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This presentation considers different modes of proof and the kinds of 
belief "as ‘warrants for truth’# that underpin them.

It distinguishes three distinct worlds of mathematical thought:
•      the embodied "based on our perceptions and actions and 

reflection on them#,
•     the proceptual "using symbols as process & concept i$ 

arithmetic and algebra#,
•     the formal "based on formal definitions and formal proof#

Proof in Three Worlds of 
Mathematics



Embodied proof builds %om our interaction with the outside world 
through our senses and develops in sophistication through language and 
human interaction to include Euclidean Geometry.
Proceptual proof refers to the use of symbols in arithmetic and 
algebra "and the wider theory of procepts in which symbols operat& 
duay as process and concept# where a statement may be proved through 
calculation and manipulation.
Formal proof is built by formal deduction %om axioms and concep( 
definitions to construct coherent mathematical systems.
The presentation wi make the case that each of these mathematical 
worlds of thought develops its own increasingly subtle criteria for belief 
and truth. This wi be used to shed light on the mental constructions 
required for different modes of proof and on the range of cognitive tasks 
experienced by individuals in their quest for understanding.

Proof in Three Worlds of 
Mathematics



Negrepontis explained to m&
Plato’s meaning for ‘two’.
‘Two stones?’
‘Two oxen?’

A story:
Once upon a time ...
a Mathematician and a 
Mathematics Educator wer& 
discussing the meaning of 
mathematics.

Two identical things. 

But how do you te them apart.
Use the golden section! So sophisticated!
At this point I asked to say something.
I said, ‘Plato was very young when he was born.’



A story:

Negrepontis continued …
Plato took two difference sequences with the same limit.
They are different … but the same.
This is perfection. This is ‘two-ness’.

‘Plato was very young when he was born.’

I reminded him of my one sentence interjection: When Plato was born, 
he could not talk and lived off his mother’s milk without a philosophical 
discussion of any kind. 

‘How did Plato, who was once a helpless child, develop into the great 
philosopher whose name has lasted for over two millennia?’

The answer lies in some kind of cognitive development.
Educators should be interested not just in the product of that 
development, but the process of how it occurs and can be 
encouraged to occur.



What is proof for a mathematician?
Davis and Hersh caricature ‘the ideal mathematician’:

He rests his faith on rigorous proof; he believes that the difference 
between a correct proof and an incorrect one is an unmistakable and 
decisive difference. He can think of no condemnation more damning than 
to say of a student: ‘He doesn’t even know what a proof is.’ Yet he is able 
to give no coherent explanation of what is meant by rigor, or what is 
required to make a proof rigorous.  (Davis & Hersh, 1981, p. 34)

He is unable to give any explanation to a university’s public informatio$ 
officer of details or applications of his work, or say anything understandabl& 
to ‘the ordinary citizen’ "p. 38#.

Proof is sensed by communities of mathematicians who striv# 
for perfection, but have to be satisfied with a compromise.

He has difficulties with a philosopher saying, ‘I’m not a philosopher, philosophy 
bores me. You argue, argue, argue and never get anywhere. My job is to prove 
theorems, not to worry about what they mean.’ "p.41#.

He fares no better with a student, explaining ‘proof is what you’ve been watching 
me do at the board three times a week for three years’ (p. 39) … ‘everybody knows 
what proof is. Just read some books, take courses […], you’ll catch on.’"p. 40.#



Foundations of Mathematics "Ian Stewart, David Ta, 1977#. 
Proofs %om explicit hypotheses "and axioms# are written in a context.
We*established "contextual# truths need not be referenced, to relieve th& 
burden on the reader by concentrating on the important "new# ideas.
In Foundations of Mathematics, the notion of real numbers as a complet& 
ordered field is built up in three stages:
1.proving sufficient properties directly %om the axioms for a field to establish a context for 

arithmetic.
2.Assuming properties of arithmetic as being contextual and focusing on properties of order,
3.Assuming properties of arithmetic and order as being contextual and focusing on the property of 

completeness.
We attempted to introduce young undergraduates to the style of 
presentation of the mathematical community.
However, knowing what may be assumed contextuay and what needs to 
be explicitly proved, is highly non*trivial and usuay implicit in the minds 
of most mathematicians.
This is a natural consequence of how the brain focuses on essential ideas and 
suppresses less significant material.

Proof in Contex$



Children forget:
A+er the formalization had been taught, or three months later, the practical or 
pre*formalization work which led up to it was o+en forgotten or not seen as 
significant. "The Learning of Mathematics 8,13, Johnson "ed.#, 1989, p. 219#
Mathematicians forget:
A+er mastering mathematical concepts, even a+er great effort, it becomes very 
hard to put oneself back into the %ame of mind of someone to whom they ar& 
mysterious. "Proof and Progress, Thurston, 1994, p. 947#
Educators forget:
One finay masters an activity so perfectly that the question of how and why 
students don’t understand them is not asked anymore, cannot be asked anymor& 
and is not even understood anymore as a meaningful and relevant question. 
"Didactic phenomenology of mathematical structures, Freudenthal, 1983, p. 469#
We must seek to:
•    revisit the notion of proof, to seek its special characteristics, dependent i$ 
part on the community of mathematicians,
•   investigate the cognitive growth of proof as the individual matures to 
find out how we might hope to encourage our students to grasp its essential nature.

Forgetting how we learn(



Over recent years my work coalesced into 3 distinct threads:
1. Relating to our sensory perceptions of and physical actions o% 

the real world and our reflections on these, which lead to 
conceptions of properties of objects, then relationships between properties. 
"I began to realise this leads naturay to the individual "re*#inventing 
Platonism.#

2.Those relating to our use of symbolism in arithmetic, algebra and mor& 
general analytic forms that enabled us to calculate and manipulate to ge( 
answers.

3.The formal axiomatic approach of mathematicians that is the final 
bastion of presentation of coherent theories and logical proof using axioms 
and definitions expressed in quantified set*theoretical statements, 
manipulated using the laws of logic.

Three worlds of mathematics



I see these worlds having different ways of operating, developing differen( 
standards of validity and truth.
1.The embodied world of perception and action, including reflection o$ 

perception and action, which develops into a more sophisticated Platonic 
%amework,

2.The proceptual world of symbols, such as those in arithmetic, algebra 
and calculus that act as both processes to do "e.g. 4+3 as a process of 
addition# and concepts to think above "e.g. 4+3 as the concept of sum# as 
formulated in the theory of procepts "Gray and Ta, 1994#.

3.The formal world of definitions and proof leading to the construction of 
axiomatic theories, "Ta, 1991#.

For a more details, consult Ta 2002, Watson et al, 2002, available as 
downloads %om www.davidta.com/papers.

Three worlds of mathematics



Cognitive development of the three worlds
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•  Perception of the properties of physical objects.
•  Language aows descriptions to identify them , that is a circle ‘because i( 

is round’, that is a square’ because it has 4 equal sides and its angles ar& 
right*angle.’

•  Descriptions become more precise until the purpose is shi+ed to 
definitions of objects.

•  We can now test if an object is what we claim it is by checking it satisfies 
the definition.

•  We can perform thought experiments.
•  Definitions lead to implication: if this is true, then that is true …
•  and on, naturay to Euclidean proof "van Hiele, 1986#.

Cognitive Growth in the Embodied World:



Cognitive Growth in the Proceptual World:

In the proceptual world of symbols, each concept starts out as an embodied 
process, eg counting, and uses symbols that are thought of as "number# 
concepts. The process of addition 3+4 becomes the concept of sum, th& 
process of repeated addition "multiplication# becomes the concept of 
product. 
Algebra develops, in part, as generalized arithmetic, where a symbol such 
as 2n,1 represents a process of evaluation, "double n and take away one#. 
This process "of evaluation# is encapsulated as a concept "of expression#, 
the expression 2n,1, which can now be manipulated by algebraic 
operations.



The formal world uses such experiences %om both these worlds to build th& 
-orld of formal definition and proof.
Here the construction of meaning is reversed, we specify properties and build 
concepts %om them "in the embodied world we ‘have’ concepts and we teas& 
out their properties %om them#.

Cognitive Growth in the Formal World:

concept → definition  becomes  definition → concep(



Validity in Different worlds of Mathematics
Each world develops distinct notions of validity.
Mathematical ‘Warrants for Truth’ 
A warrant is ‘that which secures knowledge.’ "Rodd, 2000#.
Example:
Different warrants for the truth that the sum of the first $ 
-hole numbers is:
• a picture of the sum of the first n numbers as a staircas& 

then putting two together as a rectangle of area n by n+1.
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• the arithmetic proof of Gauss:

•  proof by inductio$



Validity in Different worlds of Mathematics
These examples offer three ways of convincing:

"a#  the pattern in a picture "embodied#,

"b# the pattern in an arithmetic calculation "proceptual#,

  "c#  an induction proof "formal#.

Question: which of these are ‘proofs’? "and what does ‘proof ’ mean???#



Different sequences of development for proof
It is not just that each world has its own warrant for truth, each world 
develops its warrants in an increasingly sophisticated way…
The embodied world encourages thought experiments with the physical 
-orld that may give later proofs in Euclidean geometry.
The ‘warrant’ that ‘the angles of a triangle add up to 180°.’ Cut a 
triangle out of paper, and tear off its corners. Put the three corners 
together, they form a straight line!

A C

B

A C

physical demonstratio$
A

ED B

C

Euclidean Proof



Eleanor Rosch and coeagues "1976# revealed information about ‘basic categories’:
•  A ‘basic category’ is the first level identified by children and the quickest to be identified by adults.
•  The names of basic level items are usually short and easily reproduced,
•   it is the level at which knowledge is easiest organised.
•   it is also the highest level for which category members have similar shapes,
•   for which similar motor activities are used to interact with them,
• has a single mental image that can be used to picture them. 
Example: basic categories are ‘dog’, ‘ba’, ‘apple’, developed before sub*ordinat& 
categories such as ‘corgi’ or ‘alsatian’ for dog, or super*ordinate categories such as 
‘animal’ or ‘vertebrate’.
Mathematicians do what children do. They take basic categories of geometric 
figures as a starting point, such as triangle, circle, point, line, and build up super*
ordinate and sub*ordinate relationships between them.

THE DAILY PLANET
Extra! Extra! Read All About It!
Homo sapiens invents Platonism

The embodied world is a natural 
environment to grow %om physical 

experiment on figures through the use of 
language to build deductive relationships 

in Euclidean geometry.

Q. E. D. ! W5

Different sequences of development for proof



Warrants for truth in arithmetic and algebra
Initiay, operations are on embodied objects and these are the source of generic 
examples in arithmetic and algebra.
e.g., we can see two and three make the same total as three and two by holding 
up the requisite number of objects and reversing the order. This ‘order 
irrelevancy principle’, later caed ‘the commutative law’, arises through 
experience and observation. It is not a ‘law’ imposed on the real world, it is 
an observation of what happens in the real world.

3 2+

32 +

It does not matter if we draw 3+2 or 5+7 or 12+9, a foow the same pattern. 
A generic example gives a warrant for truth of the notion of order 
irrelevance of addition.



Warrants for truth in arithmetic and algebra
A foundational problem in cognitive development:
In the proceptual world, truth can be tested by computation and 
manipulation. Our experiences of generic examples %om the embodied 
beginnings of arithmetic give us warrants for truth of the general laws such 
as the ‘commutativity of addition’ or the ‘distributivity of multiplication over 
addition.

-e ‘show to be true’ by operating on ‘facts’ already ‘known’ to be true. For 
instance:

But what warrants do we give the child to show which of these is ‘reay true’ 
"whatever that means# and which ‘need ’ proof?

(a − b)(a + b) = a 2 − b2

(a − b)(a + b) = (a − b)a + (a − b)b = a 2 − ba + ab − b2 = a 2 − b2

Children are assumed to ‘know’ them to be true %om experience of arithmetic and 
assume they wi also naturay hold in algebra.
Other ‘truths’, such as

x(y + z) = xy + xzx + y = y + x



Do (can?) some/a children understand
Algebraic Proof ?

But when con%onted with a sum involving large numbers, they feel th& 
need to calculate, and lose confidence that such a large sum is 
commutative.
We cannot assume that children ‘know’ the basic rules, nor that they 
have the sophistication to know which rules are ‘known’ and which 
‘need to be proved.’

Cois showed some children are happy that sums of sma numbers ar& 
commutative and agree tha( x + y = y + x



Peacock’s Foy
In the nineteenth century, Peacock pronounced his law of ‘algebraic 
permanence’, that laws that hold in one mathematical system would naturay 
hold in a larger system. He used this law to justify carrying the rules of 
arithmetic over to the rules of algebra. He was, in a word, wrong.
The reverse is true, in any extension of a given system, there are always rules 
%om the old system that no longer hold in the bi.er system as the bi.er 
system has more structure in it.
• In the natural numbers, there is always a ‘next’ number, in rational numbers 

there is not;
• The real numbers are ordered, the complex numbers are not;
Ta et al "2001# show many discontinuities in the expansion of number 
systems in secondary schools, %om whole numbers to integers, %om integers to 
rational numbers, the use of whole number powers, %actional powers, 
negative powers, infinite decimals, infinite limit processes and so on.
How, in such a system is a child to maintain his or her bearings 
to be sure that what ‘is true’ remains true?



The Formal World

are no longer true because of one’s prior experience, they are true because they 
are asserted to be true as axioms in an axiomatic mathematical structure, say 
in a field or ring.
The symbol + need no longer carry any meaning of addition or involve any 
actual process of computation.
What matters is that the structure obeys the given axioms related to th& 
symbols. Having proved a result by logical deduction %om the axioms, on& 
knows that it is then true of a the examples for which the axioms ar& 
satisfied.

x + y = y + x
Statements lik&

x(y + z) = xy + xz



The Formal World

There are several serious problems:
1.The reversal of meaning of a definition, where a definition now 
constructs a concept, whereas in the other two worlds, a definition is 
constructed %om a concept.

concept → definition  becomes  definition → concep(

2. There are serious difficulties with quantified statements in formal proof, as 
compared with the generic examples of thought experiment.
3. The proof is written without mentioning ‘contextual’ truths, requiring real 
sophistication to understand precisely what should be put in and what le+ out.



Proof develops in Three Worlds
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  experiment –
generic example

concept of
euclidean theorem

process of
deduction

definition
of concept

verbal description

euclidean
theory

Formal
Growth

concept of
theorem

process of
proof

concept of
definition

axiomatic
theory

Formal
Proof

Euclidean
Proof

Proceptual
Proof

Concept
Imagery

Thought
Experiment

perception & action

Proceptual
Growth

manipulation and solution
(algebra)

expressing generality
(generalised arithmetic)

calculation
(arithmetic)

process of counting

concept of number

generic example



The Formal World for Students
There is a parael between the development of Euclidean proof in th& 
embodied world and formal proof in the formal world. Indeed, in line with 
/an Hiele theory, we see the definition leading to the process of proof, 
encapsulated as the concept of proof and then the concepts are organised in a 
deductive sequence to give the whole theory. This parael was noted by Chi$ 
"2002# in his PhD thesis. There is a sequence of sophistication consisting of:

 Definitio$
 Process of proof
 Concept of proof
 Axiomatic theory,

In van Hiele theory, Guttierez et al "1991# found that there was significan( 
overlap of van Hiele levels. Exactly the same happens here. The categories 
overlap and the next one starts before the previous one is established. This 
su.ests that:

However we attempt to grasp the growth of proof with highly 
detailed levels, we wi fail to describe what is going on in th# 
student’s head.



The Formal World for Mathematians
Proof is not a purely formal art, whatever is claimed.
A new theorems must come %om somewhere.
Mathematicians prove new theorems, not because they find them by formal proof, bu( 
because they have intuitions that su.est certain theorems might be true, and then they 
set out to prove them.
Mathematicians are happier when they have problems to solve, the more intractable, th& 
more beguiling. Consider Fermat’s Last Theorem, "e.g. Stewart & Ta, 2002#.
Consider John Nash, featured in the book and film, A Beautiful Mind.
Mathematicians at Princeton despised people who focused only on proof. The ‘big men’ 
-ere those with ideas that were intriguing but no*one had proved them.
Unproven hypotheses are the stuff of mathematics. Once proved they are not interesting.
Lefschetz the head of department at Princeton wrote a famous book on Topology, which I 
read as a graduate at Oxford. He wrote it on sabbatical, and it had many mistakes, for 
there were no students to correct him!
John Nash valued ‘good theorems’ that others said were important but were not proved.
He set such theorems as exercises for his undergraduates on their examinations! A %esh 
mind might find a solution.
Proof  is not achieved by formal means.
So, how is it achieved?



Creating New Theorems
Embodied ideas, sense of pattern in both embodiment and symbol use, a 
contribute to the concept image, "‘the total cognitive structure that is 
associated with the concept, which includes a the mental pictures and 
associated properties and processes’.Ta & Vinner "1981#, p.152#.
The concept image is used to imagine thought experiments, to conceive of 
possible definitions and possible theorems that might arise %om thos& 
definitions. It gives a possible route %om intuition to the formulation of 
theorems that might subsequently be given a formal proof.
Pinto and Ta "2001, 2002# show such routes are available to 
undergraduates.
Some students take a formal route to learning about proof, accepting 
the definitions, committing them to memory and working with the logical 
relationships to build up a knowledge of formal mathematics.
Others take a natural route, building %om their concept images and 
reconstructing them in increasingly sophisticated ways to convert embodied 
images into a meaningful version of the definition.  "Marcia Pinto, PhD, 
Warwick 2000#.



Concept images, formal proof  & embodimen$
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Concept images, formal proof  & embodimen$
The links between concept imagery and formal proof go 
in both directions.
Concept imagery can suggest theorems to prove formay.
Structure theorems formulate the structure of an axiomatic 
system that may be used as a more sophisticated image for 
new thought experiments.

Examples of Structure Theorems
A finite dimensional vector space over a field F defined axiomaticay 
has the structure of n*tuples in the field F.

A complete ordered field has the structure of the real number line.

A group defined axiomaticay must, by Cayley’s Theorem, have th& 
structure of a "sub*#group of permutations of a set.



Embodiment and  formal proof 

Lakoff and his coeagues "Lakoff & Johnson, 1999, Lakoff & Nunez, 
2000# claim that a mathematics comes %om embodiment. We hav& 
seen it certainly underpins conceptual growth.
However, formal mathematics attempts to base its deductions o$ 
more than just imagistic thought experiments, so that theorems 
proved work not only in a single embodiment "such as that of th& 
geometric figures in Euclidean geometry# but in any'structur# 
that obeys the axioms.
This is the power of formal proof, over and above the power of 
insight that may come %om a particular embodiment.
It is the fundamental reason why formal proof is the foundation of 
the work of research mathematicians.



Summary
• Formal proof is the pinnacle of mathematical development, and 

requires the implicit understanding of context shared by 
mathematicians to sustain it.

• To reach such a refined level requires a long and complex cognitiv& 
development.

• Important aspects of cognitive development of mathematics can b& 
formulated in terms of three distinct worlds: the embodied, th& 
proceptual and the formal.

• As development progresses, different warrants for truth i$ 
different worlds of mathematics develop different meanings 
through different ways of building knowledge.

• Without the biological development of the human brain we would 
not have the power of mathematics

•  We would do we to remember this and work to understand th& 
nature of mathematical growth and how we may use this 
knowledge in the education of our children.


