\|\Gamma\|=\Gamma(1)=|\mu|([a, b])$.
The general result follows from the previous theorem.

6.4 Riesz Representation Theorem for $C(\Omega)$

In this section we will briefly discuss how to extend the Riesz Representation to $C(\Omega)$ when (Ω, d) is a compact metric space. In fact we can state this extension in greater generality:

Theorem 6.4.1. [Riesz Representation Theorem for $C(\Omega)$] Let (Ω, τ) be a compact Hausdorff space. Let $\Gamma \in C(\Omega)^{*}$. Then there exists a unique finite regular signed measure μ on the Borel subsets of Ω such that

$$
\Gamma(f)=\int_{\Omega} f d \mu
$$

for each $f \in C(\Omega)$. Moreover, $\|\Gamma\|=|\mu|(\Omega)$.

Remark 6.4.2. Let $\mu \in \operatorname{Meas}(\Omega, \mathcal{B}(\Omega))$. If Γ_{μ} is defined by

$$
\begin{equation*}
\Gamma_{\mu}(f)=\int_{\Omega} f d \mu \tag{*}
\end{equation*}
$$

for each $f \in C(\Omega)$, then $\Gamma_{\mu} \in C(\Omega)^{*}$ and

$$
\left\|\Gamma_{\mu}\right\|=|\mu|(\Omega)=\|\mu\|_{\text {meas }}
$$

Problem 6.4.3. For the converse how do we construct the measure μ ?
Sketch: We will sketch a solution in the special case where (Ω, d) is a compact metric space.
By the Jordan Decomposition Theorem, we may again assume that Γ is positive.
Key Observation: Let $K \subseteq \Omega$ be compact. Assume that $\left\{\varphi_{n}\right\}$ is a sequence of continuous functions such that

$$
0 \leq \varphi_{n+1}(t) \leq \varphi_{n}(t) \leq 1
$$

for every $t \in \Omega$ with

$$
\lim _{n \rightarrow \infty} \varphi_{n}=\chi_{K}
$$

pointwise. Then

$$
\lim _{n \rightarrow \infty} \Gamma\left(\varphi_{n}\right)
$$

exists. Moreover, if μ is a measure satisfying $(*)$, then the Lebesgue Dominated Convergence Theorem shows that

$$
\mu(K)=\int_{\Omega} \chi_{K} d \mu=\lim _{n \rightarrow \infty} \int_{\Omega} \varphi_{n} d \mu=\lim _{n \rightarrow \infty} \Gamma\left(\varphi_{n}\right)
$$

From here, let K be compact. For each $n \in \mathbb{N}$ let

$$
U_{n}=\bigcup_{x \in K} B\left(x, \frac{1}{n}\right)
$$

and let $F_{n}=\Omega \backslash U_{n}$. Then define

$$
\varphi_{n}(x)=\frac{\operatorname{dist}\left(x, F_{n}\right)}{\operatorname{dist}\left(x, F_{n}\right)+\operatorname{dist}(x, K)}
$$

where $\operatorname{dist}(x, A)=\inf \{d(x, y) \mid y \in A\}$.Then $\varphi_{n}(x)=1$ if $x \in K$ and $\varphi_{n}(x)=0$ if $x \in F_{n}$. Hence $\varphi_{n} \rightarrow \chi_{K}$ pointwise.

Moreover since $\left\{\operatorname{dist}\left(x, F_{n}\right)\right\}$ is decreasing, we get

$$
0 \leq \varphi_{n+1}(t) \leq \varphi_{n}(t) \leq 1
$$

