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This paper addresses the problem of why and how a seller should develop a discount pricing 
structure even if such a pricing structure does not alter ultimate demand. The situation 
modeled is most appropriate where the seller's product does not represent a major component 
of the buyer's final product, where the demand for the product is derived, or where the price is 
only one of many factors considered in making a purchase decision. 

A model of buyer reaction to any given pricing scheme is developed to show that there 
exists a unified pricing policy which motivates the buyer to increase its ordering quantity per 
order, thereby reducing the joint (buyer and seller) ordering and holding costs. As a result, the 
seller is able to reduce its costs while leaving the buyer no worse off and often better off. 

The model is extended to handle variable ordering and shipping costs and situations where 
the seller faces numerous groups of buyers, each having different ordering policies. Finally a 
case study is presented explicitly showing how the proposed pricing policy can be applied to 
the situation of a large seller selling to a number of different buyer groups. 
(PRICING; MARKETING) 

Although there is a substantial literature on how a buyer should react to a quantity discount schedule [see 
for example Hadley and Whiten 1963 and Chase and Aquilano 19771, there is no established theory as to 
how a seller should develop a discount pricing structure. Most discussions of discounts implicitly or 
explicitly assume that discounts are given by the seller in response to pressures from large buyers. However, 
there are numerous instances where a large seller offers discounts to a large number of smaller buyers who 
lack the economic power to demand such a price discount. Examples are a tire manufacturer selling to a 
number'of privately-owned retail outlets that stock and subsequently sell the manufacturer's product to the 
ultimate consumer, a large electronic components manufacturer selling to a large number of small 
distributors, and a cleaning supplies manufacturer selling its products to a large number of small firms who 
consume the product during their manufacturing process. One possible explanation for discounts in such 
situations is that the seller is using the discount structure to maximize its profits by modifying the buyer's 
ordering policy. 

We demonstrate the technical feasibility of such an explanation by constructing a pricing scheme which 
minimizes the total transaction costs associated with ordering, shipping and inventorying the seller's product 
without requiring any central planning between the buyers and seller.' Moreover, we show that the pricing 
scheme results in both parties being at  least as well off as if there were with no discounts. We start with the 
premise that the market between buyer and seller is in equilibrium. By this we mean that the seller has 
established some list price, Po, for the product where this price is independent of the quantity ordered by the 
buyer, and that the buyer, based on this price, has determined (i) its (annual) demand, D, for the product 
and (ii) the optimal order quantity Q*, the size of the order placed each time. The question then is, "Can the 
seller devise a pricing discount schedule to induce the buyer to change its ordering policy so that (a) the 
buyer is no worse off, and (b) the seller's profits are increased, even if the total annual demand does not 
change?" 

More specifically, we will show that it is possible to design a unified pricing policy p ( Q )  where the 
average price p of the seller's product is a monotonically decreasing function of Q, the amount ordered by 
the buyer. Moreover, we will show that such a policy provides an economic incentive to the buyer to order 
in quantities greater than Q*. This enables the seller to convert more quickly a noninterest generating asset 

*Accepted by John R. Hauser; received March 4, 1982. This paper has been with the authors 11 months 
for 2 revisions. 

'Of course it is also necessary to determine the legality of giving different quantity discounts to different 
buyers. However, as pointed out by Crowther (1967) and shown explicitly in our subsequent development, 
the proposed pricing schedule is based on cost considerations and therefore legal restrictions should not 
impede implementation. 
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(inventory) into a interest generating asset (cash) and also reduces the number of times the buyer places an 
order in a given period of time.2 This latter factor reduces both the buyer's and seller's annual ordering costs. 
It is, in fact, these reduced annual ordering costs that allow the seller to develop a pricing scheme which 
increases its profits while still being able to compensate the buyer for incurring the extra holding costs. 

These holding costs and ordering costs can be surprisingly high. For example, current estimates for a 
salesman making a sales call indicate that the direct average cost of taking an order exceeds $100 (Marketing 
News, 1982). This is in addition to the cost of the paper work associated with the order. Average shipping 
costs per unit often decrease with increases in quantity shipped, thus considerable savings also can be 
realized by increasing the shipment size. Finally given the recent increases in interest rates it is surprising 
that no established pricing schemes exist which explicitly take into account the cost savings to the seller 
associated with speeding up the sale of the product. 

The basic ideas used in this paper originated from a suggestion by Crowthers (1967) and formalized by 
Dolan (1978). However the specifics of our analysis differ from Dolan's work in a number of ways. First, the 
model proposed by Dolan assumes the seller has only one buyer (or at  least all buyers have identical 
inventory parameters) and the costs for each buyer are constant. In reality, sellers often have many buyers 
with different costs and final demand for their end product. We incorporate such reality into our analysis. 

Second, Dolan provided no means by which the seller could specify the incremental savings to be passed 
on to the buyer. This is an important limitation, since the buyer may not be willing to take the risk of 
changing its order quantity unless there are economic incentives for it to do so. Finally, and probably most 
importantly, Dolan was not able to derive a pricing scheme which guaranteed the seller maximum profits. 

It should be noted that the pricing scheme outlined allows the seller to modify the buyer's behavior 
without increasing channel conflict. In  this way, it is akin to the work of Jeuland and Shugan (1983) and 
McGuire and Staelin (1982), although as will be discussed subsequently, the assumptions these authors make 
on how the buyer's behavior is modified are considerably different from the approach taken herein. Also our 
approach is in marked contrast to that taken by some sellers (especially in contractual vertical channel 
systems) who find it in their best self-interests to transfer their inventory holding costs to the buyer by 
"forcing" the buyer to carry more inventory than the buyer believes is best for itself. For example, 
automobile dealers often complain about cars being forced on them by automobile manufacturers (White 
1971). Such practices can lead to conflict between the two agents. In contrast, the proposed pricing policy 
explicitly insures that the buyer's total costs are not increased, thereby enabling the seller to increase its 
profits without increasing channel conflict. 

The rest of the paper is organized as follows. First a pricing policy that insures the two agents reach the 
joint profit maximizing solution is developed for the one manufacturer-one group of homogeneous buyers 
problem. The procedure allows the seller to determine the split in increased profits between itself and each of 
the buyers. We next extend the model to allow for variable ordering and shipping costs. Then the solution is 
generalized to the situation of a seller facing numerous groups of buyers, each having different ordering 
policies. Finally we provide a case study which explicitly shows how the proposed pricing policy can be 
applied to the case of a large seller, selling to a number of different buyer groups. 

The Model 

Assumptions 

We assume the seller and all buyers' inventory policies can be described by simple 
EOQ inventory models based on deterministic demand, no backlogs, no stockouts, and 
deterministic lead times to determine their inventory policy. In making such an 
assumption we realize that some firms may have more complex inventory policies. 
However, the EOQ model normally is a good representation of a firm's actions. 
Moreover, this model is the one used by many firms for determining their inventory 
levels. Also, the EOQ assumption could be relaxed by incorporating a more complex 
inventory policy, although it is not clear that such complexity would be merited. 

A second assumption of the model is that the seller has knowledge of the holding 
and ordering costs governing the buyer's inventory policy. This is not a very restrictive 
assumption, since the holding and ordering costsj can be inferred from the ordering 
behavior of the buyer prior to the development of any new pricing policy. Moreover, 
the proposed procedure can be supplemented with a sensitivity analysis to estimate the 

2~ similar suggestion has been made by Ingene and Levy (1982) with respect to retail credit sales. In their 
analysis, they are interested in converting credit card sales into more liquid cash sales. 
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effects of making errors in inferring these costs. (See the results section for an example 
of such an analysis.) Third, we assume the seller is price competitive and that his 
competitive market price to all buyers, independent of the quantity ordered, is Po. We 
ignore any competitive price reaction to the seller's discount policy and in addition 
assume that demand is not increased by the lowering of price. Although such an 
assumption possibly limits the applicability of our analysis, this assumption allows a 
first step which may be extended later to more complex models. There are still a 
number of industries where such an assumption is a good first approximation. In 
particular this assumption should hold in situations where the seller's product does not 
represent a major component in the buyer's final product (e.g., an electric component 
for a durable good), where the buyer is the ultimate consumer and has a fixed 
requirement for the product (e.g., cleaning supplies) or where the price is only one of 
the many factors considered in making the purchase decision. Such situations often 
ar ip  in industrial selling. Thus, our price discount policy is motivated by cost 
justifications versus any attempt to increase market share by lowering the price. This 
assumption is a major difference between our model and the models of Jeuland and 
Shugan (1983) and McGuire and Staelin (1982). In both of these latter cases, it is 
assumed that final demand is altered by the change in the wholesale pricep( Q). Thus 
in these latter situations the losses in revenue associated with decrease in price are 
reduced at least in part by the increase in demand brought about by the lower final 
price. 

Another ramification of our emphasis on cost savings versus increasing sales is that 
annual demand for the seller's product is not changed. As a result, the seller does not 
have to alter its optimal production schedule, a schedule which is based on demand 
and production set-up costs, neither of which are modified under our assumptions. In 
fact, the only factors which are modified are (a) the buyer will incur extra holding 
costs associated with the extra quantity ordered each order, (b) the buyer and seller 
both will incur fewer costs associated with ordering and processing an order ,since the 
buyer orders less often and (c) the seller will convert the noninterest earning asset into 
an interest earning asset more quickly. Another implication of the constant demand 
assumption is that it is possible to limit attention to one period. We acknowledge that 
expectation about exogenous factors, such as increasing interest rates and increasing 
prices, may cause buyers to deviate from their annual purchase rate. However we 
believe this representation of demand is a good first approximation of reality. More- 
over, it reduces the complexity inherent with a multi-period model. 

Finally, we assume the buyer's holding costs are greater than the seller's benefits 
associated with receiving payment for its product earlier. Although this is a necessary 
assumption, it would seem to be nonrestrictive, since capital costs are only one 
component of the holding costs and in any case the seller generally has lower holding 
costs due to economies of scale. 

Notation 

We build on the notation used by Dolan (1978). For the one seller-one group of 
homogeneous buyers case, define the following variables. 

B(Q):  Buyer's annual cost excluding the cost of the product associated with 
purchases from the seller in lot sizes Q. 

B( Q): Buyer's annual augmented cost, i.e., B(Q) plus the cost of the product, 
associated with purchases in lot sizes Q. 

s ( Q ) :  Seller's annual cost excluding the cost of the product associated with 
purchases by the buyer in lot sizes Q. 

J (  Q): B(Q) + s(Q), the joint cost function for both agents. 
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H,: Buyer's cost of holding a unit in inventory for one year. 
H,: Seller's cost of capital per year. 
A,: Buyer's fixed cost to place an order of any size. 
A,: Seller's fixed cost to process an order of any size. 
D: Buyer's annual demand rate for the product sold by the seller. 
Q: Size of orders placed by the buyer. 


Po: The list price to the buyer before quantity discounts. 


One Seller-One Group of Homogeneous Buyers Model 

We first solve the one seller-one group of homogeneous buyers problem with 
ordering and holding costs assumed to be constant. The assumption of one group is 
relaxed in a later section. The problem is solved by explicitly considering only one 
buyer. It should be noted, however, that the solution is applicable only to situations 
where a seller faces a group of homogeneous buyers, since otherwise the seller's 
average inventory level would be modified by changes in the one buyer's ordering 
policy.3 

Using the above notation and assuming that the final demand is constant over time, 
the buyer's cost function per year, excluding the cost of the product, as a function of 
the quantity ordered is 

D QB (  Q ) = (ordering cost) + (holding costs) or B (  Q ) = -A, + -H,
Q 2 

Similarly the seller's costs per year are 

- order processing costs - decrease in capital costs due to 
( ) = buyer purchasing the units or 

- D QS ( Q )  = -A, --H,.
Q 2 

It follows that the joint cost function J (  Q) = B(Q) + g( Q) is 

Based on the assumption that the buyer uses an EOQ rule to determine its order 
quantity, the buyer would order 

each time it orders. However, this ordering quantity does not minimize the joint cost 
function. To see this, differentiate (1) and solve for Q**, the order quantity that 
minimizes the joint cost function of the buyer and the seller. This yields 

[ 2(Ab + A,) D ] '/' .Q** = (H, - H,) 

Since the numerator in (3) is greater than in (2) and the denominator in (3) is less than 
in (2), Q** must be greater than Q*. Also since J (  Q) had a minimum at Q**,-
J (  Q**) < J (  Q*), which implies that B( Q**) - B( Q*) < S (  Q*) - S (  Q**), or the 

3Explicitly we assume that the pattern of demand faced by the seller is unaltered by changes in the 
quantity ordered by the buyers. This will occur if the seller is distributing its product to a large number of 
buyers who place orders independently of each other. Such an assumption was not explicated by Dolan 
(1978) or Crowther (1967). 
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decrease in the seller's costs are more than the increase in the buyer's costs when the 
ordering quantity is increased from Q* to Q**. It is this difference that provides the 
seller with the economic means to motivate the buyer to operate at Q** by passing 
back some of these savings to cover the extra costs associated with placing larger 
orders. 

This analysis, however, says nothing about how to design a pricing discount scheme 
to motivate the buyer to operate at Q** or how the gains are shared between the two 
agents. The sharing of the gains should depend entirely on the environment prevailing 
in the channel. 

Consider two extreme cases: 
(a) The two agents get together and decide among themselves to operate at Q** and 

bargain on the sharing of the gains. The determination of how they split these gains 
depends on the relative bargaining power of these two cooperative members. 

(b) The seller sends the buyer a price list that is a function of the quantity ordered 
and the buyer communicates to the seller the quantity it wishes to order (i.e., the 
transaction is done at "arms length"). Even though the seller has no evident power in 
this situation, the seller is the dominant player in this game since it can use the 
information on the buyer's reaction to its price list to develop the pricing strategy 
which maximizes its (i.e., seller's) profits. Thus, even though the buyer is allowed to 
behave in a way which maximizes its profits, it does so conditional on the seller's 
pricing structure. 

Although there may be some situations where case (a) mirrors reality, we analyze (b) 
in this paper because we believe it is the more representative case. Consequently, we 
next develop a pricing policy which allows the seller to increase its profits and still 
insures that a cost-minimizing buyer will order Q**. 

Model Development 

First define a price discount schedule to have the following structure: the seller 
charges price Pofor any order Q < Q,, price PI for any quantity Q greater than Q, 
but less than or equal to Q,, price P, for any quantity greater than Q, but less than or 
equal to Q, ,  and so on down to price P,, where Po> PI > P, > . . . > P,. Let p be 
the average unit price over all items purchased. Then it is easy to show that a plot of 
the average price p versus the quantity purchase Q for the above defined price 
discount schedule would have the shape as shown in Figure 1. 

Dolan has shown that using the above price discount schedule, it is impossible for 
the seller to motivate the buyer to order Q** with just one price break (i.e., m = 1) and 
still increase its profits. Consequently, we take the approach of approximating a 
discrete price discount schedule made up of many price breaks with a continuous 
price-quantity relationship p (  Q). The function used should fit the above average price 
structure closely if not exactly and also have the following properties. 

1. p'( Q), p"( Q) both exist. 

Qo Q1 Q2 

QUANTITY iQ1 

FIGURE1. Example of Average Price versus Quantity for a Quantity Discount Schedule. 
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2. A cost minimizing buyer will find that it is in its best self-interest to order in lot 
sizes of Q** given the price list p (  Q). 

3. The augmented cost, S(Q),  at Q** incurred by the seller under the discount 
structure p (  Q) should be less than with no discounts, i.e., S (  Q**) < g( Q*), where 
S (  Q) = (Po -P( Q>>D + sc Q), Q > Q*. 

One relationship that satisfies the above conditions is: 

p = p0exp[-a( Q - Q*)] for Q > Q*, 
, , 

P = Po for Q < Q*, 

where a is a constant greater than zero and is the decision variable for the ~ e l l e r . ~  
To see this, note that the reaction of the buyer to such a discount schedule depends 

on the buyer's augmented cost function 

= - a (  Q - Q*)] + -D 
Q 

Ab + Hb for Q.Q*.D P ~ ~ X ~ [  (5) 

The buyer determines the economic order quantity by minimizing the cost function in 
equation (5), yielding the first order conditions 

Since the seller wants the buyer to order in lot sizes of Q**, it selects an a* that 
satisfies the above first order equation when Q = Q**, i.e., 

Although (6) will motivate the cost-minimizing buyer to order Q**, it is still 
necessary to check if the seller's augmented cost function S (  Q**) is less than S( Q*). 

Setting up S (  Q) with a discount structure as given in equation (4) yields 

QUANTITY IQI 

FIGURE2. Seller's Augmented Cost Function versus Quantity. 

40ther one and two parameter monotonically decreasing functions (e.g., quadratic and log) were tried, but 
they did not satisfy all the above conditions. As will be shown subsequently, equation (4) also insures that 
the seller's augmented cost S( Q) is minimized at Q**. We did not, however, exhaustively explore all 
possible discount functions. 
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The first term, which represents the extra costs associated with the quantity discounts, 
is concave in Q, while the sum of the second and third is a decreasing function in Q. 
(See Figure 2.) However, as shown in Appendix 1, S (  Q) has a minimum at Q** when 
the value of a* satisfying the buyer's first order conditions, i.e., equation (6), is 
substituted into the right-hand side of equation (7) and (a) the buyer orders at least 
twice a year (i.e. D > 2Q**) and (b) the shift in the order quantity is no more than 
2.747 times what the buyer would have purchased prior to the quantity discount (i.e. 
Q* > 0 . 3 6 4 ~ * * ) . ~Intuitively, these later two requirements insure that (a) the buyer 
orders often enough to guarantee the availability of some savings by reducing the 
number of orders and (b) the shift required to reach the joint optimum is not so great 
that the seller must offer too large a discount. In summary, whenever these parameter 
restrictions hold, and the seller sets a* using (6), it is insured that (i) the cost 
minimizing buyer will order Q**, (ii) the seller's costs will be reduced, and (iii) the 
minimum augmented cost S (  Q) occurs at Q**. 

Since equation (6) provides a mechanism for determining the discount policy p (  Q), 
we next explore how to obtain the specific value(s) for a*. Let K, = Q** - Q*, and 

Then equation (6) can be rewritten as: 

We show in Appendix 2 that the left side of (9) has zero, one or two positive roots and 
that two roots will exist whenever the seller's ordering costs are between 50 percent and 
150 percent of the buyer's ordering costs, i.e., 0.5Ab < A, < 1 .5Ab, and the seller's cost 
of capital costs is no more than 80 percent of the buyer's holding costs, i.e., 
H, < 0.8Hb. Since these parameter values are likely to hold for most real world 
situations, we assume the two solution case. Moreover, since it is in the best self- 
interest of the seller to choose the lower of these two feasible discount policies, one 
would use the smaller of the two solutions of a* when determining the seller's pricing 
policy. 

Partitioning the Joint Gain Between Buyer and Seller 

Although the solution to (9) uniquely defines a pricing policy which leads the 
cost-minimizing buyer to order Q** and insures that the seller's augmented costs at 
Q** are less than those at Q*, no consideration has been given to how the gains are 
split between the two agents. We do this next by removing the constraint that the 
discount policy starts at Q*. 

Intuitively, one could argue that if the seller wanted to pass more of the savings to 
the buyer, it could do so by having the first price break occur before Q*. Similarly, if 
the seller wanted to keep more of the gains, the first price break would occur after Q*. 

More formally, let be the quantity at which the discount policy starts and r the 
amount of money that the seller deems necessary that it must give to the otherwise 
cost-minimizing buyer in order to insure that the buyer -will alter its ordering policy. 
Then r = [Po-p (  Q**)]D -A, where A = B(Q**) - B( Q*), the increase in the 
buyer's costs associated with increasing its order quantity. Solving for the average price 
at Q** yields p(Q**) = Po- (A + r)/D. Then by noting that the discount pricing 

'The proof also requires two "nonrestrictive" assumptions, these being (a) Ab < A,  < 1.5Ab and (b) 
Hb < 1/3Po. Both assumptions would seem to hold in most situations. 
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must yield this average price when evaluated at Q**, one gets 

Equations (9) and (10) represent a system of equations in two unknowns, i.e., a* and e.Solving for e and a* yields: 

Once r, the amount of savings to be passed on to the buyer, is specified, equations 
(1 la) and (1 lb) uniquely define a pricing scheme that insures 

(a) B( Q**) is the lowest augmented cost solution for the buyer, 
(b) the allocation of the gain between the agents is as specified by the seller. 

Allowing Ordering Costs to Vary with Q 

In many situations the buyer's or seller's ordering costs, A, or A, respectively, vary 
with the lot size Q. For example shipping costs often decrease per unit as the ordering 
quantity increases. One possible way to model these decreasing cost functions which 
leads to a tractable solution is 

Ab(Q) = a ,  + PIQ + Y ,  e2 and (12a) 

where for i = 1,2, pi > 0, y, < 0 and -Pi/2yi is greater than the largest amount Q ever 
ordered by a buyer so as to insure the relevant portions of the functions are increasing 
in Q. Then from (5) and (12) the buyer's augmented cost function becomes 

Minimizing the cost expressed in equation (13) implies that the lot size Q should satisfy 
the following: 

By redefining the holding costs to be H, + 2Dy, and the ordering costs to be a , ,  
equation (14) becomes identical to equation (6). Hence a solution can be achieved as 
stated in the previous section even though ordering costs vary with the quantity 
ordered as specified by equation (12). Again it can be shown in a manner similar to 
that used before that the cost incurred by the seller under this discount structure will 
be less than with no discounts, thus satisfying all requirements of the solution. Finally, 
note that the assumption H, > H, has to be modified to (H, + 2Dyl) > H, + 2Dy2 for 
a solution to exist. 

Multiple Buyer Groups 

We now extend the model to handle the case of N groups of buyers of different 
sizes. Let there be n, ,n,, . . . ,n, buyers in each group. We assume the buyer's holding 
costs, ordering costs and demands are the same within groups although these costs can 
differ across groups. The basic problem is to find a unified pricing policy where the 
pricep( Q) is monotonically decreasing in Q and yet (a) motivates the individual buyer 
groups to order more each time and (b) increases the seller's profits. 
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8, 6, a;' 6, e2 a3 

QUANTITY 10) 

FIGURE Example of a Unified Discount Structure for More Than One Buyer Group. 3. 

We were unable to obtain a closed form solution to this problem. However, we are 
able to provide a simple algorithm which produces an optimal unified pricing policy 
having the structure shown in Figure 3. More specifically, the discount policy starts at el and decreases continuously to some quantity 4, (defined subsequently), the 
discount @icy being specified by parameter a:. The average price is then held fixed 
between Q, and & before itAagain continuously decreases to some new quantity 4,. 
This pattern continues until Q, . 

The algorithm starts off with an initial policy constructed by treating each buyer 
group independently. This policy then is modified to acknowledge that any discount 
given to buyer group i must be given to larger buyers (i.e., groups i + 1, i + 2, . . . , N) 
even though the discount to group i is not needed to motivate these larger buyers to 
order more units per order. Since the discounts given to smaller buyers may cost the 
seller more in lost revenue from the larger buyers than the reduction in costs associated 
with altering the ordering behavior of the smaller buyers group, it is necessary to 
determine the trade off between these two factors. In this way aAunified policy has the 
effect of only increasing the order size for group i from Qjr to Qi instead of QT*. The 
difference between Qjr* and 6; represents the effects of the groups i + 1 to N on the 
pricing policy for the ith group. 

The actual procedure for determining the optimal pricing policy is d?ne through an 
iterative sequential search to determine the optimal values of a, Qi and a:, i = 

1,2, . . . , N. The process continues until the solutions for all 3N parameters converge. 
The first step in the procedure is to calculate a*, 2 and Q:* from equations (3), (1 la), 
and (1 lb), treating each buyer group independently. Next the price Po is modified 
downward for all groups except the smallest to account for the fact that a unified 
pricing structure requires the average price to monotonically decrease in Q. This is 
done by setting pi( a)= pi- ,( Qjr?,). This produces a pricing structure similar to 
Figure 3. 

Next the implications of the price discounts given to buyer group i on buyer groups 
iA+ 1 to n ?re explicitly taken into consideration. This is done by finding the quantity 
Qi where Qi < Q:*, which equates the increase in the seller's augmented costs from 
having the buyers in group i order 4; versus Qjr* with the decrease in the seiler's 
augmented costs associated with increasing the starting price by the amount [pi( Qi) -
pi( QT*)] for all groups larger than group i. As shown in Appendix 3, the optimal value 
of 4; which equates the increase in costs associated with group i with the decrease in 
costs associated with the larger groups is the solution to the equation 

niAsDi - niHs a:( a,)] ,  where+ ~ ~ , a : ~ , e x ~ [ -& -
4; 2 

(15) 

c, = p ( & ) / p ( & , )  = Pj/Pjj l ,  and Pi-, =p(d i - , ) .  
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Since di depends on the previously determined values of a* and a (as well as the 
values of ai*, e, and Q** for the larger buyer groups), it is necessary solve equations 
(lla), (llb),  and (15) simultaneously for new values of a*, and Q,. This yields the 
following set of equations: 

These values are calculated for each buy%r group i ,  i = 1,2, . . . ,N .  
Finally, note that the calculations for Qi during the first pass through the N groups 

assume that all buyer groups larger than i ordered quantity e,** wherej > i. However, 
after iterating through all N groups, each QT* has been modified to $.Consequently, 
the aforementioned procedure must be repeated by replacing QT* by & and cycling 
through each of the N buyers groups. This procedure (of replacing the previously 
determined order quantities with newly determined order quantities) is continued until 
all di converge simultaneously. Empirically this convergence seems to occur very 
rapidly.6 The final solutions to (16a), (16b), and (16c) provide the desired policy which 
will be of the form of 

An Application 

Setting 

The figures and setting presented below are based on an actual case, although both 
have been adjusted somewhat to protect the confidentiality of the data. The problem 
setting concerns a large U.S. manufacturer distributing its product nationally through 
a network made up of 1128 privately owned dealers. The manufacturer's wholesale 
price is $35 per unit. The industrial norm is for the manufacturer to pay shipping costs. 
These costs decrease per unit with increases in quantity shipped. Dealers are free to 
order any quantity over a minimum of 25 units.' The actual quantities ordered vary 
from a minimum of 26 to over 4000. 

Analysis of Costs 

Past ordering behavior for the 1128 dealers was used to develop seven reasonably 
homogeneous groups where homogeneity was measured with respect to the number of 
items purchased per order and annual demand. Although some variance in behavior 
was found within these seven groups, the rest of the analysis assumes each group to be 
homogeneous with respect to these two variables. 

The average quantity ordered per order for group i was used to estimate Q*, while 
the average annual demand per dealer within group i was used to estimate Di. Buyer 

61n all our runs convergence occurred after 4 or less iterations. 

'Dealers can order less but they are required to pay the shipping costs for orders less than 26 units. 
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TABLE 1 

Estimates for Q: ,Hbi,Di ,ni,A, and Ab for Each Buyer Group 

Group Q: Hb, Dl n~ Ab As 

holding costs, Hbi, for each group were estimated using the then current interest rate 
and other costs associated with holding inventory. These three estimates along with the 
number of dealers in each group are displayed in the first four columns of Table 1. 

Ordering costs for each dealer group were estimated using the first three assumed 
values. More specifically, equation (2) was used to obtain an estimate of A,, for each 
set of values of Q:, Di and H,,. Visual inspection of these estimates, along with prior 
expectations, indicated that the dealer's ordering costs varied by quantity ordered. 
Consequently, these costs were modeled within specific ranges to be quadratic in Q. 
Parameter estimates for the quadratic relationships were obtained as follows. First, as 
previously noted when ordering costs are a function of both Q and e 2 ,  and where a ,  
and y, are the parameters of equation (12a), Q:' = 2Da,/(Hb + 2Dy ,). Rearranging 
terms yields a linear relationship in a ,  and y,, i.e., Hbi/2D = -y, + a I / ~ j r 2 .These 
parameters were then estimated using OLS. Finally the estimates of Qjr were adjusted 
slightly so that the vector of values (Q:, Hbi, Di, a , ,  y,) were compatible, i.e., 
ejr2= 2D,a,/(Hb, + 2Diy,) for all i within a set of groups assumed to have the same 
a ,  and y,. 

A separate analysis was performed to determine the seller's ordering and holding 
costs. This cost function was modeled as quadratic in Q reflecting the decreasing 
average cost of shipping. The exact function used was A, = 40 + 0.7Q - 0 . 0 0 0 0 2 ~ ~ .  
The seller's holding costs, reflecting the value of obtaining capital quicker, were 
estimated to be $3 per unit per annum. 

The estimates of the ordering costs are shown in Table 1 where the values of ASi are 
the total cost of getting (and delivering) an order of Q: units and the values of A,, are 
the total cost of placing (and receiving) an order of Qjr units. Thus the total cost to the 
seller of getting and shipping an order increases from $81 for 58 units to $1275 for 
181 1 units while the buyer's costs of placing the order, receiving it, unloading it and 
putting it in inventory increase from $145 to $1305. On a per unit basis, these costs 
decrease from $1.40 to $.66 per unit and $2.40 to $.70 per unit respectively. These 
decreases represent the economies of scale associated with placing larger orders. 

Results 

Using the procedure outlined previously and by setting ri = 0, estimates of G , bi,  
p,( 6 )  and a: were obtained for the seven groups. ' B ~setLing r, = 0, we made the 
implicit assumption that each buyer in group i would order Q, instead of Q: as long as 
the pricing scheme insured that the buyers' augmented costs were no greater than 
under the circumstances when no discounts are given to that group. 

The savings to each buyer and the savings to the seller are displayed in Ta>le 2. As 
can be seen from this table, buyers in group 1 are no better off ordering Q, (= 62) 
than QT (= 58), although the seller saves $20.60 per buyer. These seller savings in 
group 1 result primarily from the fact that the average number of orders per buyer per 
annum is reduced from 6.2 to 5.8. This results in a decrease of approximately 250 
orders per year for this group of 632 buyers. 
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TABLE 2 

Savings to Buyer Per Buyer Savings to Seller 

Total 
Seller 

From Prior For A From Movilg From Prior per Group 
Group Discounts Moving to Q, a Buyer to Q, Discounts Savings 

(867.71) 	 - 1427 
Total $45,963 

For group 2, the savings are more dramatic. In this group, the buyers are shifted 
from ordering 154 units per order to 192 units. The average number of orders placed is 
reduced from 10.8 to 8.6 and the seller receives a net benefit of $1 11.09 per buyer (e.g., 
$1 17.48 - $6.37) for a total savings of $40,333. Although the pricing policy developed 
does not pass on any of these savings to the buyer, the buyers in group 2 save $6.37 
per year as a result of the discount given to the previous buyer group. Similar 
observations with respect to buyer and seller savings can be made for all subsequent 
groups. The total savings to the seller for such a plan is $45,963 per year. 

One might question if group 1 buyers would alter their ordering behavior in light of 
the fact that they are no better off by ordering 6 (with the discount) than Q* (without 
the discount). If it is felt that the buyers would not change their ordering policy 
without being given a more positive incentive, then the seller would not realize the 
$13,015 savings associated with this group. In that case a discount policy can be 
developed which insures positive savings to group 1 buyers by assigning a positive 
value to r, .  Such a policy, however, should be analyzed to determine if the total 
savings to the seller exceeds $32,948 (i.e., $45,963 - $13,015), since any additional 
discounts given to group 1 must also be passed on to all subsequent buyer groups. If 
the resulting plan shows savings less than the $32,948 figure, then it is better for the 
seller to forfeit the $13,015 savings and concentrate on the larger buyer groups. 

For example, if a priori, it is felt that $5 per buyer must be passed back to the first 
buyer group, then the total savings to the seller are reduced by almost $25,000 to 
$20,967. This latter figure is less than the $32,891 associated with a pricing discount 
policy which ignores group 1 entirely but still insures that each member in group 2 
saves $6.37. 

Finally, we explored the sensitivity of these results to the specific parameter values 
chosen, by modifying both the buyer's holding and ordering costs, i.e., H ,  and A , .  The 
overall conclusion from these analyses was that the general form of the discount policy 
remained unchanged. However, the following patterns were observed. 

(1) Total savings increased by 6 percent when there was a 10 percent decrease in H b .  
The discount policy became shallower with buyers ordering more (at a lower average 
price at the new Q**). When Hb was increased 10 percent, savings to the seller were 
reduced by 4 percent and the discount policy became steeper. Interestingly, the buyer 
now buys at a slightly higher average price. 

(2) When A,  was increased by 12 percent, total savings to the seller were reduced by 
7 percent. As with the change in H b ,  the pricing policy becomes steeper. This time, 
however, the average price at the new Q** is reduced. Conversely when A,  was 
decreased by approximately 12 percent, profits to the seller increased by 13 percent. 
The resulting discount policy was less steep and yielded slightly higher average prices. 
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Implementation 

Implementation of such a pricing schedule is quite straightforward if no quantity 
discount policy is already in place. However, as in the situation modeled, implementa- 
tion is somewhat more complex when the manufacturer already has an established 
discount policy. In such situations the existing quantity discount policy represents the 
base-line from which any new policy must be evaluated (at least from the eyes of the 
buyers). This complicated the issue somewhat since each buyer group is not ordering 
at QT (the quantity associated with Po) but some other value. Thus, comparison must 
be made from this baseline and not the baseline of all buyers ordering Q:. Also it is 
possible that some buyer groups are currently being extended discounts greater than 
they would under the suggested plan. In such cases, the seller must be able to 
communicate the reasons for the change or choose to introduce new pricing list during 
a period of price fluctuations. 

Conclusion 

This paper developed a unified pricing policy which motivates the buyer to increase 
its ordering quantity thereby reducing the joint ordering and holding costs. As a result, 
the seller is able to reduce its costs while leaving the buyer no worse off and often 
better off. In this way the seller can achieve better channel coordination without the 
need to exert any extra "channel power." 

In developing such a scheme for any real world application, the analyst will 
normally have to infer from each buyer's behavior, the buyer's holding and ordering 
costs. Using such knowledge, the seller can form a number of reasonably homoge- 
neous groups and then use the developed methodology to design a scheme which 
insures that the relevant buyer groups are economically motivated to increase their 
ordering quantities. 

It should be pointed out that the seller would be much better off if it were allowed to 
develop different pricing schemes for each buyer or group of buyers and thus not have 
to give discounts on units which have no effect on the particular buyer's behavior. 
However, such individual policies may not be acceptable to buyers, since they may 
demand discounts on units given to smaller buyers. Also having differing pricing 
policies for different (competing) buyers may open the seller to problems with the 
Robinson-Patman Act, although these policies can be justified in terms of cost 
savings. Finally it should be pointed out that the pricing policy described in this paper 
can be used as a baseline to measure the extent to which buyers pressure the seller to 
give price concessions in return for the buyer placing a larger order. In other words, 
although there is an upper limit to the amount a seller can reduce the price (without an 
accompanying increase in buyer demand) and still be better off, this upper limit is not 
zero. 

Finally, as with most management science applications, the model developed is an 
abstraction of reality. In our case, the buyer's ultimate demand, D, is treated as a 
certainty equivalent instead of a random variable and is assumed to be independent of 
the seller's discount policy. Also, the buyer's ordering behavior is assumed to be 
captured by a simple EOQ model. These assumptions are abstractions of reality which 
can be relaxed in future studies. We believe, however, that our model provides an 
initial beginning. 

Appendix 1 

In this appendix, we show the conditions needed to insure that the sellers augmented costs are minimized 
at Q * *  To do this we investigate the properties of the second derivative evaluated at Q**. 



-- 

DEVELOPING A N  OPTIMAL DISCOUNT PRICING POLICY 

Differentiating twice equation (7) (after replacing Q* with a )  with respect to Q yields 

2DA,-9l a = , * *  a)].a**' - Q * ~ D P ~ ~ X ~ [ - ~ * (Q** -

Substituting for a *  from equation (6) in the above equation yields 

2 DA, 
- C ( l - k2) Hh I 

where k = Q*/Q**. 
We also know that A in equation ( I lb )  is B(Q**) - B(Q*) which is equal to Q**Hh(l - k12/2. 

Therefore, on substituting for a*  (from (I lb)) and A in the above equation we get 

a2s(  Q 2 DA, Hh(l  - k12/2 .- (1 - k2) 
' 

a( a * )  ~ , a * * '  Dpo - (Hb/2)Q**(l - k2)(l + X)I,=,.. 
where x = r/A. 

For 0 s x s 1 and 0.5 Ah s A, s 1.5Ab, we can show that 

Also assuming that Hh/  Po s 0.33 and D > 2Q* 

Therefore, if k is greater than 0.364, a2~(Q)/aQ21Q=,.. will always be greater than zero. 

Appendix 2 

This appendix shows that one of three possible conditions must hold for the equation K2exp(Kla*) - a*  
= 0, i.e. that there exist zero, one or two solutions; the number depending on the values of K,  and K2. We 
do this as follows. First note that y l  = K2exp(Kla*) is monotonically increasing in a*, is convex and has a 
positive intercept. Moreover y 2  = a*  is an increasing linear function in a*  and has a zero intercept. 
Consequently the difference between these two functions (i.e., y ,  -y2) is convex in a*  and has a positive 
intercept. Thus, depending on the constants K, and jYz ,  the function y ,  -y 2  crosses the a*  axis zero, one or 
two times, i.e. equation (9) has zero, one or two solutions. 

Case I: One solution. One solution exists if and only if at the point where y ,  equaled y 2  the slope of both 
functions is equal, i.e., 

K 2 e x p [ ~ , a * ]= a*, K , K ~ ~ x ~ [ K , ~ * ]and, = 1. 

The only value of a*  to satisfy both these equations is l / K , .  Thus a*  as solved from K,K2exp[Kla*] = 1 
must equal 1/K, if only one solution is to exist. 

Case 11: No solurions. Since y ,  is an increasing function in a*, no solution would exist if the slope of y I  
evaluated at  a*  = 0 exceeded 1. However even if the slope at a*  = 0 is less than 1, it is possible that y ,  -y 2  
never crosses the a* axis. In fact if the point where the slope of y ,  is equal to 1 is less than I /  K, , the point of 
one solution, the function y l  -y 2  will not cross the a*  axis and equation (9) will have no solutions. Said 
more precisely, if the solution to ay l /aa*  = 1 is less than l / K I  there is no solution to y ,  -y 2  = 0. 

Case 111: Two solutions. For two solutions to exist the function y I  -y 2  must cross the a* axis twice. This 
will occur whenever on solving for a*  from K,K2exp[K,a*] = 1, the value of a*  is greater than l / K , .  

Since the chances of one solution occurring in any real world situation are remote, we next determine if 
Case I1 or Case 111 would exist in general. (Case I can be thought of as a special case of Case 111.) 

To  satisfy the sufficient conditions for a solution to exist, the solution for a*  on solving from 
KI  K2exp[Kla*] = 1 should be greater than or equal to I /  KI  . This requires a*  = (I / K,)ln(l/ K I  K2) be 
greater than or equal to 1 /K, ,  which implies that In(l/K,K2) should be greater than or equal to one, or 
1 /KlK2 should be greater than or e = 2.7183. 

Next we investigate the range of parameter values that insure that KlK2 4 I/e. Note that 

K1K2= ( Q** - Po.[? --Q*) 2 - z2]' 
Substituting for the values of Q**, Hh and D as assumed in Appendix 1 (i.e., Q** s 2.747Q*, H,/P, < 0.33 
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and D > 2Q*) yields 

but since Q*' = 2AbD/Hb 

hence l /KiK2 will be greater than 2.7813. 
The assumption Q** < 2.747Q* used in Appendix 1 to insure minimization at Q** at first seems 

innocuous, but it imposes certain restrictions on the values of the seller's holding and ordering costs relative 
to the buyer's. To see this, recall that 

Let A, = XAb and H, - YHb where X and Y are positive constants. The Q** = Q*(1 + X)/(l - Y). Since 
Q** is assumed to be < 2.747Q*, (1 + X)/(1 - Y) must be < 7.546. 

As in Appendix 1 we assume that the value of X is from 0.5 to 1.5, i.e., the seller's ordering costs range 
from 50 percent to 150 percent of the buyer's ordering costs. This implies that Y < 0.8, i.e., that the seller's 
cost of capital be less than 80 percent of the buyer's holding costs (which include the cost of capital). When 
these restrictions are met they ensure the existence of solutions to equation (9). 

Appendix 3 

This appendix presents a detailed description of how 6,is obtained. First the change in seller's profits due 
to a reduction of the discount to the smallest buyer group is calculated. This reduction will cause the 
smallest group to cut back on its order quantity from Qf*. Then the increase in costs to the seller by having 
the buyers in group 1 reduce their ordering quantity from Qf * to Q, is 

where 

S( QY*)= - Q i ) ]  -~ I [ D I P O ~ X P [ - ~ ~ ( Q ~ *  + 1 
This latter term reflects the effects of the price differential and ordering and holding costs on the seller but is 
not a function of Q, . 

Next the change in profits due to increasing the average price to the larger groups is calculated. This 
increased price occurs since group 1's average price is now p l (  Q,) which is greater than p l (  Qf*). Since the 
price discount for group 2 is calculated from the base price for group 1, the new average price for group 2 
would be poexp[- a f ( Q ,  - Ql)]exp[-at(Q;* - Q2)]. Multiplying the average price for each group by the 
total demand for the group and adding across groups yields the total revenue. Consequently the total 
increase in profits is the difference in revenue for the two pricing policies or 

where TR( Qf *) is the total revenue associated with the pricing policy leading to buyer group 1 operating at  
Qf* (which is not a function of Q,). 

Equation (A2) can be simplified by noting the unified pricing policy implies that the price at which buyer 
group i buys is the base price from which buyer group i + 1 discount iscalculated. Thus multiplying and 
dividing exp[- a t (  Qt* - g2)] by p(  Q,) and dividing exp[- a:( QT* - G)], j = 3, . . . ,N, by p(  QY,)  
yields p (  QZ*)/P( Ql) and p(  Qy*)/p( Q;**,) respectively. Define the ratio of the average price paid by 
group i to that paid by group i - 1 as c,. Then (A2) can be rewritten as 

Adding (Al) to (A3) and differentiating with respect to Q, produces the optimal quantity discount policy for 
group 1 assuming that the larger groups of buyers are all operating at their respective Qf*'s, i.e., the pricing 
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policy for the larger groups of buyer is not modified. The resulting equation for 4 ,  is 

where L I  = n l D l+ C y = 2 n i ~ i [ n j = 2 c , ] .  
Similarly it can be shown that the optimal values for Q,, i.e., Qi for group i should satisfy the following 

equation: 

wher: L, = n,D, + Cf=,+,n, ~ , [ n $ = , +  ,c,], c, is the ratlo of prices paid buyer groupj and buyer group j - 1 
and Q, = Q,$*.' 

'The authors would like to acknowledge the helpful comments of Finn Kydland and two anonymous 
reviewers who reviewed a prior version of this paper. The ideas for this paper were conceived while both 
authors were at Carnegie-Mellon University. 
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