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Human language, music and a variety of animal vocalizations constitute ways

of sonic communication that exhibit remarkable structural complexity. While

the complexities of language and possible parallels in animal communication

have been discussed intensively, reflections on the complexity of music and

animal song, and their comparisons, are underrepresented. In some ways,

music and animal songs are more comparable to each other than to language

as propositional semantics cannot be used as indicator of communicative suc-

cess or wellformedness, and notions of grammaticality are less easily defined.

This review brings together accounts of the principles of structure building in

music and animal song. It relates them to corresponding models in formal

language theory, the extended Chomsky hierarchy (CH), and their probabi-

listic counterparts. We further discuss common misunderstandings and

shortcomings concerning the CH and suggest ways to move beyond. We dis-

cuss language, music and animal song in the context of their function and

motivation and further integrate problems and issues that are less commonly

addressed in the context of language, including continuous event spaces,

features of sound and timbre, representation of temporality and interactions

of multiple parallel feature streams. We discuss these aspects in the light of

recent theoretical, cognitive, neuroscientific and modelling research in the

domains of music, language and animal song.
1. Introduction
Human language, music and the complex vocal sequences of animal songs

constitute ways of sonic communication that have evolved a remarkable

degree of structural complexity. Recent discussions have focused on comparing

the structure of human language to that of learned animal songs, focusing not

only particularly on songbirds, but also on whales and bats [1–4]. Such com-

parisons addressed aspects of phonology [5,6] and syntax [7–10], aiming to

distinguish features that may characterize species-specific principles of struc-

ture building and reveal whether there might also be universal principles

underlying the sequential organization of complex communication sounds.

One debate concerns the role of ‘recursion’ as a core mechanism of the language

faculty in the narrow sense [11] that is unique both to humans and to language.

In this review, we argue that although language and recursion are important

topics for comparative studies, comparisons between human music and learned

songs in animals deserve more attention than they are currently receiving (see

also [12–14]). Structurally and functionally, music, language and animal songs

not only share certain aspects but also have important differences. A three-way

comparison between language, music and animal songs therefore has the poten-

tial to benefit research in all three domains, by highlighting shared and unique

mechanisms as well as hidden assumptions in current research paradigms.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2014.0097&domain=pdf&date_stamp=2015-02-02
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We present an approach to performing such comparisons

focusing on the structural organization of music, language

and animal songs as well as the underlying function, motiv-

ation and context. We focus on models of structure and

structure building in these domains and discuss their relations

to empirical findings. Our starting point is the influential work

of Shannon and Chomsky from the 1940s and 1950s. We dis-

cuss issues concerning building blocks, Shannon’s n-gram

models and the Chomsky hierarchy (CH) as well as their

more recent extensions. Subsequently, we discuss limitations

of both frameworks in relation to empirical observations

from the biological and cognitive sciences and suggest ways

for future research to move beyond these frameworks.
 rans.R.Soc.B
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2. Building blocks and sequential structure
Before discussing models of structure building and sequence

generation, we must first consider what the building blocks

are from which sequences, be it in language, music and

animal vocalizations, are built. One of the classic universal

‘design features’ of natural languages is ‘duality of patterning’

[15], which refers to the fact that all languages show evidence

of at least two combinatorial systems: one where meaningless

units of sounds are combined into words and morphemes,

and one where those meaningful words and morphemes are

further combined into words, phrases, sentences and discourse.

While many of the details are debated, the assumption that

words are building blocks of sentences is uncontroversial [16].

Like language, music and animal songs combine units of

sound into larger units in a hierarchical way, but the compar-

ability of the building blocks and the nature of the hierarchies

of language, music and animal songs is not at all straightfor-

ward. In particular, there is no clear analogue of a ‘word’ in

music or animal songs [17,18].

From a comparative perspective, some principles of

structure building may trace back to evolutionary ancient

cognitive principles, whereas some structures are coined by

cultural effects (such as the impact of a formal teaching tra-

dition or notation systems on musical or linguistic structure).

One recent cross-cultural review proposes a list of statistical

universals of musical structure; specifically, these include the

use of discrete pitches, octave equivalence, transposability,

scales that commonly have seven or fewer pitches in unequal

steps, the use of melody, pitch combination rules and motivic

patterns as well as the use of timing, duration and beat

[19] (see also [20]). The pitch continuum is discretized (based

on culturally established musical scales), and so is the timing

continuum by a process of beat induction (which establishes

a kind of grid overlaying a musical sequence [21]). There is

further some work on cross-cultural principles of melodic

structure that originated from Narmour’s work [22,23].

Although much more cross-cultural research is necessary

[24], in the remainder of this review, we take as established

that there is evidence for a number of structure building oper-

ations at work in music, which we would like to account for

with formal models. These include repetition and variation

[25], element-to-element implication (e.g. note–note, chord–

chord) [22,26], hierarchical organization and tree structure as

well as nested dependencies and insertions [27,28].

One common thread in this work is that at any point in a

musical sequence listeners are computing expectations about

how the sequence will continue, both regarding timing
details and regarding classes of pitches or other building

blocks [26,29]. Composers can play with these expectations:

meet expectations, violate them or even put them on hold.

Traditionally, much of the discussion of structure in music

has focused on Western classical music and has built on

building blocks of melody, voice-leading [30–32], outer

voices [33], harmony [34–36], combinations of harmony

and voice-leading [33,37,38], or complex feature combi-

nations derived from monophonic melody [39,40] and

harmony [41,42]. Although observations about Western

music are clearly relevant to understanding human musical

abilities, some of the complexity we find in Western music

might for instance be influenced by (culture-specific) factors

such as notation systems and aesthetic principles that may

not necessarily generalize with respect to cognitive processes

and cross-cultural principles.

In the domain of animal vocalization, there is plenty of

evidence of non-trivial structure building, but the choice of

building blocks for analysis is far from clear. We focus the

discussion in this review primarily on learned songs of ani-

mals, which provide the most interesting comparison with

language and music, as structurally particularly complex

and largely learned traits (and we therefore do not say

much about animal calls, which depend less or not on learn-

ing, and are perhaps more usefully compared with other,

innate, human utterances such as cries, sighs and laughter).

Animal songs occur primarily in a territorial or courtship set-

ting (fighting and flirting) and are produced in the majority

of bird species by both sexes [43].

Songs usually consist of longer strings of temporally

ordered, recurring, acoustically distinct elements. In contrast,

calls occur in different contexts (e.g. contact, begging, alarm)

and tend to be temporally and spectrally more variable [44].

Animal songs contain hierarchically structured elements

(often called ‘notes’) that can be combined into ‘syllables’ or

‘note complexes’ which in turn can constitute ‘motifs’ or

‘song types’. Note that in contrast to language, repetition

with little or no variation of smaller or larger units of build-

ing blocks, somewhat similar to music [25], are a typical

feature of song in many bird species (figure 1).

Animal songs are the product of natural and sexual selection

and continue to be constrained by these forces. Finding similar

structure building principles in different bird species would

argue for common neurocognitive foundations for birdsong

that might have parallels with those underlying human musical-

ity [45]. In addition, research on female preference in different

bird species has already revealed which elements of courtship

song are particularly relevant and attractive, and those features

consequently change little during the course of evolution,

whereas other song features are more free to drift. Conversely,

there is clear evidence from many songbird species for female

preference of larger rather than smaller repertoire sizes, leading

potentially to more combinatorial possibilities in sequencing and

thus driving the evolution of syntactic complexity.1

Some arguments concerning building blocks have been

made based on neuroscience and motor control evidence

rather than by analysis of sequences. Patel and co-workers

have argued that motor constraints are similar in human and

bird song and focused on the note, for example a bioacoustic

gesture surrounded by silent gaps needed to inhale as the

basic unit of comparison [46]. This, however, differs between

bird species. Others have argued that the basic units in

birdsong are smaller gestures coded by different neural
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Figure 1. Hierarchical organization of nightingale song. Panel (a) depicts a spectrogram of ca 2 minutes of continuous nocturnal singing of a male nightingale. Shown
are 30 sequentially delivered unique songs. The 31st song is the same song type as the second one (both framed). The average repertoire of a male contains about 150
unique song types, which can be delivered in variable but non-random order for hours continuously. Panel (b) illustrates the structural components of one song type.
Individual sound elements are sung at different loudness (amplitude envelope in (i)) and are acoustically distinct in the frequency range, modulation, emphasis and
temporal characteristics (spectrogram in (ii)). Panel (c) illustrates the structural similarities in three different song types (i,ii,iii). Song types begin usually with one or
more very softly sung elements (blue, b), followed by a sequence of distinct individual elements of variable loudness (green, g). All song types contain one or more
sequences of loud note repetitions (pink, p) and are usually ended by a single, acoustically distinct element (yellow, y). Panel (d ) illustrates that the same song type (i,ii)
can vary in the number of element repetitions in the repeated section (pink). Spectrograms courtesy of Henrike Hultsch. (Online version in colour.)
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ensembles and not necessarily separated by silent gaps [47].

Further larger units of sound sequences (often referred to as

‘chunks’ or ‘song types’ or ‘motifs’) are used as building

blocks for recombination. This is suggested by non-random

association of particular sequences in various bird species, to

which we return below.

In summary, the issues and challenges concerning the

choice of building blocks are fundamental for the forms of

sequential model and model representation we discuss

below. However, the present state of the art offers no final

word that may settle the differences between proposals for

building blocks and the relations between different choices.

It remains a matter of future research to explore the extent

to which different types of music and animal vocalizations

may require different choices of building blocks and to per-

form an empirical comparison of different approaches:

although it seems natural to want to settle on the question

of what the building blocks are before investigating how

these building blocks are combined into sequences, it might

be necessary to study both issues at the same time.
3. Shannon’s n-grams
Shannon [48] introduced, in the slipstream of his major work on

information theory, n-grams as a simple model of sequential

structure in language. n-Grams define the probability of
generating the next symbol in a sequence in terms of the pre-

vious (n 2 1) symbols generated. When n ¼ 2, n-grams

become ‘bigrams’, which simply model transitional probabil-

ities: the probability of generating the next word only depends

on what the current word is. In this respect, n-gram models

are equivalent to (n 2 1)th-order Markov models over the

same alphabet. Shannon demonstrated with word counts

from corpora that the higher n is, the better one can predict

the next word (given a corpus that is sufficiently large). This

insight still forms a crucial component in many engineering

applications in speech recognition and machine translation [49].

n-Gram models (often simple bigrams) have also been fre-

quently applied to bird song [50–54] and music [55,56] (see

below for further details). For many bird species, bigrams in

fact seem to give a very adequate description of the sequential

structure. Chatfield & Lemon [51] studied the song of the car-

dinal, and reported that a 3-gram (trigram) model modelled

song data only marginally better than a bigram model

(measured by the likelihood of the data under each of these

models). More recent work with birds raised with artificially

constructed songs indicates that transitional probabilities

between adjacent elements are the most important factor in

the organization of the songs also in zebra finches and Benga-

lese finches [57], although there are also many examples of bird

song requiring richer models as we discuss below [8,58–60].

In music research, numerous variants of n-gram models

have been used predominantly in the context of modelling



Table 1. Example sentence, the corresponding context-free grammar and
the derivation showing centre-embedding.

example sentence context-free rules

‘either language came first or music

came first’

this sentence can be derived from the

start symbol S by subsequently

applying rules 1a,1b,2a,3,4,5,1b,2b,3,

4,5. Note that rule 1a center-embeds

a phrase of category S within a

phrase of category S, which is beyond

the power of finite-state automata

‘either language or music came first’

to derive this second sentence (with a

so-called ellipsis), whilst maintaining

the subject relation between ’language’

and ‘came first’, linguists have

proposed formalisms even richer than

context-free grammars

(1a) S! either S or S

(1b) S! NP VP

(2a) NP! language

(2b) NP! music

(3) VP! V ADV

(4) V! came

(5) ADV! first
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predictive processing [29]. The perception of tonality and key

has been argued to be governed by pitch distributions that in

fact correspond with unigram models [61,62]. Narmour [22]

proposed a number of principles that govern melodic struc-

ture across cultures, which later work showed can be

simplified considerably and put in the form of a handcrafted

bigram model over melodic intervals [63–66]. In the domain

of harmony, Piston’s [67] table of common root progressions

and Rameau’s [68] theory (of the basse fondamentale) may be

argued to have the structure of a first-order Markov model

(a bigram model) of the root notes of chords [69,70].

All of these theoretical approaches constitute variants of

Markov/n-gram models that could be encompassed by

overarching generalized Markov models that learn their par-

ameters from a corpus [29,71,72]. In fact, Markov modelling

of music has been carried out early (as early as we had compu-

ters in scientific use; cf. [55,56]). In particular, general n-th order

Markov models have been proposed for melody and harmony

[39–42,73–75] and employed for segmentation and boundary

entropy detection [76]. In practical, ecological contexts, it is a

common finding that n-gram models with large values of the

context length n result in suboptimal models owing to sparsity

issues or overfitting. In analogy with the findings in bird song

research, several music modelling studies find trigrams optimal

with respect to modelling melodic structure [77] or harmonic

structure [42].

The musical surface, however, is more complex than

ordinary language, or potentially animal song, because of the

interaction with metrical structure, which means that surface

symbols, such as notes or chords, do not all have the same sal-

ience when forming a sequence. This is demonstrated by a

study of harmonic structure using a corpus of seventeenth cen-

tury dance music [73]: an n-gram model taking into account

three-beat metrical structure (and representing each beat by

one symbol) seems to favour 4-grams. This is probably because

the first beat of a bar is more musically salient than the other

two, in harmonic terms, and a 4-gram is able to directly cap-

ture at least some of this importance, in this representation,

where a 3-gram necessarily cannot.
4. The classical Chomsky hierarchy
Shannon’s n-grams are simple and useful descriptions of some

aspects of local sequential structure in animal communication,

music and language and have also been discussed as simple

cognitive models. But what are their limitations? In theoreti-

cal linguistics, n-grams, no matter how large their n, were

famously dismissed as useful models of syntactic structure in

language in the foundational work of Noam Chomsky from

the mid-1950s [78]. In his work, Chomsky first argued against

incorporating probabilities into language models; in his view,

the core issues for linguists concern the symbolic, syntac-

tic structure of language. Chomsky proposed an idealization

of language where a natural language such as English or

Hebrew is conceived of as a (potentially infinite) set of

sentences, and a sentence is simply a sequence of words

(or morphemes).

The CH concerns different classes of formal languages that

generate such sets of sequences. In the classical formulation, it

distinguishes four classes: regular languages, context-free

languages, context-sensitive languages and recursively enu-

merable languages. Each class contains an infinite number of
sets, and there are subset relations between the classes: every

regular language is also context-free, every context-free

language is also context-sensitive and every context-sensitive

language is recursively enumerable. (n-Grams, when probabil-

ities are stripped off, correspond to a true subset of the regular

languages—see below.)

For cognitive science, the relevance of the hierarchy comes

from the fact that the four classes can be defined by the kinds

of rules that generate structures as well as by the kind of com-

putations needed to parse the sets of sequences in the class

(the corresponding formal automaton). Informally, regular

languages are the types of sets of sequences that can be charac-

terized by a ‘flowchart’ description (finite-state automaton).

Crucially, when generating or parsing the next word in a sen-

tence of a regular language, we need only to know where we

currently are on the flowchart, not how we got there.

In contrast, at all higher levels of the CH, some sort of

memory is needed by the corresponding formal automaton

that recognizes the language. The next level up in the classical

CH are context-free languages, generated/recognized by con-

text-free grammars (CFGs, equivalent to so-called ‘push-down

automata’). CFGs consist of (context-free) rewrite rules that

specify which symbols (representing a category of words or

other building blocks, or categories of phrases) can be rewritten

to which list of symbols. Chomsky observed that natural

language syntax allows for nesting of clauses (centre-embed-

ding), and argued that the finite-state automata are inadequate

to account for such phenomena. In contrast, CFGs can express

multiple forms of nesting as well as forms of counting elements

in a sequence. An example of such nesting, and a CFG that can

describe it, is given in table 1. Table 1 further shows a linguistic

example that requires even higher complexity.

The success of the CH in linguistics and computer science

and Chomsky’s negative demonstration that natural language

syntax is beyond the power of finite-state automata has influ-

enced many researchers to examine the formal structures
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underlying animal song and music (though there is no com-

prehensive comparison of music-theoretical approaches in

terms of the CH yet). The advantages of CFGs to express hier-

archical structures, categories of events and, particularly,

recursive insertion/embedding have lent themselves to a

number of theoretical approaches that characterized Western

tonal music [22,34–38,79–84]. Schenker’s [85] seminal work

constitutes the foundation of hierarchical approaches to

music. However, owing to its largely informal nature, it is

not clear whether its complexity is adequately expressed by a

CFG or whether it requires a more complex mechanism [86]

(see also the related discussion in [87]).

The approaches by Rohrmeier [35,36] suggest a formal

argument that musical modulation (change of key and

centre of tonal reference) constitutes an instance of recursive

context-free embedding of a new diatonic space into an over-

arching one (somewhat analogous to a relative clause in

language), a point considered in informal terms already by

Hofstadter [88]. Figure 2 shows an example of a syntactic

analysis of the harmonic structure of a Bach chorale that

illustrates an instance of recursive centre-embedding in the

context of modulation. Given the absence of communica-

tion through propositional semantics in music (see below),
the occurrence of nested context-free structure might be

explained by patterns of implication and prolongation and

associated features of tension: given that an event may be

prolonged (extended through another event; an idea originat-

ing from Schenker [85]), and events may be prepared/

implied by other events, the possibility of multiple and recur-

sive preparations, combined with the combinatorial play of

recursion and the option to employ an event as new tonal

centre, established context-free complexity as well as a

straight link to a motivation through complex patterns of

musical tension [89,90]. Another potential explanation for

the occurrence of complex hierarchical, recursive structure

in Western tonal music may be found in the notation

system and the tradition of formal teaching and writing—a

factor that may even be relevant for complexity differences

in written and spoken languages in communities that may

differ with respect to their formal education [91].

There are also analytical findings that suggest that

principles of hierarchical organization may be found in

classical North Indian music [27] that is based on a tradition

of extensive oral teaching. However, more cross-cultural

research on other cultures and structure in more informal

and improvised music is required before more detailed
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conclusions may be drawn concerning structural complexity

and cross-cultural comparisons.

There is currently little evidence that non-human structures

or communicative abilities (either in production or in reception)

exceed finite-state complexity. One structure that constitutes a

core instance of context-free structures is AnBn (in which

there is the same number of As and Bs; or AiAjAk. . . BkBjBi in

which the string features pairs (Ax, Bx) in a retrograde struc-

ture). Claims have been made—and been refuted—that

songbirds are able to learn such instances of context-free-struc-

tures (see [92,93]; and respective responses [94–96]). Hence,

further targeted research with respect to transfinite-stateness

of animal song is required to shed light on this question.2 By

contrast, there is a number of studies arguing for implicit

acquisition of context-free structure (and even (mildly) con-

text-sensitive structure) in humans in abstract stimulus

materials from language and music [97–103].
370:20140097
5. Limitations of the Chomsky hierarchy
Several extensions to the CH have been proposed. We intro-

duce these by first considering one common problem in the

literature, trying to decide empirically where to place language,

music and animal songs on the CH. This problem is that a

number of related but different issues are often conflated:

(1) the inadequacy of (plain) n-gram models (but not necess-

arily of finite-state automata) for modelling music or

animal songs;

(2) the presence of long-distance dependencies (and the abil-

ity of animal or human subjects to detect them); and

(3) the ability of subjects to process context-free languages.

Why issue (1) differs from (2) and (3) can be understood

by considering the extended CH that introduces several

different levels. Below the level of regular languages, ongoing

research established the so-called subregular hierarchy that

includes, among others, the class of strictly locally testable

languages (SLTL) [104]. SLTLs constitute the non-probabilis-

tic counterpart of n-gram models. SLTLs/n-grams do not

assume underlying unobservable (hidden) structure and

model the string language based on surface fragments

alone. Regular languages and Markov models are therefore

not equivalent, and showing the inadequacy of n-grams or

SLTLs is hence not sufficient by itself to prove the need to

move beyond finite-state or to the context-free level.

In reverse, the hierarchical nature of the extended CH

(and methodological problems in dealing with real-world

data that we outline below) creates potential issues for

some arguments that the formalism producing a set of

sequences is constituted by a lower class: the mere fact that

a lower complexity model of structure could be built does

not constitute a valid form of argument or proves that the

system in question is best modelled by this type of complex-

ity. Particularly, the fact that Markov models may be easily

computed and used to describe some statistical features of

corpora of music [26,105–107] does crucially not imply or

even underpin an argument that a Markov model is the

best model (in terms of strong generative power, compression

or model comparison; see §§6,7). A Markov model may be

computed from sequences generated from any deep structure

and the corresponding models result in being oblivious to
any other than local structure (e.g. forms of embedding or

non-local dependencies).

With respect to animal songs and animal pattern recog-

nition involving sequences of elementary units, it seems

that n-gram models suffice for many species, but richer (but

still finite-state) models are needed to characterize the songs

of Bengalese finches [59,60], blackbirds [8,108] and other

birds singing complex songs [109] (see [58] for a review). In

particular, ten Cate et al. [8] argue that there are frequently

observed phenomena in songs of songbird species such as

blackbirds that require the power of hidden Markov models

(probabilistic counterparts of regular grammars, see below);

these phenomena include the optionality of elements and

constraints on the number of repetitions in blackbird song.

Also in classes higher on the CH, more fine-grained distinc-

tions have been introduced. In particular, a number of linguistic

formalisms (e.g. tree-adjoining languages, combinatorial cate-

gorial grammar [110,111]) have been proposed that have been

collectively referred to as mildly context-sensitive [112]. These

grammars define classes of languages that are subsets of

context-sensitive languages and supersets of the context-free

languages. They share the expressive power to be able to express

features such as cross-serial dependencies that human

languages possess [113] and may be efficiently processable

and learnable. We are not aware of any formally founded

claims about mild context sensitivity in the domain of music

or animal songs. Having introduced the extended CH, figure 3

provides a general overview of the locations of main results of

structure building in language, music and animal song we

discussed in the framework of the extended CH.

However, even when considering its extensions and

despite its frequent use in recent cognitive debates, the CH

may not be suited for providing a good class of cognitive or

structural models that capture frequent structures in language,

music and animal songs. One aspect stems from the fact

that the CH is by its definition fundamentally tied to rewrite

rules and the structures that different types of rewrite rules con-

strained by different restrictions may express. One well-known

issue—and an aspect that the notion of mild context-sensitivity

addresses—concerns the fact that repetition, repetition under a

modification (such as musical transposition) and cross-serial

dependencies constitute types of structures that require quite

complex rewrite rules (see also the example of context-sensitive

rewrite rules expressing cross-serial dependencies in reference

[114]). In contrast, such phenomena are frequent forms of form-

building in music [25] and animal song. This mismatch

between the simplicity of repetitive structures and the high

CH class it is mapped onto might be one of many motivations

to move beyond its confines.
6. Moving towards different types of models
The CH has been extensively used in recent cognitive debates on

human and animal cognitive capacities, discussing the complex-

ity of theories and processes in various domains and in

characterizing different types of structures that may be learnable

in artificial grammar learning and implicit learning literatures

[115]. However, discussions in many of these approaches relat-

ing to the CH resulted in complex confusions concerning the

distinctions between the (formal) class of a language, the

formal automata producing/accepting formal languages and

the complexity involved in techniques to learn such structures
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from examples. It is important to distinguish here that while the

formal automata that accept (or generate) a class of formal

language in the CH may be comparably easy, the inference pro-

cedures to learn such structures from examples (e.g. to infer

CFGs) are highly complex and are likely to be underestimated

in artificial grammar learning research.3

Importantly, the CH concerns a theoretical construct that

organizes types of structures according to different forms of

rewrite rules and has, being a theory of formal languages in

conjunction with idealized formal automata, little immediate

connection with cognitive motivations or constraints (such as

limited memory). The fact that it defines a set of languages

that happen to be organized in mutual superset relations

and are well explored in terms of formal automata that pro-

duce them does not motivate its reification in terms of

mental processes, cognitive constraints or neural correlates.

Although the CH has been inspired research in terms of a fra-

mework that allowed for the comparison of different models

and formal negative arguments against the plausibility of

certain formal languages or corresponding computational

mechanisms, it does not constitute an inescapable a priori
point of reference for all kinds of models of structure building

or processing. Such forms of formal comparison and proofs

should inspire future modelling endeavours, yet better

forms of structural or cognitive models may involve distinc-

tions orthogonal to the CH and may rather be designed

and evaluated in the light of modelling data and its inherent

structure as well as possible.
What are some different aspects that new models of struc-

ture building and corresponding cognitive models should

take into account? In order to model the complexity of ecologi-

cal real-word structures, they should be able to deal with

graded syntactic acceptability [116] and sequence probability,

they should be grounded in considerations of descriptive

parsimony, in links to semantics and form-meaning inter-

actions, and they should not only account for production and

perception, but also consider learnability and computational

complexity (e.g. memory requirements, and accounting for

limited memory in biological systems). Finally, formal

models should be required to make predictions for empirical

structures based on which they may be distinguished on an

empirical basis.

One main topic in theoretical linguistics, orthogonal to the

finer classifications within the CH, concerns the distinction

between ‘weak generative capacity’ and ‘strong generative

capacity’ that are relevant for debates in music and animal

research. There are divergent definitions of these terms. Briefly,

they concern the difference whether we can focus on just

classes of sets of sequences (i.e. regarding models just by the

surface sequences they model: ‘weak generative capacity’), or

need to look at classes of structural analyses that different

models can generate (i.e. regarding models in terms of the

hidden underlying structure they assume to model sequences:

‘strong generative capacity’).

This is relevant, for instance, for distinguishing issue

(2) long-distance dependencies, from (3) context-freeness,
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above. A long-distance dependency in itself is not enough to

prove the inadequacy of finite-state models (as we stated

above); context-freeness is necessary only when long-distance

dependencies can be embedded within (unboundedly many)

other long-distance dependencies. For instance, when a bird

sings songs of the structure ABnC and DBnE, we observe a

long-distance dependency between A and C and between D
and E, but the songs can be easily modelled with finite-

state automata (figure 4) by just assuming two different

(hidden) states from which the Bs are generated: one for the

condition starting with A and ending with C, and one for

the other. This explains why some efforts to empirically

demonstrate context-freeness of bird song or music may not

be unconvincing from a formal language theory perspective

if they are based on just demonstrating a long-distance

dependency. However, a long-distance dependency does

have consequences for the underlying model that can be

assumed for its strong generative capacity, representational

capacity and compressive power: in the example shown in

figure 4, we were forced to duplicate the state responsible

for generating B, in fact we require 2m states (where m is

the number of non-local dependency pairs, such as A . . . C
or D . . . E, that need to be encoded). Therefore, if there are

multiple (finite), potentially nested non-local dependencies

the number of required states grows exponentially (see also

the comparable argument regarding the implicit acquisition

of such structures in references [99,114]).

On similar grounds, one may argue that human musical

capacities exceed not only Markovian, but probably also a

finite-state representation (which is not a relevant or probable

model here on the grounds just presented), based on empirical

evidence that a recent study provided: human non-musicians

were found to process non-local syntactic dependencies result-

ing from one level of centre-embedding in ecological music

excerpts [117]. Comparable findings in animal vocalization are

still missing.

This example illustrates that the CH as theoretical construct

is irrelevant here in choosing the best model. If the interven-

ing material in a long-distance dependency is very variable,

even if not technically unbounded, considerations of parsi-

mony, strong-generative capacity, elegant structure-driven

compression and considerations of efficiency provide strong

reasons to prefer a model other than the minimally required

class in the CH or a different type of model altogether. Further,

empirical testability and evaluation, for example in terms of
Bayesian model comparison, come to play an important role in

this context.

Another interesting situation where the distinction

between weak and strong generative power matters arises

when we combine a (finite-state/hidden Markov model

(HMM, see below)) model of how elements are sequenced

to create a song with a (finite-state/HMM) model of how

songs are sequenced to create a song bout. As a simple

example, consider a hypothetical bird that sings two different

songs, A and B, each built up from some repertoire of

elements, but showing a typical structure: song A might

start with some slow introductory elements, and then con-

tinue with faster elements, whereas song B might start with

fast, high-pitched elements, and continue with low-pitched

ones. We can also imagine that the bird mainly uses song A
in one context, and song B in another context. In such a

case, the appropriate model might be a hierarchical hidden
Markov model, which at the level of sequences-of-songs dis-

tinguishes different ‘states’ for different contexts, and at the

level of sequences-of-elements distinguishes different states

for different sections (start, end) of the song. Such a model

is still finite-state in terms of weak generative power—

because ultimately it can be described as involving a finite

number (two contexts � two sections ¼ four states) of

states, but it would be problematic to describe the model

without using an account that represents the individual

songs that are generated; accordingly, a model for describing

song production in terms of strong generativity may poten-

tially rather employ a formalism such as CFGs.

Other motivations to move beyond the confinements of the

CH lie in the modelling of real-world structures that under-

mine some of the assumptions of the CH. Generally, the

aspect that music involves not only multiple parallel streams

of voices but also correlated streams of different features and

complex timing constitutes a theme that received considerable

research in the domain of music cognition, yet does not easily

match with the principles that underlie the CH that is based on

modelling a single sequence of words. In their cognitive model

that is not only constrained to the case of music, Conklin &

Witten [39] proposed successful extensions of n-gram models

by combining n-gram models over different features and com-

bined feature-spaces to optimize prediction based on the

features that embody most information. They also combined

predictions derived from the current piece (short-term

model) with predictions derived from a corpus (long-term
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model). Extending this framework, the IDyOM model [40]

includes a search for progressively more information-theoreti-

cally efficient representations, which are shown in turn to give

rise to progressively better predictors of human expectations.

The IDyOM model has been shown to be successful in the

domains of music and language [56,118]. Recent modelling

approaches generalized the notion of modelling parallel fea-

ture streams into dynamic Bayesian networks that combine

the advantages of hidden Markov models with modelling fea-

ture streams [42,119–121].
 g
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7. Dealing with noisy data: adding probabilities
The original CH is based on a number of assumptions that

turn problematic in the light of ecological data. One main

problem that is particularly relevant in the domain of music

or animal songs is that the notion of grammaticality or well-

formedness, which is fundamental for establishing and

testing symbolic rules, is much less clear than in language

(where there also are problems—see [122] for an insightful

discussion). Most discussions of grammatical structure in

music and animal song are based on so-called positive data

(i.e. examples conforming with the proposed rules) and it is

significantly more difficult to establish the validity and exten-

sion of rules in the absence of negative data (i.e. where

humans or animals explicitly reject a malformed sequence).

It is not clear whether ungrammatical/irregular structures

in music are clear-cut or distinguished in agreement by

non-expert or expert subjects. This difference between the lin-

guistic and the musical case may also in part be explained by

the fact that (at least in Western music), there is large diver-

gence between active and passive musical interaction.

Furthermore, negative data are, particularly in the case of

animal research, more difficult to obtain and also less clear-

cut or potentially graded rather than binary.

This issue motivates a number of changes in the nature of

models. Models may be grounded in foundations other than

grammaticality, such as optimal prediction or compression

(e.g. predictive power [56], minimum description length

[123], Bayesian model comparison), strong generativity or by

motivation to express form of a higher-order structure (such

as semantics or musical tension; see the following section).

Another important way to build better models of cognition

and deal with the issues above comes from employing syntac-

tic gradience and reintroducing the probabilities that Chomsky

abandoned along with his rejection of finite-state models.

Apart from a large number of recent probabilistic models

(such as the ones mentioned in the previous section) that go

beyond the framework of the CH, it turns out that a hierarchy

of probabilistic grammars can be defined that is analogous to

the classical (and extended) CH and exhibits the same expres-

sive power, with the additional advantage that grammars

from this hierarchy can straightforwardly deal with noisy

data and frequency effects and lend themselves to information

theoretic methodologies such as model comparison, com-

pression or minimum description length [124,125]. n-Gram

models constitute the probabilistic counterpart of SLTLs,

whereas the probabilistic counterpart of finite-state automata

are hidden Markov models; CFGs can be straightforwardly

extended to probabilistic CFGs.

Hidden Markov models constitute one type of model that

has been very successful in all domains of language, music
and animal songs. Comprehensively reviewed by Rabiner

[126], the HMM assumes a number of underlying (hidden)

states each of which emits surface symbols from given prob-

abilistic emission vectors, a Markov matrix defining

transition probabilities between states (including remaining

in the same state) and a probability vector modelling the

start state. HMMs have been very successful in modelling

language, music and animal songs [42,49,59,127,128].

Thanks to the probabilities, we can talk about degrees of

fit, and thus select models in a Bayesian model comparison

paradigm that have the highest posterior probability given

the degree of fit and prior beliefs; also, the probabilistic gram-

mar framework does not require wellformedness as a criterion,

but rather can use the likelihood of observing particular

sentences, songs or musical structure as a criterion [8].
8. Dealing with meaning: adding semantics
The CH of formal grammars has its limitations, but has played

a major role in generating hypotheses to test, not only on natu-

ral language, but also on animal songs and music. But where

does this leave semantics? Chomsky’s original work stressed

the independence of syntax from semantics, but that does

not mean that semantics is not important for claims about

human uniqueness, even for linguists working within a

‘Chomskian’ paradigm. Berwick et al. [7], for instance, use

the point that birdsong crucially lacks underlying semantic

representations to argue against the usefulness of bird song

as a comparable model system for human language. The

reason why this is so is that in natural language, the transfi-

nite-state structure is not some idiosyncratic feature of the

word streams we produce, but something that plays a key

role in mediating between thought (the conceptual–

intentional system in Chomsky’s terms) and sound (the

phonetic articulatory–perceptual system).

Crucially, the conceptual–intentional system is also a hier-

archical, combinatorial system (most often modelled using

some variety of symbolic logic). From that perspective, gram-

mars from the (extended) CH describe only one half of the

system; a full description of natural language would involve

a transducer that maps meanings to forms and vice versa

[49,129]. For instance, finite-state grammars can be turned

into finite-state transducers, and CFGs into synchronous

CFGs. All the classes of grammars in the CH have a corre-

sponding class of transducers (see Knight & Graehl [130] for

an overview). Depending on the type of interaction we allow

between syntax and semantics, there might or might not be

consequences for the set of grammatical sentences that a gram-

mar allows if we extend the grammar with semantics. But, the

extension is, in any case, relevant for assessing the adequacy of

the combined model—for example we can ask whether a par-

ticular grammar supports the required semantic analysis—as

well as for determining the likelihood of sentences and alterna-

tive analyses of a sentence.

Do we need transducers to model structure building in

animal songs and music? There have been debates about

forms of musical meaning and its neurocognitive correlates.

However, a large number of researchers in the field agree

that music may feature simple forms of associative meaning

and connotations as well as illocutionary forms of expression,

but lacks kinds of more complex forms of combinatorial

semantics (see the discussion of references [131–137]).
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However, it is possible, as mentioned above, to conceive of

complex forms of musical tension that involve nested patterns

of expectancy and prolongation as an abstract secondary struc-

ture that motivates syntactic structures at least in Western tonal

music and in analogy would require characterizing a transdu-

cer mapping syntactic structure and corresponding structures

of musical tension in future research.

There have similarly been debates about the semantic

content of animal communication. There are a few reported

cases of potential compositional semantics in animal com-

munication (cf. [138]), but these concern sequences of only

two elements and thus do not come close to needing the

expressiveness of finite-state or more complex transducers.

For all animal vocalizations that have non-trivial structure,

such as the songs of nightingales [139], blackbirds [8,108],

pied butcherbirds [140] or humpback whales [141,142], it is

commonly assumed that there is no combinatorial semantics

underlying it. However, it is important to note that the ubi-

quitous claim that animal songs do not have combinatorial,

semantic content is actually based on little to no experimental

data. As long as the necessary experiments are not designed

and performed, the absence of evidence of semantic content

should not be taken as evidence of absence.

If animal songs do indeed lack semanticity, they would be

more analogous to human music than to human language.

The analogy to music would then not primarily be based

on the surface similarity to music on the level of the commu-

nicative medium (use of pitch, timbre, rhythm or dynamics),

but on functional considerations such that they do not consti-

tute a medium to convey types of (propositional) semantics

or simpler forms of meaning, but are instances of comparably

free play with form and displays of creativity (see below and

Wiggins et al. [143]).

Does this view on music–animal song analogies have any

relevance for the study of language? There are reasons to

argue it does, because music and human language may be

regarded as constituting a continuum of forms of communi-

cation that is distinguished in terms of specificity of meaning

[144–146])—consider, for instance, several forms of language

that may be considered closer to a ‘musical use’ in terms of

their use of pitch, rhythm, metre, semantics, for example

motherese, prayers, mantras, poetry, nursery rhymes, forms of

the utterance ‘huh’ (see [147]), etc. Drawing a strict dichotomy

between music and language may further be a strongly anthro-

pomorphic distinction that may have little match in animal

communication. Animal vocalizations may be motivated by

forms of meaning (that are not necessarily comparable with

combinatorial semantics), for example, expressing aggression

or submission, warning of predators, group cohesion, social

contagion or may constitute free play of form for display of crea-

tivity, for instance (but not necessarily) in the context of

reproduction. Given that structure and structure building

moving from the language end to the music end is less con-

strained by semantic forms, more richness of structural play

and creativity is expected to occur on the musical side [143].
9. Dealing with gradations: adding continuous-
valued variables

A final move to a new class of successful models originates in a

far research extension of the CH framework where the categori-

cal symbols used in rewrite grammars are replaced by vectors.
Thus, instead of having a rule X! YZ, where X, Y and Z are

categorical objects (such as a ‘prepositional phrase’ (PP) in

linguistics, or a motif in zebra finch song), we treat X, Y and

Z as n-dimensional vectors of numbers (which could be

binary, integer, rational or real numbers; for example

[0,1,0,0,1, . . . ] or [0.45,0.3333,0.96, . . . ]). By choosing vectors

at maximum distance from each other such grammars can per-

fectly ‘mimic’ classical, symbolic grammars (which now

become the ends of a continuum—and are still important as

potential attractors in learning and evolution); but, addition-

ally, vector grammars offer a natural way to model similarity

between phrase types (assuming some noisy reading of the

vectors, making correct recognition of a vector less likely the

further it is from its prototype; see also reference [148], for an

insightful discussion of the relation between simple recurrent

networks and formal grammars).

A simple example (discussed in reference [149]) is the cat-

egory of the word ‘near’, which sometimes acts like an

adjective (ADJ, ‘the future is near’) and sometimes like a pre-

position (PREP, ‘the house is near the river’). In standard

symbolic as well as probabilistic grammars, this is normally

modelled by having two entries in the lexicon, one with cat-

egory ADJ, and the other with category PREP. Interestingly,

however, ‘near’ shows behaviour inconsistent with this

simple duplication approach: as a preposition, it inherits a

property of adjectives, namely that it can be used as a com-

parative (as in ‘the house is nearer the river than the road’).

In vector grammars, such cases can be dealt with by assign-

ing ‘near’ a vector in between the cluster of prepositions

and the cluster of adjectives.

In computational linguistics, vector grammars (which

have a close relation to neural networks models of linguistic

structure from the 1990s [150,151]) are experiencing a new

wave of excitement following some successes with learning

such grammars from data for practical natural language pro-

cessing tasks [152–155]. These successes are due not only to

the ability to represent gradedness but also (and perhaps

more so) to the fact that models with continuous values

allow gradual learning procedures (in these papers, the pro-

cedure is ‘backpropagation through structure’ [156]).

While vector grammars have, to the best of our knowledge,

not been applied yet to music and animal vocalizations, we

expect that they offer much potential in these fields. Efforts to

apply symbolic grammars in these domains often encounter

difficulties with dealing with phenomena that seem funda-

mentally continuous in nature, such as loudness and pitch

variation, beat, etc. Musical examples would exhibit micro-

differences in pitch corresponding with syntactic function

(e.g. raised leading notes), complex note features (such as

slides used in traditional North Indian rāgās) or timbre features

in distorted guitar solos that may correspond with syntactic

function, such as stress, intonation or timbre cues may be modi-

fied to direct attention towards elements with important

syntactic functions (e.g. stability or marking departures at con-

stituent or phrase boundaries; further empirical research is,

however, required to examine such connections). Altogether

vector grammars may constitute a well-suited formalism to

capture the use of noisy, non-tonal and complex sounds in

music across cultures that may be challenging for traditional

symbolic models.

One interesting feature of vector grammars is that they are

computationally more expressive than their symbolic

counterparts—in fact, they result in an entirely different
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class of complexity that is not comparable with the models of

the CH from which the models originated (this is due to the

large amounts of information that the large real-valued vec-

tors may carry). For instance, Rodriguez [157] demonstrated

that a right-branching vector grammar (or, in fact, its special

case, the Elman network [150]) can generate several context-

free languages, even though it is well-known that right-

branching symbolic grammars are finite-state. The reason is,

Rodriquez argues, that small displacements in a continuous

vector space can be used to implement a counter. We may

expect that also other classes of symbolic grammars can be

approximated by vector grammars with very simple structure

(even if the non-terminals are in some sense more complex).

While much theoretical work exploring their expressive

power is still necessary, they provide another motivation to

move on to probabilistic, non-symbolic models that move

beyond the constraints of the CH.

In short, vector grammars provide a generalization over

the classical symbolic grammars from the extended CH. In

particular, Rodriquez’s [157] results demonstrate a conti-

nuum between finite-state and (at least some) context-free

languages might be used to call into question the a priori
plausibility of the hypothesis that context-freeness is uniquely

human (contra Fitch & Hauser [158])—a hypothesis only

originating from the reification of the CH.

Following this line of reasoning, one could even argue that

previous accounts have been overstated in their focus on ‘archi-

tectural’ constraints on structure building operations when

discussing whether ‘animals may not be able to process con-

text-free languages, whereas humans can’ or whether ‘music

has or has no access to the recursion operation’ (see also the dis-

cussion in reference [159]). One may hypothesize, then, that the

basic toolbox of structure building operations between humans,

primates and birds is largely shared, but that music, language,

primate and bird calls and bird and cetacean songs have

recruited (perhaps in a process of cultural evolution) very differ-

ent operations from that toolbox because they serve very

different functions—a thought that we explore in §10.
10. Function, motivation and context
Our journey through the computational models of structure

building—from Shannon’s n-grams, via the CH to vector

grammars and models beyond the CH—has thus uncovered

many useful models for how sequences of sound might be

generated and processed, which also motivate that a richer

space of possibility may need to be explored before potential

explanations may resort to the assumption of hard biological

constraints. What could be alternative explanations for some

of the differences and similarities in structure that we do

observe in these domains? In this final section, we consider

explanations based on function, motivation and context.

Fundamental to a cross-cultural concept of music is the

form of joint group interaction: music may be a form to coor-

dinate and synchronize a large group in terms of joint action,

production and perception [145]. Music may be monological,

dialogical, responsorial (individual–group) or an entire joint

group-based activity [19]. This view makes it possible to

understand the principles of structure building, its flexibility

and constraints based on affording these forms of interactive

communication. In this context, the notion of ‘absolute music’

[160] as a highly complex form of Western art is a very small
subset of music of the world and a construct that constitutes

an exception in an overarching cross-cultural comparison (cf.

[145,161]). As mentioned above, forms of high musical com-

plexity may stem in part from traditions of formal scholarly

teaching and the use of sophisticated notational systems

and probably can be correlated to uses of music in a ‘mono-

logical’ form rather than a ‘joint group-based activity’ (even

when an orchestra is performing monologically for a larger

audience). Further, theories of music that take such examples

of absolute Western art music as basis for general claims of

musical complexity and processing and specifically linking

findings about complexity and recursion [37] to the debate

concerning the human language faculty [28,162,163] need to

be examined carefully in order to establish the extent to

which the claims generalize to music across cultures (see

reference [145] and the discussion in this review), because

this link is not given per se. Nonetheless, observations con-

cerning complexity in Western tonality and corresponding

processing requirements may contribute important evidence

towards the complexity that music cognition may reach (in

terms of proofs of existence). While the considerations

above do not invalidate comparisons of structural/syntactic

complexity in animal vocalization, human language and

music, it may further be the case that the conditions of com-

munication and the social context of music making (such as

joint group activity) may impose limits on the structural com-

plexity that may be used. Therefore, these considerations ask

for careful examination of the underlying conditions of

communication.

Once the purpose of communication is not necessarily

required to be grounded in propositional semantics, the ques-

tion regarding the foundation of the form of communication

becomes an interesting theoretical challenge (cf. [164]). From

a cross-cultural perspective, music may be regarded as a tool

for dealing with situations of social function and social uncer-

tainty [165], it may be construed as a form of display,

communication and regulation of emotion and tension

[19,166] or an (abstract) play with structure per se [167,168].

These different forms to construct music have different impli-

cations on structure (and, of course, they are not mutually

exclusive): music in social and interactive contexts is required

to afford rhythmic entrainment and to build on socially estab-

lished conventions of structures. The notion of music as

carrier or inducer of emotions implies stronger constraints

on musical structure, namely those the processing of which

results in triggering the corresponding emotional mixture.

In contrast, construing music as (mere) free play of form

and formal complexity entails the least formal constraints.

In the above-mentioned context, many conditions of

animal vocalization appear to match features of human

music; as far as we can tell they are not governed by complex

semantics, they are interactive and group activities but can

also occur alone. Accordingly, principles of structure building

in music and animal vocalization may be considerably differ-

ent from the ones governing language and be constrained by

different communicative motivations than the ones found in

language. While simple forms of expressions such as fear or

aggression encoded in prosodic structure and illocutionary

speech acts may be similar in all three domains, this func-

tional analysis suggests that syntactic structures may not

necessarily converge in these domains as mere structural

comparison as proposed by Jackendoff & Lerdahl [28] (see

also [163]).
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11. Conclusion
In this review, we have discussed different formal models of

syntactic structure building, building blocks and functional

motivations of structure in language, music and birdsong.

With these considerations, we aim to lay a common ground

for future fruitful formal analysis, shared methodologies and

comparative formal and empirical research addressing

common cognitive questions that were raised in these domains.

Not many steps have been made to bring theoretical approaches

in music and animal vocalization into common terms that can

be compared with approaches established in formal and com-

putational linguistics. These questions are fundamental to

understand commonalities and differences between humans

and animal cognition as well as between music and language,

responding not only to Hauser, Chomsky and Fitch’s provoca-

tive hypothesis concerning the ‘exceptional’ role of the human

cognitive/communicative abilities [11].

Music and language may constitute a continuum in the

human communicative toolkit [169,170] and forms of animal

vocalizations may relate to different aspects in this spectrum

(and not necessarily be related to only one of them). The level

of analogy may not necessarily be based on formal consider-

ations, but may also depend on corresponding semantics (or

second tier structure), context, function and the underlying

motivation of communication.

We discussed several classes of formal models that lend

themselves to computational implementation and empirical

evaluation. While the (extended) CH provides a useful perspec-

tive for the comparison of different theoretical approaches and

predictions concerning properties of structures, it is important

to bear in mind the limitations we discussed and the fact that

cognitively plausible mechanisms may not be well represented

in terms of the CH. The notion of grammatical gradience and

other factors such as the necessary flexibility of dealing with

noise and uncertainty in ecological structures motivate exten-

sions towards probabilistic models. Finally, we have discussed

recent models that add gradation and continuous-valued
variable spaces. Such models link formal grammar and neural

network approaches and add the power to deal with ecological

structures that are inherently continuous. Finally, they predict

that a single cognitively relevant framework may predict

sequences of different complexity in the CH and therefore

have the potential to undermine assumptions concerning categ-

orically different cognitive capacities between human and

animal forms of communication [11,171].
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