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Article history: The Pliocene climate is globally warm and characterised by high atmospheric carbon dioxide concentrations, yet
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events in both the Northern and Southern Hemisphere prior to the Quaternary. Evidence on land is fragmentary,
but marine records of glaciation present a more complete history of Pliocene glaciation. Here we present a global
compilation of the terrestrial and marine glacial evidence for the Pliocene and demonstrate four glaciation events
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{)(ﬁ;:é\;or:gs. that can be identified in the Southern and/or Northern Hemisphere prior to the latest Pliocene intensification
Northern Hemisphere of Northern Hemisphere glaciation. There are two globally recognisable glacial events in the early Pliocene
Southern Hemisphere (c.4.9-4.8 Ma and c. 4.0 Ma), one event around the early/late Pliocene transition (c. 3.6 Ma), and one event
Ice sheet during Marine Isotope Stage M2 (c. 3.3 Ma). Long-term climate cooling, decreasing carbon dioxide concen-
Climate trations in the atmosphere and high climate sensitivity in the Pliocene probably facilitated each glaciation
Global compilation event, however the mechanisms behind the early Pliocene glacial events are unclear. The global glaciation

at c¢. 3.3 Ma may be caused by changes in ocean gateways, whereas the decline in carbon dioxide concentra-
tions is important for the latest Pliocene intensification of Northern Hemisphere glaciation.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The Pliocene Series or Epoch (5.33-2.58 Ma) is divided into two
stages, the Zanclean (or early Pliocene Subepoch) with a base at 5.33
Ma (van Couvering et al., 2004), and the Piacenzian (or late Pliocene
Subepoch), which begins at 3.60 Ma (Castradori et al., 1998). Since
2009, the end of the Pliocene has been defined by the base of the Pleis-
tocene Series (Quaternary System) and the Gelasian Stage, which is
dated at 2.58 Ma. This replaced the previous base of the Pleistocene,
which was placed at 1.81 Ma, and caused the transfer of the Gelasian
Stage (2.58-1.81 Ma) from the Pliocene into the early Pleistocene
Subepoch (Gibbard et al., 2010).

The Pliocene Epoch spans a critical period in Earth's history during
which global climate underwent a profound transition from relatively
warm climates to the substantially cooler climates of the Pleistocene.
The early Pliocene is considered to have had a globally warm climate
(Ravelo et al., 2007; Brierley et al., 2009; Lariviére et al., 2012), but is
considerably less investigated than the mid-Piacenzian Warm Period
(previously mid-Pliocene Warm Period, 3.29-2.97 Ma), which has
been the focus of the Pliocene Research, Interpretation and Synoptic
Mapping (PRISM) initiative (e.g. Dowsett et al., 2010) and the Pliocene
Model Intercomparison Project (PlioMIP) (e.g. Haywood et al., 2013).
Suggestions that the mid-Piacenzian Warm Period could serve as a
true direct analogue for a globally warmed future have been questioned
(Sarnthein et al., 2009; Haywood et al., 2011), but it nevertheless
provides an ideal time interval to understand the climatic processes of
a warm, high carbon dioxide world. In particular, the similarity of the
late Pliocene palaeogeography to that of today, the occurrence of fossil
assemblages similar to modern assemblages, and the well-preserved
terrestrial and marine geological records, mean that, although problems
remain, a relatively good insight into the ocean conditions and bio-
sphere during a warm global late Pliocene climate can be assembled
(Dowsett et al., 2012; Salzmann et al., 2013). Even within this globally
warm Pliocene world, short-lived, episodic glaciation events and ac-
companying sea-level fluctuations have been recorded in benthic iso-
tope records as well as sequence boundaries before the end-Pliocene
climate deterioration. Such glacial events and sea-level fluctuations
are rare in the Zanclean, but become progressively more common
since 3.6 Ma (Lisiecki and Raymo, 2005; Miller et al., 2005, 2012). The
global climate deteriorated severely only in the latest Pliocene, which
led to the onset of widespread Northern Hemisphere glaciation at
. 2.75 Ma.

In this review, we compile both the terrestrial and marine evidence
of glaciation during the entire Pliocene Epoch and present a global
comparison of Arctic and Antarctic Pliocene (episodic) glaciation.
Firstly, we aim to bridge the gap between the terrestrial and marine
communities investigating Pliocene climate. Although there is ample
evidence of episodic Pliocene glaciation in the marine and terrestrial
realm, they have never been compared directly to identify synchrony
or diachrony between the terrestrial and marine records. Secondly,
by comparing all Pliocene records of glaciation on a global scale, we
aim to identify the timing of Arctic and Antarctic ice sheet expansion.
We also provide potential links between the glaciation events to
large-scale, long- and short-term changes in oceanography and glob-
al climate. Finally, by comparing the Pliocene record with that from
the Pleistocene, we attempt to reconstruct the World immediately
before the impact of major Northern Hemisphere glaciation and
present an assessment of how the Northern Hemisphere glaciations
were initiated.

2. Pliocene global climate—characteristics

The chronology of the Pliocene Epoch has been finely tuned by orbit-
al tuning or astrostratigraphy based upon marine oxygen isotope
sequences (Shackleton et al., 1990; Hilgen, 1991; Tiedemann et al.,
1994; Shackleton and Crowhurst, 1995; Shackleton et al., 1995). These
approaches were further improved in the most recent Neogene time-
scales, where could be relied on more accurate numerical astronomical
solutions, high-resolution studies of uplifted land-sections and more
complete ocean drill records (Lourens et al., 2005; Hilgen et al., 2012).
A highly detailed global benthic foraminifer oxygen isotope stack, of
comparable resolution to those for the Pleistocene, has also been pre-
sented for the Pliocene demonstrating that the climate system during
the period was controlled mainly by the c. 40 ka obliquity periodicity
(Lisiecki and Raymo, 2005). Because the global stack, supported by a
palaeomagnetic reversal chronology, provides a global standard for de-
tailed chronostratigraphical division, key events in the Pliocene global
climate history can be identified.

The evidence for climate oscillations through the Pliocene is seen in
geological sequences throughout the world. They include ice-volume
records from oxygen isotope successions, the occurrence of glacio-
marine sediments or IRD (=-ice rafted debris/detritus), the variation
of a range of geochemical or palynological proxies in marine and terres-
trial sediment sequences (e.g. Willis et al., 1999; Knies et al., 2009;
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Melles et al., 2012), and sea-level change in continental shelf marine
sediments (Dowsett and Cronin, 1990; Miller et al., 2012).

There is limited variation in the early Pliocene ice-volume re-
cords (Lisiecki and Raymo, 2005), and both data and model stud-
ies indicate expanded tropical warmth, reduced meridional and
zonal sea-surface temperature gradients, mean global tempera-
tures 3-4 °C warmer than today and the suppression of Northern
Hemisphere glaciation (Hill et al., 2007; Lunt et al., 2009; Brierley
and Fedorov, 2010; Salzmann et al., 2011b; Lariviére et al., 2012).
In the Southern Hemisphere, the East and West Antarctic Ice Sheets
were already fully established, but showed a very dynamic behav-
iour during Pliocene warm periods (e.g. Naish et al., 2009; Dolan
etal, 2011).

Northern Hemisphere glaciation was a gradual process that began
around 3.6 Ma, at the beginning of the late Pliocene (Mudelsee and
Raymo, 2005). This is reflected in the gradual North Atlantic sea-
surface temperature decline since c. 3.6 Ma, which culminates in the
glacial Marine Isotope Stage (MIS) M2 at c. 3.3 Ma (Lawrence et al.,
2009; Naafs et al., 2010). There is early evidence for an ice sheet in the
interior of North America at c. 3.5 Ma in the James Bay Lowland,
Canada (Gao et al., 2012), but glaciation in the Northern Hemisphere
was significantly reduced compared to the present, and probably also
occurred occasionally in Greenland (Hill et al., 2007), Alaska (Lagoe
and Zellers, 1996) and the Canadian Arctic Archipelago (de Vernal and
Mudie, 1989). In general, the Pliocene Arctic remained warmer than
today and the tree line was established considerably to the north
(Salzmann et al., 2011b). For example, there is evidence for evergreen
forests on Meighen Island, Ellesmere Island and the north-eastern
Russian Arctic (Matthews and Ovenden, 1990; Tedford and Harington,
2003; Andreev et al., 2013). Multi-proxy evidence from the recently re-
dated Beaver Pond peat on Ellesmere Island suggests that around the
early/late Pliocene transition (i.e. the Zanclean/Piacenzian stage bound-
ary) mean annual temperatures in this region were 18.3 &+ 4.1 °C warmer
than present (Ballantyne et al., 2010; Csank et al., 2011a,b; Rybczynski
et al,, 2013). Following the mid-Piacenzian Warm Period, when Earth's
climate was 2-3 °C warmer than today (3.3-3.0 Ma), global climate
again cooled further finally leading to the major glaciations at the transi-
tion from the Pliocene and to the early Pleistocene (MIS G6-96) (Funder
et al,, 2001; Bartoli et al., 2006; Lawrence et al., 2010).

The gradual process of ice build-up during the Pliocene suggests one
or more tectonic mechanisms that operate over long time periods. One
possibility is that uplift of the Tibetan Plateau led to weathering-induced
atmospheric carbon dioxide removal (Raymo et al,, 1988; Mudelsee and
Raymo, 2005). Alternatively or additionally, tectonic processes at ocean
gateways during the Pliocene might have led to the establishment of the
modern ocean circulation: the Indonesian Seaway shoaled between
4-3 Ma (Cane and Molnar, 2001), the Central American Seaway closed
(Haug and Tiedemann, 1998; Steph et al., 2006) and Pacific water flowed
into the Arctic via the Bering Strait around 4.5 Ma (Marincovich and
Gladenkov, 1999; Verhoeven et al,, 2011). Recent modelling experiments
indicate that the glaciation of Greenland during the late Pliocene is
mainly controlled by a decrease in atmospheric carbon dioxide (Lunt
et al., 2008a).

3. Nature of the evidence of glaciation and limitations

The evidence of ancient glaciations is generally preserved in two
ways: on land, glacial diamicton (till, tillite) and related meltwater
deposits occur in sedimentary sequences, whilst beneath the seas the
main evidence occurs as waterlain diamictons or, more frequently
and far-wider distributed, as IRD carried by floating ice. In volcanically
active regions, such as the Antarctic Peninsula or Iceland, the study of
glaciovolcanic sequences provides another powerful tool to reconstruct
thickness, extension and thermal regime of past ice sheets (Smellie
et al., 2008, 2009; Geirsdottir, 2011). Fig. 1 shows the localities where
evidence of Pliocene glaciations is recorded.

By their nature, terrestrial glacial sedimentary sequences are frag-
mentary and are generally preserved where they have been protected
by later accumulations or volcanic products. Precisely where these
glaciations occurred and how far they extended is often very difficult
to determine, given that the remnants of less extensive early glaciation
tends to be obliterated and mostly removed by later, more extensive
advances. Although this is so in all terrestrial areas, it is especially diffi-
cult in mountain regions where the preservation potential of older se-
quences rapidly diminishes with time and subsequent glaciation. This
fragmentary pattern of preservation of terrestrial glacial sequences
contrasts with that in the oceans where sequences, once deposited,
remain largely unmodified for much longer periods. The only excep-
tions are those sequences affected by submarine debris flows or
those that were laid down on the shelves or within fjords, etc.
where later glaciation and sea-level changes can cause removal of
pre-existing evidence. Whilst all these points are true for glaciations
at any time during the geological history, it is particularly a problem
for the reconstruction of events during the Pliocene. Then, glaciation
was considerably less extensive than during the subsequent Quaterna-
ry, implying that later glaciations may have removed a lot of evidence of
glaciation from the Pliocene geological record. Nevertheless, by com-
paring the available Pliocene glacial evidence on a global scale we pro-
vide important insights on the timing, location and minimum extent of
glaciation.

The transport of materials by floating ice is one of the principal
processes by which glacial sediment is dispersed in water bodies.
The occurrence of clastic sediment in ocean-bottom sediments is
generally interpreted as evidence that glaciers were sufficiently ex-
tensive to have reached the sea (i.e. tidewater glaciers). Although
transport by calved icebergs is the most common way, it is also pos-
sible for materials to be transported in ocean basins by sea ice
(Nirnberg et al., 1994; Andrews, 2000) or, although less commonly,
by algae, driftwood and the like (Gilbert, 1984; Vogt and Parish,
2012).

The deposits arising from both sea-ice and iceberg melting are
termed ice-rafted detritus or debris (IRD). Icebergs calved from glaciers
that terminate in the sea (or lakes), especially those from temperate ice
tongues, frequently include debris that is frozen onto or within the ice
body. As the ice drifts with the ocean currents and wind, its included
sediment can be transported over long distances that can exceed
1000-1500 km (Ruddiman, 1977; Bond et al., 1992; T. Williams et al.,
2010) within and across ocean basins. According to Dowdeswell and
Murray (1990), the volume of sediment deposited by iceberg rafting is
dependent on several factors that are determined by the primary sedi-
ment source, the rate of glacier calving, the rate of iceberg melt, the
ocean surface-water temperature and factors controlling the iceberg
drift rate (cf. Benn and Evans, 2010). Icebergs can be produced in differ-
ent ways, which T. Williams et al. (2010, p. 358-359) summarise as fol-
lows: “IRD-bearing icebergs can be produced when an ice sheet reaches
the edge of the continental shelf during glacial maxima (Marshall and
Koutnik, 2006), during glacial advance (McManus et al., 1999), during
glacial retreat (McManus et al., 1999), or due to instabilities in the ice
sheet leading to ice rafting like the Heinrich events of the North Atlantic in
the last glacial (Hemming, 2004).” Because we review data of glaciation
over a time scale of almost 3 million years (Pliocene, 5.33-2.58 Ma),
we did not distinguish between these different production mecha-
nisms, which operate on shorter time scales. We have simply
taken the IRD records as evidence for an ice sheet that reaches the
coastline.

In subpolar regions, the occurrence of coarse-grained (>63 um)
sediment and clasts in open ocean sediments is generally attributed to
iceberg transport and melting, and provides indirect evidence of terres-
trial glaciation (Andrews, 2000; St John, 2008; Polyak et al., 2010). In
polar regions, melting of sea ice usually contributes fine grained sedi-
ment, but occasionally also coarse-grained sediment, to the geological
record (Niirnberg et al., 1994; Miiller and Knies, 2013). Fine-grained
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Fig. 1. Map of all localities with evidence for glaciation during the Pliocene Epoch. Ocean drill sites are from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and

Integrated Ocean Drilling Program (IODP).

sediment that occurs in suspension on shallow shelves can be incorpo-
rated in sea ice during ice-freeze-up (frazil-ice formation) (Kempema
etal, 1989; Niirnberg et al., 1994; Polyak et al., 2010). In addition, an-
chor ice, which forms on the sea-floor during super-cooled conditions,
can incorporate and distribute any sediment (Reimnitz et al., 1987;
Polyak et al., 2010). The sediment transported by sea ice cannot be
seen as direct evidence of glaciation on land, and makes the distinction
between sea ice- and iceberg-transport processes challenging yet essen-
tial for palaeoenvironmental interpretations. Based on grain size alone,
it is often not possible to attribute a small coarse-grained fraction in
deep-sea sediments to either sea ice or iceberg transport in the geological
record (St John, 2008). Using surface textures of sand-sized quartz grains,
St John (2008) demonstrated the presence of sea ice and iceberg derived
sediment in the Arctic Ocean since the Eocene. Chemical fingerprinting of
iron oxide sand grains illustrated periods with perennial sea ice possibly
already in the middle Eocene (c. 47.5 Ma; Darby, 2014) and in the late
Miocene (Darby, 2008). The Pliocene IRD records reviewed below are
mainly from subpolar regions (Fig. 1), and should therefore mostly
present iceberg transport.

4. Northern Hemisphere

Early evidence of Northern Hemisphere glaciation—as isolated
glaciers or small ice caps that reached the coastline on Greenland or
Svalbard—is presented in glacigenic microstructures on Palaeocene
quartz sand grains (Immonen, 2013), and in IRD records from the mid-
dle Eocene (45 Ma) of the Arctic Ocean (Moran et al., 2006) and from
the middle Eocene (44 Ma) to early Oligocene (38-30 Ma) of the Green-
land Sea (Eldrett et al., 2007; Tripati et al., 2008). It nevertheless takes
until the middle to late Miocene and Pliocene that small-scale glacia-
tions in the Arctic region occur more frequently (e.g. Knies and Gaina,
2008), and the late Pliocene marks the transition from local to extensive

regional scale glaciations in the Northern Hemisphere (Fronval and
Jansen, 1996; Kleiven et al., 2002; Matthiessen et al., 2009a; Bailey
et al., 2013). All Northern Hemisphere records discussed below are
summarised and displayed together with reconstructions of the major
ice sheets in Fig. 2.

4.1. Direct evidence from the continents

4.1.1. North-western Canada and Alaska

In northern Canada and Alaska, the oldest till and accompanying IRD
in adjacent marine settings dates from the early Miocene, with region-
ally widespread glaciation occurring in the Pliocene and regularly
throughout the Pleistocene (cf. Barendregt and Duk-Rodkin, 2011).

In south-eastern Alaska the oldest evidence of glaciation is found in
the Yakataga Formation, a sequence of glacially-influenced marine
sediments. These sediments record IRD in the Gulf of Alaska. Originally
dated to the late Miocene, from 5.91 to 5.50 Ma, by Lagoe et al. (1993),
palaeomagnetic evidence indicates the onset of glaciation here to
4.2-2.27 Ma (Krissek, 1995; Rea and Snoeckx, 1995). According to
Duk-Rodkin et al. (2004), mountain glaciers transported debris in the
Alaska coastal ranges during this time. Terrestrial evidence from
south-eastern Alaska indicates evidence for several glacial advances,
where diamictites and associated deltaic deposits are interbedded
with lava flows. The potassium-argon dates of the interbedded lava-
flows indicate that the early tillites occur in the middle Miocene
(c. 10-9 Ma), one tillite is about 3.6 Ma, and two are between 8.8 and
2.7 Ma (Denton and Armstrong, 1969). Although there is some dis-
agreement over the genesis of the oldest materials, there is general
acceptance that the younger units are indeed of glacial origin (cf.
Duk-Rodkin et al., 2004). Both tidewater and the earliest Cordilleran
glaciation are represented, but it appears that the glaciers were local
and did not extend into the interior. Duk-Rodkin et al. (2004) note

Fig. 2. Terrestrial and marine evidence for glaciation during the Pliocene Epoch, combined into a summary of the major Northern and Southern Hemisphere ice sheets (grey insets). Four
distinct glaciation events (D to @) in the Northern and Southern Hemisphere have been identified, next to the latest Pliocene intensification of Northern Hemisphere Glaciation (iNHG).
Sequence boundaries are from Miller et al. (2005), time scale and global ice volume is the LR04 global stack of Lisiecki and Raymo (2005) and estimated sea level (SL) is from Naish and

Wilson (2009). Timing of glaciation events in the Miocene are also indicated.
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that the glaciation at 2.7 Ma appears to be coeval with the first
Cordilleran glaciation of the interior Yukon that dates to 2.9-2.6 Ma
during which a substantial ice cap developed. This event saw the
first development of an ice cap, which covered much of the central
Yukon region (Horton Ice Cap). Denton and Armstrong (1969) conclud-
ed that cold-climate conditions first occurred in the region at c. 10 Ma,
and that following regional uplift at c. 4 Ma, cold climates returned to-
wards the end of the Pliocene.

In central East Alaska, at least one glaciation is represented by
Gauss-age (i.e. late Pliocene) normally magnetised diamicton, a similar
sequence occurring in the west-central Alaskan Tintina Trench where
the interaction of Cordilleran and local ice are recorded. A similar late
Pliocene age is determined for a glaciation of the Smoking Hills region,
the outwash from which entered the Mackenzie Delta area (Duk-
Rodkin et al., 2004). Glacial deposits, possibly as old as 4 Ma, occur inter-
bedded with volcanic rocks near Mount Edziza in adjacent northern
British Columbia (Fulton et al., 2004).

4.1.2. Eastern Canada and United States

A till was deposited around 3.6-3.4 Ma by an early ice sheet in the
James Bay Lowland, Canada, indicating an early glaciation of a magni-
tude comparable to Pleistocene glaciations (Gao et al., 2012). Other di-
rect evidence of continental glaciation in North America is found in
the Atlanta Till, which was deposited around 2.41 Ma (early Pleisto-
cene) during an early, southerly expansion of the Laurentide Ice Sheet
(Balco et al., 2005; Rovey and Balco, 2011).

4.1.3. Greenland

Japsen et al. (2006) suggest that mountain glaciers may have been
present on Greenland at c. 4 Ma resulting from uplift in East and
West Greenland. The late Miocene to Pliocene mountain formation in
Greenland and uplift along the northwest European continental margin
in the early Pliocene may have been essential for the initiation of large
Northern Hemisphere ice sheets (Japsen et al., 2006; Solgaard et al.,
2013; Knies et al,, 2014). Nevertheless, ice sheet model studies demon-
strate a large reduction of the Greenland Ice Sheet compared to the
present during the mid-Piacenzian (Hill et al., 2010; Dolan et al., 2011;
Koenig et al., 2011; Solgaard et al., 2013), but there are no direct ac-
counts on Greenland of the presence of a Pliocene ice cap. Pliocene con-
tinental deposits are not available, and ice cores only extend back to c.
125,000 years ago (NEEM community members, 2013). The fauna and
flora recovered from the late Pliocene fle de France Formation in
north-east Greenland suggests seawater temperatures too high for pe-
rennial sea ice and air temperatures considerably higher than present
(Bennike et al., 2002). The Kap Kgbenhavn Formation in North
Greenland consist mainly of shallow marine near-shore sediments
which record (sub)arctic and boreal conditions (Funder et al., 2001).
But with an estimated age of c. 2.4 Ma, this formation is currently placed
in the earliest Pleistocene (Knies et al., 2009; Gibbard et al., 2010). The
formation rests on and is overlain by till, which is one of the few direct
lines of evidence for glaciation on Greenland around the intensification
of Quaternary-style Northern Hemisphere glaciation. The major expan-
sion in continental ice volume at c. 2.75-2.72 Ma possibly resulted in an
ice-sheet advance onto the East Greenland Shelf south of Scoresby
Sound (Vanneste et al., 1995). Most evidence for a Pliocene ice sheet
on Greenland is found in the surrounding ocean basins in the form of
IRD (see below).

4.1.4. Iceland

Glaciation of Iceland began in the Miocene (c. 7 Ma) (Fridleifsson,
1995), occurring regularly through the Pliocene and onwards to the
present-day in the mountains (Geirsdottir, 2004, 2011). The first
Pliocene glaciation has been tentatively identified near Vatnajokull, in
SE Iceland where it is assigned an age of c. 5 Ma (Fridleifsson, 1995).
In sections in the area at Skaftafell/Hafrafell, a second event possibly oc-
curred at 4.7-4.6 Ma (Helgason and Duncan, 2001). However, the oldest

undisputed glacial diamictites in these sections date from c. 4.0 Ma, based
on palaeomagnetism and K/Ar analyses. Similarly in Fljétsdalur in eastern
Iceland, the oldest tillite is interbedded with lavas for which an age of
4.0-3.8 Ma has been determined (Geirsdottir and Eiriksson, 1994;
Geirsdottir, 2004; Geirsdottir et al., 2007). The same sequence yielded ev-
idence for a second glacial diamictite, which is dated to c. 3.4 Ma based on
palaesomagnetism and is potentially related to the major glaciation during
MIS M2 at c. 3.30 Ma. Broadly penecontemporaneous glaciation early in
the Gauss Chron, between 3.6 and 3.3 Ma has been identified from the
Skaftafell/Hafrafell locality (Helgason and Duncan, 2001). The initial
development of a major ice sheet on Iceland occurred at c. 2.9 Ma, and
subsequent intensifications at c. 2.7 Ma and between 2.5 and 2.4 Ma
(Geirsdottir, 2004; Geirsdottir et al., 2007).

The Icelandic diamictites are interpreted to represent only local
glaciation (Geirsdottir and Eiriksson, 1994; Geirsdottir et al., 2007),
since they have only been recorded adjacent to the modern Vatnajékull
ice cap. During the Neogene, this region was the most active volcanic
zone of the island where volcanism gave rise to the development of a
high-altitude landscape (cf. Hardarsson et al., 2008; Geirsdottir, 2011).
The high precipitation in this area (3200 mm today) was, and indeed
continues to be, particularly favourable for the establishment and nour-
ishment of glaciers. The fortuitous product of this parallel development
was the interbedding of lava flows and diamictites dating from between
3 and 2.5 Ma at Fljétsdalur, Jokuldalur and Skaftafell/Hafrafell. This evi-
dence indicates the initiation of the progressive, step-like expansion
and evolution of montane glaciers into ice caps in the south-east in
Plio-Pleistocene time. That the ice-cap continued to expand during the
earliest Pleistocene is further supported by the discovery of glacial de-
posits intercalated with lava flows in western Iceland and dated be-
tween 2.8 and 2.5 Ma (Geirsdottir and Eiriksson, 1994; Geirsdottir,
2011). On the basis of current knowledge, at least five glaciations are re-
corded in the period between 5 and 2.7 Ma (Geirsdottir et al., 2007;
Geirsdottir, 2011).

4.1.5. Siberia/Arctic Russia

There are few accounts of evidence for glaciation in Siberia and Arc-
tic Russia in the late Pliocene. Local glaciation may have occurred in the
late Pliocene of the Caucasus (Milanovsky, 2008) and around the Plio-
cene-Pleistocene boundary in the Lake Baikal region, east Siberia
(Prokopenko et al., 2001). Laukhin et al. (1999) reports two late Plio-
cene-early Pleistocene tills in the northeast Cukotka Peninsula, eastern
Artic Russia: the Zhuravlinean Till dated at 3.5-3.2 Ma and the
Okanaanean Till dated at 2.5-2.4 Ma.

The vegetation history recorded in Lake El'gygytgyn, northeast Arctic
Russia, since c. 3.6 Ma indicates warmer than present conditions for
most of the late Pliocene (Laukhin et al., 1999; Andreev et al., 2013;
Brigham-Grette et al., 2013). The onset of permafrost conditions and
the cooler, drier climate around c. 3.3 Ma (MIS M2) have been linked to
the Zhuravlinean Till (Andreev et al., 2013; Wennrich et al., 2013), but cli-
mate conditions were not glacial and rather comparable to those of the
Holocene (Brigham-Grette et al., 2013). Cooler and drier conditions are
progressively recorded from c. 3.0 Ma in both the Lake El'gygytgyn
(Andreev et al,, 2013) and Lake Baikal (Demske et al., 2002) records.

4.1.6. Other records

In the Rocky Mountains of the USA, a Pliocene-Pleistocene-aged till
is known from California (Gillespie and Clark, 2011). In mainland
Europe there is no direct evidence of glaciation before the latest early to
early middle Pleistocene, with the possible exception of northern
Switzerland (Schliichter, 2004; Ehlers and Gibbard, 2007).

4.2. Indirect evidence from the oceans
4.2.1. Arctic Ocean

During the Neogene, the Arctic Ocean may have been covered by
perennial sea-ice and occasionally a seasonal sea-ice cover existed
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(Moran et al., 2006; Darby, 2008; Krylov et al., 2008). Based on the oc-
currence of marine palynomorphs that require at least seasonally
open waters, Matthiessen et al. (2009b) proposed a strong variability
of the late Miocene sea-ice cover, with periods of seasonally open wa-
ters and periods of a perennial sea-ice cover (e.g. glacial-interglacial).
From the middle Miocene onwards (c. 16 Ma), records of IRD from
IODP Expedition 302 drill sites (e.g. the ACEX core) reflect transport
via sea-ice and/or icebergs, calved from glaciers present in the Arctic
Ocean. An important increase in icebergs and sea-ice is identified at c.
3.2 Main the late Pliocene (Moran et al., 2006), approximately coincid-
ing with the major glaciation of MIS M2 at c. 3.3 Ma (De Schepper et al.,
2009, 2013). In the central Arctic Ocean, sea-ice was probably the most
dominant mode of transport, with a minor contribution of icebergs
(Darby, 2008; Matthiessen et al., 2009a) until the middle to late Pleisto-
cene when more icebergs reached the area (Spielhagen et al., 2004).

4.2.2. Barents Sea/Yermak Plateau/Fram Strait

In the Barents and Kara seas, glaciation is recorded from the early
Miocene, early Pliocene and Plio-Pleistocene (Mangerud et al., 1996;
Svendsen et al., 2004; Knies and Gaina, 2008; Knies et al., 2009;
Mangerud et al., 2011; Vorren et al., 2011; Knies et al., 2014). The
northern floor of the Barents Sea region was exposed sub-aerially in
the Miocene to early Pliocene (Rasmussen and Fjeldskaar, 1996; Butt
et al.,, 2002; Knies et al., 2009, 2014). Deposition of sand-rich material
along the continental margin prior to onset of glacial erosion in the
Svalbard-Barents Sea area has been related to (glacial)-fluvial erosion
of Mesozoic and early Cenozoic weathering mantles (Dahlgren et al.,
2005; Knies et al., 2014). Moderate to low IRD in ODP Hole 911A during
the early Pliocene sequence excludes the presence of glacial ice close to
the coastline, but changes in sedimentology indicate initial glacial ice
build-up at around c. 4 Ma in the Svalbard-Barents Sea region (Knies
et al., 2014). More intense glaciation in the region during the late Plio-
cene is indicated by frequent IRD strata from sediments on the Yermak
Plateau (ODP Sites 910 and 911) between c. 3.6 and ¢. 2.4 Ma. Based on a
new age model for ODP Hole 911A (Mattingsdal et al., 2013) and ob-
served IRD records, Knies et al. (2009, 2014) illustrate that the northern
Svalbard-Barents Sea Ice Sheet extends beyond the coastline, and prob-
ably even beyond the shelf edge, on three occasions during the late
Pliocene: (1) during onset of Northern Hemisphere glaciation around
3.6 Ma sensu (Mudelsee and Raymo, 2005), (2) during MIS M2 around
3.3 Ma and (3) during glacial MIS G6/4 around 2.7 Ma. All events are
severe glaciations with oxygen isotope values characteristic of early
Pleistocene glaciations (Lisiecki and Raymo, 2005). At the same time,
increased IRD pulses along the western Svalbard-Barents Sea margin
support this interpretation (Knies et al., 2009). Simultaneous IRD events
in the Fram Strait imply a coherent dynamic response of the circum-
Arctic ice sheets to short-term glaciations during the latest Pliocene
and early Pleistocene, i.e. at c¢. 2.7 and 2.52-2.43 Ma respectively. The
low IRD frequencies along the western Svalbard margin imply deposi-
tion with little or no glacial influence from Svalbard before c. 2.3 Ma
(Butt et al., 2000; Sejrup et al., 2005; Knies et al., 2014).

Fram Strait ODP Site 909 records nearly continuous ice-rafting with a
probable Eurasian source since 18 Ma, with one distinct pulse of IRD de-
position in the middle Miocene indicating large-scale glaciation in the
northern Barents Sea and one in the late Pliocene (3-2.5 Ma) (Thiede
et al., 1998; Winkler et al., 2002; Knies and Gaina, 2008; Knies et al.,
2009; Thiede et al,, 2011).

4.2.3. Greenland Sea

East Greenland Margin ODP Site 913 records the earliest known iso-
lated IRD in the Eocene and Oligocene of the Nordic Seas (Eldrett et al.,
2007; Tripati et al,, 2008). IRD becomes more frequent in the Miocene to
Quaternary, with highest abundance during the Pliocene and early
Pleistocene when the most likely source was Greenland (Thiede and
Myhre, 1995; Thiede et al., 2011). On the northeastern flank of the
Scoresby Sound, the East Greenland continental margin, ODP Site 987

dropstones derived from Greenland were recorded from the Miocene
(~7.5 Ma) to Pleistocene (Shipboard Scientific Party, 1996; Butt et al.,
2001; Thiede et al., 2011).

Seismic identification of six glacial units south of Scoresby Sound
suggest ice-sheet advance and grounding on the shelf during the
Pliocene-Pleistocene, with the oldest grounding event possibly corre-
sponding with the late Pliocene intensification of Northern Hemisphere
glaciation (Vanneste et al., 1995).

4.2.4. Norwegian Sea

As elsewhere in the region, the record of IRD begins in the late Mio-
cene at 11 Ma on the Vering Plateau, off the north-western Norwegian
coast (ODP Sites 642-644). This debris-influx continues as a series
of pulse-like peaks through the latest Miocene to late Pliocene, with
significant peaks around 6.5 Ma, 5.0-4.9 Ma and c. 4.0 Ma (Jansen and
Sjoholm, 1991—updated to Geological Time Scale 2012, Hilgen et al.,
2012). These IRD pulses could have been produced by Scandinavian gla-
ciers that reached sea level. The strongest increase in both frequency
and continuity occurs in parallel with an increased sedimentation rate
in the late Pliocene. This input almost certainly indicates the initiation
of extensive glaciation of the Scandinavian mountains, the increased
intensity of ice-rafting reflecting the fact that glaciers were reaching
the sea (Mangerud et al., 1996). Before this time mountain, valley or
fjord glaciers predominated in the region (Jansen and Sjgholm, 1991;
Jansen et al., 2000; Kleiven et al., 2002; Svendsen et al., 2004; Sejrup
et al,, 2005). A major increase in IRD occurs around 2.72 Ma, MIS G6
(Jansen and Sjeholm, 1991; Bailey et al., 2013).

4.2.5. Irminger Basin/Iceland Sea

By the late Miocene (at 11, 7.3 and 7.1 Ma), glaciation reached sea-
level in south-eastern Greenland, indicated by IRD in the Irminger
Basin (ODP Sites 914-918; Larsen et al., 1994; Helland and Holmes,
1997; StJohn and Krissek, 2002). ODP Site 907 in the Iceland Sea records
IRD since c. 7.5 Ma (Fronval and Jansen, 1996). There was limited IRD
input until the early Pliocene, when a peak in IRD flux is recorded at c.
4.9-4.8 Ma in the Irminger Basin (St John and Krissek, 2002) and
Iceland Sea (Fronval and Jansen, 1996). A second early Pliocene increase
in IRD in the Iceland Sea ODP Site 907 is recorded at c. 4 Ma (Fronval and
Jansen, 1996). In the late Pliocene, an increased flux of IRD is recorded
around 3.5 Ma, which St John and Krissek (2002) tentatively link to
IRD deposited in the Iceland Sea at c. 3.3 Ma (ODP 907; Jansen et al.,
2000). An important IRD increase is recorded in the Iceland Sea at c.
3 Ma (Fronval and Jansen, 1996), but the major increase in IRD occurs
in the Iceland Sea around 2.72 Ma, MIS G6 (Jansen and Sjgholm, 1991,
Bailey et al., 2013).

4.2.6. North Atlantic

There is no evidence for IRD in the early Pliocene of the North Atlantic.
The late Pliocene increase in IRD frequency in the circum-Arctic oceans at
¢. 3.3-3.2 Ma is thought to have been derived mainly from Greenland
(Jansen et al., 2000; Kleiven et al., 2002; St John and Krissek, 2002).
DSDP Site 610 is the southernmost North Atlantic site where IRD was
recorded during MIS M2 at c. 3.3 Ma (Kleiven et al., 2002). However
high-resolution studies of this particular glacial did not confirm the
presence of IRD (De Schepper et al., 2009, 2013).

It is not certain whether a coherent Greenland Ice Sheet was
established prior to the latest late Pliocene, and therefore whether the
debris was transported to the sea by an ice sheet or coastal-montane
glaciers. The major expansion in continental ice volume at c. 2.7 Ma re-
sulted in increased delivery of IRD to several Nordic Seas sites, and also
to the North Atlantic: DSDP 552 (Shackleton et al., 1984), DSDP 111 and
116 (Berggren, 1972; Backman, 1979); ODP 984 (Bartoli et al., 2006);
IODP U1308 (Bailey et al., 2010); IODP U1313 (Bolton et al., 2010);
DSDP 607, 610 and ODP 981 (Kleiven et al., 2002; Becker et al., 2006)
all record a major increase in IRD. These data from the late Pliocene
allowed (Kleiven et al., 2002; Darby, 2008) to propose a somewhat
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coeval development of major ice sheets around the Arctic Basin. Howev-
er, a geochemical provenance study of the IRD at DSDP Site 611 suggests
that North Atlantic ice-rafting prior to 2.64 Ma (MIS G2) was dominated
by melting of icebergs originating only from Greenland and other
circum-Nordic Seas landmasses, but not North America (Bailey et al.,
2013). The same authors hypothesise that a North American Ice Sheet
did not expand to the North Atlantic coastline until 2.64 Ma, thus show-
ing a delayed expansion relative to the glacial expansion in Greenland
and Europe. From around c. 2.6 Ma, the British Ice Sheet also supplied
IRD to the North Atlantic (Porcupine Basin, IODP U1317) (Thierens
etal, 2012).

4.2.7. Baffin Bay and Labrador Sea

IRD, originating from northeastern Canada and Greenland, was re-
corded first in the Miocene (c. 9 Ma) and became more prominent
around 3.4 Ma at ODP Site 645 in Baffin Bay (Korstgard and Nielsen,
1989; Stein, 1991; Thiede et al., 2011). Dropstones at ODP Site 646 in
the Labrador Sea almost exclusively indicate a Greenland source,
whereas ODP Site 647 received IRD from Greenland and occasionally
also the Canadian Arctic Archipelago (Korstgdrd and Nielsen, 1989;
Thiede et al., 1998). The records from ODP Site 646 demonstrate fluctu-
ating delivery of IRD in low amounts between 9 and 4.5 Ma and an in-
crease in IRD since c¢. 3 Ma (Wolf and Thiede, 1991). IRD is reported in
the early late Pliocene (c. 3.6-3.0 Ma) of IODP U1307 (Sarnthein et al.,
2009), but because of the difficulties with establishing an age model in
that part of the section, it is unclear when exactly peak fluxes were re-
corded. The major increase in IRD occurs around 2.72 Ma (Sarnthein
et al,, 2009; Bailey et al., 2013).

4.2.8. North Pacific and Bering Sea

The record of glaciation on the Alaskan and neighbouring British
Columbian landmass is complemented by that of ice-rafting and terrig-
enous sediment increases in the North Pacific. Here ice-rafting began in
the late Miocene (6.6 Ma) south of Kamchatka and in the Gulf of Alaska
(Krissek, 1995; Rea and Snoeckx, 1995). IRD recorded occurrences be-
tween 6.6 and 4.2 Ma in the NW Pacific and Gulf of Alaska can be related
to the glaciomarine Yakataga Formation deposits of the Alaskan coastal
area (Lagoe et al., 1993; Krissek, 1995; Rea and Snoeckx, 1995). In the
Bering Sea, pebbles interpreted as IRD are found at >3.8 Ma, indicating
the formation of sea-ice or iceberg transportation to the Bowers Ridge
I0ODP Site U1340 (Takahashi et al., 2011). Ice-rafting increased substan-
tially at 2.73 Ma (Krissek, 1995; Haug et al., 2005). Until this marked in-
crease, the dropstone frequency is thought to result from montane
glaciation in the surrounding landmasses, but from 2.73 Ma onwards,
substantial continental-scale glaciation occurred (Prueher and Rea,
2001; Haug et al., 2005), comparable to that seen in the North Atlantic
region.

5. Southern Hemisphere

Antarctic Ice Sheets began building up at the Eocene/Oligocene tran-
sition, approximately 34 Ma ago, and significantly expanded during the
Miocene (Lear et al., 2000; Francis et al., 2008). Combined results from
ODP drillings, seismic records, terrestrial stratigraphical evidence and
model experiments indicate a step-like development from local ice
caps to a large ice sheet covering the entire Antarctic continent during
the Miocene (Anderson, 1999; Hambrey et al., 1991) around 13.9 Ma
when climate conditions (atmospheric carbon dioxide and/or insola-
tion) passed a threshold (Holbourn et al., 2005; Shevenell et al., 2008;
Langebroek et al., 2009). The Pliocene deep-sea record from around
Antarctica suggests significant sea-surface temperature fluctuations,
and the oxygen isotope and eustatic records indicate that consider-
able ice-volume fluctuations may have occurred (e.g. Prentice and
Fastook, 1990; Denton et al., 1991; Flemming and Barron, 1996). The
continental seismic shelf records from the Ross Sea region and Ant-
arctic Peninsula continental shelf show a number of shelf-wide

unconformities bounding till sheets, indicating high-frequency ground-
ing events, taken to represent waxing and waning of continental gla-
ciers during the Pliocene (Bart, 2001). In the following we summarise
the available literature describing the extent and response of the East
Antarctic, West Antarctic, and Antarctic Peninsula Ice Sheets to Pliocene
climate change (see also reviews in Haywood et al., 2009; Smellie et al.,
2009; Davies et al., 2012; Clark et al., 2013). All Southern Hemisphere
records discussed below are summarised and displayed together with
reconstructions of the major ice sheets in Fig. 2.

5.1. East Antarctic Ice Sheet (EAIS)

Of particular significance to the Pliocene record is the question when
the EAIS switched from a polythermal and dynamic ice sheet to a cold-
based and stable ice sheet, relatively inert to short-term climate fluctua-
tions. The Pliocene continental record in Antarctica is fragmentary and
difficult to interpret in terms of climate and glaciation development. Con-
sequently, it has led to different opinions as to the Miocene-Pliocene-
Pleistocene stability of the Antarctic Ice Sheet (Wilson, 1995), and the
nature, timing, extent and evolution of the ice sheets. Reconstructions of
the history of the EAIS range from drastic ice-volume fluctuations, with
a dynamic ice sheet fluctuating between extensive collapse and very ex-
tensive build-up and mountain overriding (e.g. Barrett et al., 1992), to
suggestions that it has existed close to its present configuration for the
past c. 14 million years (e.g. Shackleton and Kennett, 1975; Denton
et al., 1993; Sugden et al,, 1993; Kennett and Hodell, 1995). Much of the
controversy between ‘dynamicists’ and ‘stabilists’ focuses on the interpre-
tation of the Sirius Group glacial deposits in the Transantarctic Mountains.
Fossil plant remains of the tundra shrub Nothofagus beardmorensis
(Francis and Hill, 1996; Hill et al., 1996) and palaeosols (Retallack et al.,
2001) suggest that the Sirius Group diamictons have been deposited in
a significantly warmer environment than today:. It is still unclear, howev-
er, whether the Pliocene marine diatoms, which have been used to date
the Sirius Group, are in situ or reworked (e.g. Webb et al., 1984; Wilson,
1995; Stroeven et al., 1996; Sugden, 1996; Harwood and Webb, 1998;
McKay et al., 2008). The interpretation that the Pliocene diatoms have
been reworked into the sediment, probably through atmospheric trans-
port, is supported by surface exposure dating of boulders from a
moraine overlying the Sirius Group till indicating a most likely age of
>5 Ma (Ackert and Kurz, 2004). Other palaeobotanical findings from
the Transantarctic Mountains (McMurdo Dry Valleys, Lewis et al.,
2008; Prince Charles Mountains, Wei et al., 2014; Ross Embayment,
ANDRILL, Warny et al., 2009) also failed to provide evidence for a
Pliocene climate warm enough to support a substantial vegetation
cover in East Antarctic. Instead, all findings rather suggest a rapid
cooling during the Miocene, after 14 Ma. Ice-sheet modelling results in-
dicate that temperatures of 17-20 °C above present levels are required
to melt the EAIS (Huybrechts, 1993).

Whereas recent results indicate a large-scale deglaciation of East
Antarctica during the Pliocene, this appears to be rather unlikely.
Many studies demonstrate that the EAIS margins significantly retreated
during warm Pliocene ‘interglacials’. These events must therefore have
had a major influence on global sea level. Near Prydz Bay, considerable
changes in the volume of the Lambert Glacier system during the
Oligocene/Miocene to Plio-/Pleistocene are indicated by fjord sediments
preserved as far as several hundred kilometres inland from the open
coast (Hambrey and McKelvey, 2000). At Vestvold Hills, fossil-rich
glaciomarine sediments suggest thatin the early Pliocene (between
c.4.5and 3.5Ma) ice margins may have been~50 km farther inland
and climate was considerably warmer between 4.5 and 4.1 Ma
(e.g. Pickard et al., 1988; Quilty, 1993; Whitehead et al., 2001).
Major fluctuations of the Lambert Glacier System at Prydz Bay are also
recorded in marine cores from ODP Leg 119 (Hambrey et al., 1991).
The early Pliocene extent of the EAIS probably decreased between
4.6-4.0 Ma, when only low frequencies of IRD from icebergs released
by the Amery Ice Shelf were recorded at ODP Site 1165 (Leg 188,
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Prydz Bay, East Antarctica) (Passchier, 2011). During at least three time
intervals (c. 4.8-4.55, 4.4-4.3 and 3.7 Ma) the Southern Ocean was
warmer by c. 4-5.5 °C than present (Whitehead and Bohaty, 2003;
Passchier, 2011). IRD-rich layers at Site 1165 at 7, 4.8, and 3.5 Ma
have been interpreted by T. Williams et al. (2010) as indicators of
short-lived, massive discharges, probably reflecting destabilisation,
surge, and break-up of ice streams on the Wilkes Land and Adélie Land
margins of the EAIS under warmer climate conditions. By comparing
multi-proxy sedimentological evidence from ODP Leg 188 (Prydz Bay)
with that of Leg 178 (Antarctic Peninsula), Escutia et al. (2009) identified
glacial-interglacial cyclicity at both sites between 4 and 3.5 Ma with pe-
riods of prolonged or extreme warmth correlated with MIS Gi5 (c.
3.71-3.68 Ma), Gil (c. 3.60-3.62 Ma), MG11 (3.56-3.58 Ma) and MG7
(3.47-3.51 Ma). Sedimentological analyses from ODP Site 745,
representing the East Kerguelen Ridge sediment drift, identified three pe-
riods of enhanced accumulation of Antarctic-derived sediment, at
6.4-5.9 Ma and 4.9-4.4 Ma, potentially indicative of warmer, less stable
ice sheets at these times (Joseph et al., 2002). Sea-surface warming
events in the Southern Ocean were also identified at c. 4.5, c. 4.3 and
¢. 3.6 Ma by (Bohaty and Harwood, 1998) on the Southern Kerguelen
Plateau (ODP Sites 748 and 751), indicating the variability of the Plio-
cene Antarctic climate.

A substantial increase in IRD at 3.3 Ma off Prydz Bay, coincident with
the glacial MIS M2, marks the termination of the early Pliocene ice-sheet
minimum and a glacial advance, possibly even to the shelf break
(Passchier, 2011). The late Pliocene peaks in IRD following 3.3 Ma
could be related to a major advance of the grounding line of the EAIS
hundreds of kilometres beyond its present position onto the Prydz Bay
continental shelf (Passchier, 2011). This author also proposed linkages
between East Antarctic ice extent, global ice volume and deep-water
temperatures in the late Pliocene based on the strong correlation be-
tween the IRD mass accumulation rate and high-amplitude fluctuations
in the LR04 benthic stack.

Substantial fluctuation of the EAIS during the Pliocene has also been
identified from sediment cores taken in the Ross Sea region by multi-
national drilling projects in the McMurdo Sound region (e.g. the drill
cores of the Dry Valley Drilling Project (McGinnis, 1981), MSSTS-1
(Barrett, 1986), CIROS-2 (Barrett, 1989; Barrett et al., 1992), the Cape
Roberts Project (e.g. Hambrey et al., 1998) and ANDRILL (e.g. Naish
et al., 2007). For the early Pliocene, c. 4.5-3.4 Ma ago, ice sheet, sea-
surface temperature, and sea ice reconstructions from the ANDRILL
AND-1B sediment core provide evidence for warmer-than-present ma-
rine conditions accompanied by a diminished marine-based ice sheet in
the Ross Embayment (McKay et al., 2012). During peak Pliocene
warmth, sea-surface temperatures adjacent to the Antarctic coastline
reached 4-5 °C (4.75-3.4 Ma) and sea-ice cover was absent or limited
to winter (Levy et al., 2012). The MIS M2 glaciation (c. 3.3 Ma) terminat-
ed the early Pliocene warm conditions and ice-sheet minimum. At the
Ross Sea Embayment, cooling after c. 3.3 Ma caused a rapid expansion
of an ice sheet followed by a stepwise increase in sea ice between 3.3
and 2.5 Ma (McKay et al., 2012). The diatom record indicates that at
2.9 Ma sea-surface temperatures may still have reached c. 3 °C and
this appears to represent the end of the mid-Pliocene warm period
(Sjunneskog and Winter, 2012). Marine sediment cores, taken off
Wilkes Land by the IODP Expedition Leg 318 (Site U1361), support pre-
vious interpretations of a dynamic East Antarctic Ice Sheet during the
warm Pliocene and provide evidence for retreat of the ice sheet margin
several hundred kilometres inland (Cook et al., 2013). IRD is recorded at
Site U1361 during the entire Pliocene (Expedition 318 Scientists, 2011),
and glaciers may have stabilised at the Wilkes Land Subglacial Basin
during the later Pleistocene, <0.54 Ma ago (Orejola et al., 2013).

5.2. West Antarctic Ice Sheet (WAIS)

The WAIS is thought to have been fully established during the early
to middle Miocene (Hollister and Craddock, 1976; Abreu and Anderson,

1998; Barker and Camerlenghi, 2002). Magnesium/calcium data from
planktonic foraminifera demonstrate that southwest Pacific sea-surface
temperatures cooled 6-7 °C between 14.2 and 13.8 Ma (Shevenell et al.,
2004). During the late Miocene, the WAIS reached its modern size and
might have been at times even larger than today (De Santis et al., 1999;
Anderson and Shipp, 2001; Bart, 2001). However, seismostratigraphic
analyses of the Amundsen Sea Embayment shelf and slope indicate that
the WAIS has responded probably more sensitive to Pliocene climate
change than the EAIS (Weigelt et al., 2009; Gohl et al., 2013). Moreover,
it might have even collapsed during Neogene interglacials as indicated
by marine deposits in the AND-1 core (purple intervals on Fig. 2) (Naish
et al,, 2009; Pollard and Deconto, 2009).

Many Pliocene reconstructions of the WAIS depend in part on the
East Antarctic sequence, i.e. whether or not they encompass a major
deglaciation of interior East Antarctica (Denton et al., 1984, 1991;
Ing6lfsson, 2004; Naish et al., 2009). The most detailed results on Plio-
cene WAIS history stem from the ANDRILL cores taken in the western
Ross Sea (East Antarctica). They indicate that orbitally induced oscilla-
tions of the WAIS resulted in transitions from grounded ice and/or
ice shelves to open water conditions (Naish et al., 2009). Here the
authors recognised 18 orbital cycles through the Pliocene from 4.86 to
2.60 Ma. The western Ross Sea was ice free around 4.5-4.4 and again be-
tween 3.6 and 3.4 Ma (both intervals are separated by an unconformity)
and the M2 glacial terminates the early Pliocene warm conditions
(Naish et al., 2009). In addition, they also identified a 60 m thick
diamictite unit that they interpreted as representing a warmer-than-
present ‘interglacial’ between c. 3.6 and 3.4 Ma.

5.3. Antarctic Peninsula Ice Sheet (APIS)

The Pliocene history of the APIS is comparatively well constrained by
terrestrial glaciomarine and glaciovolcanic sediments (Hambrey and
Smellie, 2006; Smellie et al., 2008; Johnson et al., 2009; Nelson et al.,
2009; Smellie et al., 2009; Salzmann et al., 2011a) and marine geological
coring projects on the Pacific and Weddell Sea margin of the Antarctic
Peninsula, such as IODP Leg 178 (Barker and Camerlenghi, 2002) and
SHALDRILL (Anderson et al., 2011). Independent evidence from both
the terrestrial and marine realms suggests that mountain glaciation of
the Antarctic Peninsula already began in the latest Eocene, approximately
37-34 Ma ago (Birkenmajer et al., 2005; Anderson et al,, 2011). The tran-
sition from a temperate, alpine glaciation to a dynamic, polythermal ice
sheet took place during the middle Miocene (Anderson et al., 2011),
and may have been related to the development of a full deep Antarctic
Circumpolar Current after the mid-Miocene climatic optimum (Dalziel
et al,, 2013). Throughout the Neogene progressive cooling, the APIS was
highly dynamic and showed a strong glacial-interglacial cyclicity with
repeated advance and retreat of grounded ice masses and supply of
IRD eroded on the Antarctic Peninsula (e.g. Hillenbrand and Ehrmann,
2005; Hepp et al., 2006; Scheuer et al., 2006; Cowan et al., 2008;
Escutia et al., 2009; Nyvlt et al., 2011). At the Weddell Sea margin, at
least 10 Pliocene-Pleistocene ice-grounding events of the APIS can be
identified (Smith and Anderson, 2010). Diatoms, dinoflagellate cysts
and increased opal deposition in marine sediment sequences point to
a strong reduction of sea-ice cover and relatively warm climatic condi-
tions on the Antarctic Peninsula during the early Pliocene (Wei et al.,
2014). Growth increment analyses of bivalves coupled with stable iso-
topic data indicate a largely sea-ice free shallow marine environment
at Cockburn Island, Antarctic Peninsula, during the early Pliocene
(c. 4.7 Ma) (M. Williams et al.,, 2010). A reduction in opal deposition be-
tween 3.1 and 2.6 Ma likely reflects sea-ice expansion and cooling
(Hillenbrand and Ehrmann, 2005). A comprehensive review of
palaeontological and geochemical proxy data from bivalves, bryozoans,
silicoflagellates, diatoms and cetaceans for sea-surface temperature
suggest that the summers on the Antarctic shelf during the late Neo-
gene experienced most of the warming, while winter sea-surface tem-
peratures were little changed from present (Clark et al., 2013).
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The APIS was probably the most dynamic component of the Antarc-
tic cryosphere, but several lines of evidence from marine and terrestrial
deposits demonstrate that the late Neogene APIS was surprisingly ro-
bust and might have been a persistent feature despite the substantially
greater-than-present warmth during the Pliocene (Ehrmann et al.,
1991; Pudsey, 2001; Hillenbrand and Ehrmann, 2005; Smellie et al.,
2008; Johnson et al., 2009; Nelson et al., 2009). Terrestrial glaciogenic
sediments and glaciovolcanic sequences that are exposed on the outly-
ing islands of the Antarctic Peninsula indicate a progressively thickening
wet-based, actively eroding ice sheet since the late Miocene (Smellie
et al., 2009). This is supported by the deep-sea 6'30 record, which
Denton et al. (1991) interpreted as indicating that the overall Ant-
arctic ice volume was never significantly less than today throughout
the Pliocene. Ice thickness of the APIS reached 500-850 m during late
Neogene glacials and draped rather than drowned the topography
(e.g. Smellie et al., 2008, 2009; Davies et al., 2012). On the southern
Antarctic Peninsula, ice thickness ranged from <200 m in latest Miocene
time to 400 to >700 m in Pliocene-Pleistocene time (Smellie et al.,
2009). There is also evidence for several ice-poor periods in the James
Ross Island group, particularly clustered in the early Pliocene (Nelson
et al., 2009; Smellie et al., 2009). During the ice-poor ‘interglacials’,
the APIS front could have retreated to the present coastline and open-
water marine conditions may have prevailed at times, at least seasonal-
ly. However, Pliocene climate was apparently never sufficiently warm
to sustain a substantial vegetation cover on the Antarctic Peninsula.
Whereas localised pockets of limited tundra vegetation still existed at
least until 12.8 Ma, palynological analyses indicate no unambiguous re-
cord of land vegetation for the late Miocene and Pliocene (Anderson
et al.,, 2011; Salzmann et al., 2011a; Warny and Askin, 2011). The
presence of IRD at ODP Site 1095 implies that the Antarctic Peninsula
was never deglaciated for any longer period between 4.5-3.2 Ma
(Pudsey, 2001).

5.4. Patagonia

According to Coronato et al. (2004, p. 64), “Patagonia is perhaps the
best region in the Southern Hemisphere where a late Cenozoic terrestrial
glacial sequence has been established”. They point out that the available
absolute dating allows the recognition of several glacial events that in
turn can be related to the marine isotope stratigraphy. The dating
indicates that the Patagonian Andes region was glaciated from the late
Miocene and through the Pliocene and moreover, that the Antarctic
Peninsula was already fully glaciated in the Miocene (Coronato and
Rabassa, 2011). Substantial evidence for glaciation in the Piedmont
areas of Argentina and Chile is recorded since the late Miocene between
7 and 5 Ma (Rabassa, 2008; Lagabrielle et al., 2010; Rabassa and
Coronato, 2011). In the Lago Cardiel region, nine late Miocene glacier
advances were identified, the two oldest of which suggesting an age
as old as 10.5-9 Ma (Wenzens, 2006).

A key area for the recognition and differentiation of late Cenozoic
glaciation in the region is Lago Buenos Aires. Here, a series of diamicton
units (tills) are interbedded with lava flows that offer the opportunity to
provide a geochronological framework for the glacial events. Evidence
for the earliest glacial advances was originally established by Mercer
(1976) and Mercer and Sutter (1982) who undertook K/Ar dating.
Near the Lago Buenos Aires, central Patagonia, one >30 m thick till
was dated by K/Ar to the latest Miocene (7.4-4.4 Ma) (Rabassa et al.,
2005; Rabassa, 2008). Late Miocene lava flows overlie (c. 5.0 Ma) and
are in contact (c. 6.85 Ma) with till and fluvioglacial conglomerates
(Lagabrielle et al., 2010). One lava flow from a series of flows interbed-
ded with tills was dated at c. 4.8 Ma (Lagabrielle et al., 2007, 2010).
Three till deposits underlying basalt flows were identified between 4.9
and 4.3 Ma (Rabassa et al., 2005; Rabassa, 2008). All this evidence
suggests that late Miocene to early Pliocene isolated icecaps existed
in the Patagonian Andes. Still at the Lago Buenos Aires region, a lava
flow dated at c. 3 Ma overlies a different till deposit, suggesting glacial

advance also in the late Pliocene (Lagabrielle et al., 2010). Malagnino
(1995) presented geomorphological evidence for an ancient piedmont
glaciation (‘Chipanque glaciation’), which was the most extensive
piedmont glaciation in the region (Coronato et al., 2004). It includes
an assemblage of melt water deposits and ice-marginal morainic ridges,
for which Malagnino (1995) postulated an age of 7-4.6 Ma (latest
Miocene to early Pliocene) or 3.5- > 2.3 Ma (late Pliocene to early
Pleistocene age) (Coronato et al., 2004; Rabassa, 2008).

In the Lago Viedma and Lago Argentino region of southern Patagonia
again diamicton units are interbedded with basalt flows. Detailed
morphostratigraphy has been undertaken, supported by numerical
dating. Two separate till deposits were dated to c. 3.68-3.55 Ma and
c. 3.55-3.48 Ma respectively, based on K/Ar dating of the over- and un-
derlying basaltic flows (Rabassa et al., 2005). Linking the evidence of Pli-
ocene Patagonian glaciation to global climate variability indicates that
cold events and accompanied glacier advance took place during MIS
MG6 (c. 3.5 Ma), during one of the cool events of MIS KM4, KM6, M2
or MG2 (3.45-3.20 Ma) and MIS 100-88 (2.54-2.27 Ma) (Rabassa
et al.,, 2005; Rabassa, 2008).

The late Pliocene glacier extent was similar to the Pleistocene extent
in southern Patagonia, but there is no conclusive evidence for such ice
cap extent in Northern Patagonia, which probably was covered only
with local ice (Rabassa, 2008). It thus remains unclear at present wheth-
er these glacial events represent local montane glaciation or the devel-
opment of a substantial temporary substantial ice cap over the Andean
Cordillera (Lagabrielle et al., 2010). Although, the latter is supported
by the widespread distribution of diamictons (tills) across the region.

5.5. Bolivian and Columbian Andes

There is little documented evidence of tropical Andean glaciers from
the Pliocene. It is estimated that the tropical Andes have attained most
of their present elevation only during the past 6-5 Ma, however, the
earliest glaciation recorded in the Bolivian Andes near La Paz dates
from at least 3.25 Ma (Clapperton, 1983; La Frenierre et al., 2011).

Further north, detailed investigation of the sequence filling the Bogota
Basin has shown that the first glaciation of the Columbian Andes was ini-
tiated at 2.6 Ma, based on magnetic polarity and fission-track dating
(Andriessen et al., 1993). Here a sudden influx of glaciofluvial sediments
is recorded at the base of the reverse-magnetised Subachoque Formation,
evidence that contrasts markedly with that from the pre-existing de-
posits of the Upper Tilatad Formation. The latter contain palynological ev-
idence indicating warm climates during the Gauss Chron (Helmens,
2004, 2011). This indication of an earliest Pleistocene age for initial glaci-
ation of the northern South America, is also found further south in the
Bolivian Andes (Thouveny and Servant, 1989).

5.6. Australasia

The earliest records of glaciation in Australasia are found in New
Zealand. They date from the Pliocene-Pleistocene boundary interval
(c. 2.6 Ma, MIS 104-98; Barrell, 2011).

6. Synthesis
6.1. Limitations

Next to the incompleteness of the terrestrial evidence for glaciation
(Fig. 2 and Section 3 above), the dating of the glacial deposits also limits
the interpretations of glacial extent and chronology. Absolute dating
of terrestrial glacial deposits is considerably more difficult than that of
marine deposits, which often have detailed magnetostratigraphy
and orbitally-tuned isotope stratigraphy available. The ages of glacial
diamictons and moraines reviewed here are mainly derived from
magnetostratigraphic and absolute dating of overlying and/or underlying
lava flows (e.g. Iceland, Patagonia). When tills are interbedded between
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lava flows a relatively accurate age constraint can be derived, but this is
more difficult when only an overlying or underlying till is available. We
have not attempted to improve the age estimates of glaciation events
for each region, but have updated it to the most recent time scale (Geo-
logical Time Scale 2012, Hilgen et al., 2012) where necessary. By assum-
ing the timing of the events to be relatively accurate, it was nevertheless
possible to use the evidence for glaciation from both the terrestrial and
marine realms to identify the evolution of the ice sheets in both the
Northern and Southern Hemisphere. Examining the plots of the distribu-
tion of glaciation globally through the late Neogene (Fig. 2) suggests that
there are three broadly distinct periods: (i) the Zanclean (5.33-3.60 Ma),
when low frequency IRD is recorded at high latitude sites in the Northern
Hemisphere, and two glaciation events extending beyond Greenland and
Antarctica at c. 4.9 and 4.0 Ma were identified; (ii) gradual expansion of
the Northern Hemisphere glaciers through the Piacenzian from c. 3.6 Ma,
undergoing a marked step around 3.3 Ma, a set-back during the mid-
Piacenzian Warm Period (c. 3.3-3.0 Ma), and (iii) culmination of the gla-
cial/interglacial cyclicity around 2.7 Ma, just prior to the Pliocene-Pleisto-
cene boundary, with major glacial expansion in the Northern
Hemisphere that marks the transition to the Quaternary.

The glaciation events are compared to Pliocene climatic and oceano-
graphic events in the synthesis below.

6.2. Two glaciation events in the warm early Pliocene (5.3-3.6 Ma)

In the early Pliocene (5.3-3.6 Ma), there is very little terrestrial evi-
dence of glaciation, but occasional records are present in South America
and the Northern Hemisphere. The limited evidence of ice sheets may
be an expression of a lack of records, but are just as likely attributable
to the generally warmer climate and pCO, concentrations well-above
400 ppm prior to c¢. 4.5 Ma (Pagani et al., 2009; Seki et al., 2010).
Sea-surface temperatures in the Southern Ocean were 4-5.5 °C higher
than present during three intervals (Whitehead and Bohaty, 2003;
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Passchier, 2011), more than 2-3 °C higher in the subtropical North At-
lantic (Naafs et al., 2010) and over c. 6 °C higher in the eastern North At-
lantic (Lawrence et al., 2009). The benthic isotope sequence (Lisiecki
and Raymo, 2005) shows only small amplitude glacial/interglacial vari-
ations in the early Pliocene and most glacials probably remained warm-
er than today. In the southern Hemisphere, land sections and Southern
Ocean IRD records and sediments in drill cores reflect a large EAIS that
underwent occasional retreat, a persistent APIS, a WAIS that undergoes
six expansion/reduction phases and a frequently ice-free Ross Sea
between 5.0 and 4.3 Ma (Naish et al., 2009). There are no reports of
early Pliocene IRD in the North Atlantic, but IRD is recorded in the Arctic
Ocean, North Pacific/Bering Sea, Labrador Sea, Baffin Bay and the Nordic
Seas. It is not always certain whether this IRD derives from sea ice or
iceberg calving, although dropstones from the Labrador Sea/Baffin Bay
and Greenland Sea indicate an origin from Greenland and the
Canadian Arctic archipelago (Korstgdrd and Nielsen, 1989).

6.2.1. Northern and Southern Hemisphere glaciation at c. 4.9-4.8 Ma

A first globally recognisable glacial event, recorded in both the
marine and terrestrial realms, can be identified at c. 4.9-4.8 Ma (@
in Figs. 2, 3, 4). The first Pliocene recorded glacial deposits in the
Ross Embayment (c. 4.9 Ma) largely coincide with IRD in Prydz Bay
from the EAIS (c. 4.8 Ma), glacial deposits in the McMurdo Sound re-
gion drill cores (5.0-4.8 Ma) and a longer phase of increased
Antarctic-derived sediment on the Kerguelen Plateau (4.9-4.4 Ma).
The increased IRD and sediment derived from Antarctica in the early Pli-
ocene has been interpreted as reflecting less stable ice sheets as a con-
sequence of warmer conditions (Joseph et al., 2002; T. Williams et al.,
2010), which seemingly contrasts with the mountain glaciation in Pat-
agonia (c. 4.8 Ma). Although IRD can be produced during melting or in-
stabilities of the ice sheet as well as during glacial advance and glacial
maxima (Joseph et al., 2002; Naish and Wilson, 2009; T. Williams
et al,, 2010), the IRD evidence nevertheless suggests that an early
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Fig. 4. Schematic representation of the distribution of ice sheets during the Pliocene glaciation events at around 4.9-4.8, 4.0, 3.6 and 3.3 Ma, and the intensification of Northern Hemisphere

Glaciation around 2.7 Ma.

Pliocene Antarctic Ice Sheet was large enough by c. 4.9-4.8 Ma at
least to reach the coastline. In addition to the evidence from the
Southern Hemisphere, also evidence for glaciation in the Northern
Hemisphere is recorded on Iceland (c. 5.0 and 4.7 Ma). Furthermore,
IRD pulses from Greenland are detected in the Irminger Basin and
Iceland Sea at c. 4.8 Ma, and from Scandinavia in the Norwegian
Sea at c. 5.0-4.9 Ma.

Assuming the timing of these events is robust, they can be attributed
to the glacial MIS Si6 and/or Si4 (Lisiecki and Raymo, 2005) between 4.9
and 4.8 Ma, providing evidence for the first early Pliocene bipolar
expansion of the continental Northern and Southern Hemisphere ice
sheets to the coastline (@ in Figs. 2, 3, 4). The glacial expansion also
lowered level to just below present-day levels (Naish and Wilson,
2009) or as much as about —45 m, and is expressed in a global sequence
boundary at 4.9 Ma (Miller et al., 2005). This implies that continental ice
volume may have been comparable to present, or maximally marginally
larger. The cause of this glaciation is unclear, but because the glaciation
event predates the early Pliocene oceanographic reorganisations arising

from gateway changes (Fig. 3), these did not seem to have an effect on
the expansion of continental ice sheets at this time.

6.2.2. Early Pliocene changes at ocean gateways did not immediately im-
pact glaciation

The Central American Seaway shoaling/closure has been put forward
as a possible cause for Northern Hemisphere glaciation (e.g. Keigwin,
1982). Between 4.6 and 4.2 Ma, the Central American Seaway shoals
considerably and restricts deeper water exchange from the Pacific
to the Caribbean Sea and Atlantic (Haug and Tiedemann, 1998;
Groeneveld et al., 2006; Steph et al., 2006). An immediate and causal
effect of the Central American Seaway closure on the Northern Hemi-
sphere ice sheets is not confirmed in the terrestrial and marine re-
cords, nor in the small amplitude variations of the benthic isotope
record (Figs. 2, 3). However, recent modelling studies (Lunt et al.,
2008a,b) corroborate the conclusion that the closure of the Central
American Seaway did not lead to expansion of the Greenland Ice
Sheet.
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Around the same time as the Central American Seaway shoaling,
Pacific water flow through the Bering Strait reversed and began to
flow northwards into the Arctic and eventually North Atlantic (c.
4.5 Ma; Marincovich, 2000; Verhoeven et al., 2011). Although for a dif-
ferent time period (3.2-3.0 Ma), Sarnthein et al. (2009) argue that
strengthening the East Greenland Current, arising from increased north-
ward Pacific water flow via the Bering Strait, is essential for Greenland
Ice Sheet expansion because it isolates the continental ice mass from
warm Atlantic waters entering the Nordic Seas from the south. Although
an East Greenland Current, similar to that of today, may have developed
around c. 4.5-4.0 Ma (Bohrmann et al.,, 1990; Schreck et al., 2013), this
also did not seem to have had an immediate effect on the Northern
Hemisphere Ice Sheet (Figs. 2, 3).

The Central American Seaway nevertheless appears to play an im-
portant role in the early Pliocene thermocline depth. A shoaling/closure
of the Central American Seaway caused a shoaling of the thermocline,
which lead to coupling of the thermocline with sea-surface tempera-
tures and increased the climate sensitivity in the Pliocene (Lariviére
et al., 2012). These authors suggest an increased sensitivity of the
early Pliocene climate system, with stronger coupling of pCO,, sea-
surface temperatures and climate, and illustrating that Pliocene climate
became more susceptible to perturbations, including changes in atmo-
spheric carbon dioxide.

6.2.3. Northern Hemisphere glaciation at c. 4.0 Ma

Around c. 4.0 Ma, MIS Gi22/Gi20 corresponds to a major sequence
boundary (Miller et al., 2005) and marks a second pronounced early
Pliocene expansion of global ice volume (Lisiecki and Raymo, 2005)
under atmospheric pCO, concentrations of 300-350 ppm (Seki et al.,
2010). The glacial expansion of MIS Gi22/Gi20 seems to be mainly
represented in the Northern Hemisphere (@ in Figs. 2, 3, 4). The glacial
expansion in Greenland, Iceland and British Columbia (Canada) around
¢. 4.0 Ma occurred at a time when uplift on Greenland (Japsen et al.,
2006) and along the norwestern European continental margin (Knies
et al.,, 2014) may have reached a critical point allowing glaciation. At
the same time, increased recovery of IRD is observed in the Iceland
Sea and off Norway, which suggests extension of the Scandinavian gla-
ciers to the coast. Sea-ice and icebergs are recorded in the Arctic Ocean
(Moran et al., 2006) and IRD from Alaska and British Columbia becomes
more frequent in the North Pacific from c. 4.2 Ma onwards, evidencing
that glaciers are present around the circum-Arctic oceans. Evidence for
the glaciation in the mountains of British Columbia and possibly also
SE Alaska is found around 4.0 Ma. Also in the Bering Sea, IRD is recorded
consistently starting before 3.8 Ma.

The early Pliocene EAIS is generally characterised by an ice mini-
mum and fluctuations in size between a full cover to a substantial re-
treat. Southern Hemisphere glacial deposits in the McMurdo Sound
drill cores (CIROS-2, DVDP-10 DVDP-11), and considerable IRD offshore
East Antarctica (Site U1361) and on the Kerguelen Plateau could corre-
spond to the glacial expansion at c. 4.0 Ma. IRD was recorded in low
frequency in Prydz Bay between 4.6 and 4.0 Ma, but this increases
considerably from 4.0 Ma onwards suggesting a shift from a retreated
Antarctic ice margin to a larger Antarctic Ice Sheet (Naish et al., 2009;
Passchier, 2011). Because a glacial erosional surface was encountered
in the ANDRILL core, probably corresponding to the 4.3 to 3.6 Ma inter-
val (Naish et al., 2009), it is not possible to assess the state of the WAIS at
that time.

Around c. 4 Ma, Brierley et al. (2009) reports a reduced meridional
sea-surface temperature gradient between the equator and the subtrop-
ics, and thus evidence for an expanded tropical warm pool. Based on
model simulations, these authors propose important poleward heat
transport and weakening of the Hadley circulation in both hemispheres
at ¢. 4 Ma (Fig. 3). In such globally warm world, it is unlikely that ice
sheets could have expanded. As a result of the frequent fluctuations of
the southern hemisphere ice sheets at this time, occurrence of warming
events (Fig. 2), and limited age control on the glacial deposits, it is

difficult to be certain of an expansion of the Antarctic Ice Sheets at
¢. 4.0 Ma. In the Northern Hemisphere, the several lines of evidence in-
dicate glaciation in Greenland, Iceland and British Columbia around c.
4.0 Ma, possibly as a result of circum-Arctic regional uplift and moun-
tain building (Japsen et al., 2006; Solgaard et al., 2013; Knies et al.,
2014). The mismatch between the warm global climate and the evi-
dence for glaciation could be the result of the poor age control on the
terrestrial records of glaciation, although the IRD record in the Norwe-
gian Sea, the major sequence boundary, and the high benthic isotope
values during MIS Gi20 are well constrained at c. 4.0 Ma. If not an
issue of age models and/or difference in resolution between Brierley
et al. (2009) and this study, possibly increased seasonality in the
Northern Hemisphere (Knowles et al., 2009) might explain the contra-
diction between an expanded tropical warm pool and glaciation in the
Northern Hemisphere at this time.

6.2.4. Other early Pliocene glaciations?

Glacial expansion during MIS Gil4 and Gi12 (3.9-3.8 Ma)—as
interpreted from the global benthic isotope stack—to a continental
ice-volume comparable or just larger than today apparently did not pro-
duce significant IRD pulses or terrestrial evidence for glaciation (Fig. 2).
Possibly glaciers and ice sheets did not reach the coast, evidence is not
yet discovered and/or has been removed by subsequent glaciations.
The absence of a major sequence boundary around that time would
rather suggest that ice volume expansion, and associated sea-level fall,
was not that large. It is true that changes in intermediate water temper-
ature may also affect the global benthic isotope record, which is not only
an expression of ice volume (e.g. Zachos et al., 2001).

6.3. Early/Late Pliocene transition (c. 3.6 Ma) marked by expansion of the
Northern Hemisphere ice sheets

The general opinion is that Northern Hemisphere glaciation devel-
oped as a gradual transition, with the onset around 3.6 Ma and leading
to the intensification around 2.7 Ma (e.g. Ravelo et al., 2004; Mudelsee
and Raymo, 2005). The gradual increase in ice volume through the
Piacenzian resulted in a glacio-eustatic sea-level lowering of c. 43 m
superimposed on short intervals of glacial expansions at c. 3.3 Ma
and 2.7 Ma, and the mid-Pliocene climate optimum (3.3-3.0 Ma)
(Mudelsee and Raymo, 2005). Several high- and low latitude sea-
surface temperature records demonstrate a gradual yet important
cooling starting around c. 3.6 Ma (e.g. Dekens et al., 2008; Lawrence
et al,, 2009; Martinez-Garcia et al., 2010; Naafs et al., 2010).

Around c. 3.6 Ma, evidence for glaciation is found mainly in the
Northern Hemisphere terrestrial and marine data. Expansions of the
Svalbard-Barents Sea Ice Sheet, and the occurrence of ice caps in Alaska,
northern and eastern Canada and Iceland are documented (® in Figs. 2,
3, 4).The suggestion of a considerable North American Ice Sheet atc. 3.5
Ma (e.g. James Bay Lowland, Canada in Gao et al., 2012) contrasts ac-
cording to Brigham-Grette et al. (2013) with the relatively high Arctic
temperatures recorded in Eastern Siberia. Also the possible presence
of boreal forest on Ellesmere Island (Csank et al., 2011a,b; Rybczynski
et al.,, 2013) during that interval seems conflicting, however the dating
of the Ellesmere Island deposits suggests an age of 3.8-3.4 Ma and,
taking the maximum error estimates into account, these deposits may
be early as well as late Pliocene (Fig. 2).

Records from the Southern Hemisphere are also somewhat contra-
dictory. A local ice cap is reported in Patagonia, but the abundant IRD
in the Ross Embayment, Prydz Bay and on the Kerguelen Plateau
might reflect the destabilisation of the EAIS margin during short-lived
warming events of the surface waters in the Southern Ocean rather
than an expansion of the ice sheet. Nevertheless, the Antarctic Ice
Sheet must have reached the coast to release the large amount of IRD re-
corded in the Southern Ocean at that time.

The evidence of glaciation cannot be tied to one or more marine iso-
tope stages in the benthic isotope stack (Lisiecki and Raymo, 2005)
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during the Gauss Chron, but they are close to the well-expressed Gilbert
Chron MIS Gi2 and/or Gi4 (c. 3.7-3.6 Ma, latest early Pliocene).

6.4. Major global glaciation at c. 3.3 Ma (MIS M2)

Late Pliocene North Atlantic sea-surface temperature records
(Lawrence et al., 2009, 2010; Naafs et al., 2010) demonstrate a 2-3 °C
decline after 3.5 Ma reaching temperatures comparable to the
present-day at around 3.3 Ma (De Schepper et al., 2013). Siberian Arctic
climate became relatively dry and cool at this time, but conditions
remained Holocene-like but not ‘glacial’ in the Quaternary sense
(Brigham-Grette et al., 2013). This led these authors to conclude that a
significant ice-sheet expansion must have occurred on Antarctica to
explain the large benthic isotope shift during MIS M2. Indeed, in the
Southern Hemisphere, MIS M2 is expressed in the termination of
warm conditions in the Ross Sea, seaward expansion of the ice shelf
beyond the Ross Sea, termination of EAIS minimum followed by cooling
of the Antarctic Ice Sheet (Naish et al., 2009; Passchier, 2011; McKay
et al,, 2012) (@ in Figs. 2, 3, 4). The Patagonian and Bolivian Andes
were also covered by an ice cap at this time (Rabassa et al., 2005; La
Frenierre et al.,, 2011). Nevertheless, our review of the terrestrial and
marine evidence demonstrates a major glacial expansion in the
Northern Hemisphere at c. 3.3 Ma, which probably can be seen best as
a transition from occasional, local glaciers and ice caps to a more
modern-like Northern Hemisphere ice configuration (@ in Figs. 2, 3,
4).1Itis the first time in the Pliocene that the Greenland Ice Sheet became
the major source of IRD at c. 3.3 Ma (Jansen et al., 2000; Kleiven et al.,
2002). The sediment records in the circum-Arctic oceans indicate that
the Greenland and also the northern Svalbard-Barents Sea Ice Sheets
extended beyond the coastline. The Icelandic Ice Sheet also increased
its size in the south-east of the island after 3.6 Ma, reflecting a step-
like expansion and evolution of mountain glaciers into one larger ice
cap (Geirsdottir, 2011). In addition, terrestrial evidence suggests the
presence of an ice cap on North America, although the timing and extent
of these glaciations is uncertain. The cooling heralded permafrost condi-
tions in the Siberian Arctic whilst the vegetation record reveals significant
cooling to conditions probably comparable to the Holocene average
(Brigham-Grette et al., 2013; Wennrich et al., 2013).

The marine and terrestrial evidence of glaciation around 3.3 Ma cor-
responds to MIS M2, a major feature in the benthic isotope stack that is
also characterised by a major sequence boundary (Figs. 2, 3). Sea-level
estimates for this glacial maximum during MIS M2 vary from >—10 m
(Wanganui section; Naish and Wilson, 2009), —40 m + 10 m
(based on the benthic isotope stack; Miller et al., 2012) and even to
—65 m + 15-25 m (Mg/Ca of ostracods; Dwyer and Chandler,
2009) compared to present. Around this time, a tectonically reduced
Indonesian Throughflow led to less pole-ward heat transport in the
Indian Ocean, a weakened Leeuwin Current and development of a
modern Antarctic Frontal system (Karas et al., 2011a,b) (Fig. 3). The es-
tablishment of such a system and consequent further thermal isolation
of the Antarctic Ice Sheet, may have facilitated cooling and expansion of
the Antarctic Ice Sheet. The mechanism for the extensive Northern
Hemisphere glaciation may be related to reduction in Pacific-to-
Atlantic flow through the Central American Seaway that lead to a
southward shift of the North Atlantic Current and polar front in the
North Atlantic (De Schepper et al., 2009, 2013). This cooled the higher
latitudes surface waters to temperatures comparable to present and
caused a major expansion of the Northern Hemisphere ice sheets,
while also the Southern Hemisphere Ice Sheet expanded.

6.5. Mid-Piacenzian Warm Period (3.27-2.97 Ma)

Modelling studies suggest that the Antarctic and Greenland ice
sheets retreated during the mid-Piacenzian Warm Period to become
considerably smaller than today (Hill et al., 2007, 2010; Dolan et al.,
2011). During this interval, the reconstructed global annual mean

temperature was 2-3 °C higher than pre-industrial levels (Haywood
et al., 2009; Dowsett et al., 2012; Lunt et al., 2012; Haywood et al.,
2013), the Arctic region was markedly warm (Brigham-Grette et al.,
2013, and references therein) and atmospheric pCO, concentrations
were in the range of 330-450 ppm (Fig. 3). Global ice volume was re-
duced as reflected in the higher than present level estimated to be
+10 to +40 m (Raymo et al., 2011), averaging around +20-25 m
(Miller et al., 2012). Nevertheless, the reconstruction of ice sheets re-
mains particularly difficult during this time.

IRD is recorded off Antarctica and glacial deposits were recovered in
the McMurdo Sound region, but Patagonia probably remained ice-free
(Fig. 2). In the Northern Hemisphere, the Siberian Arctic showed rela-
tively warm conditions, and there is no indication of extensive glacia-
tion in the terrestrial records (Fig. 2). IRD is regularly recorded in the
circum-Arctic oceans at this time, but in comparable low quantities as
in the warm early Pliocene. Modelling experiments of the Greenland
Ice Sheet during the mid-Piacenzian Warm Period indicate a smaller
Greenland Ice Sheet compared to present. They place most ice in the
mountains of East Greenland, from where it was able to expand into
more low-lying central Greenland areas (Hill et al., 2010; Dolan et al.,
2011). Interestingly, a modelling study revealed variability for both
the Greenland and Antarctic Ice Sheets due to orbital forcing. This
variability could be in anti-phase, meaning that the largest ice sheet re-
duction in Antarctica may correspond to the smallest reduction of the
Greenland Ice Sheet (Dolan et al.,, 2011).

6.6. Late Pliocene intensification of the Northern Hemisphere glaciation,
c.2.7Ma

From 3.1 Ma onwards, sea-ice expansion arising from climatic dete-
rioration is evident in the Southern Ocean (Hillenbrand and Ehrmann,
2005). Observations from the ANDRILL drill holes indicate that during
the latest Pliocene the Antarctic Ice Sheet underwent progressive
cooling, which culminated in a major cooling step and a major expan-
sion around the Pliocene-Pleistocene boundary (Naish et al., 2009). At
the same time, the Greenland, Iceland, Svalbard-Barents Sea and
Scandinavian Ice Sheets gradually expanded to reach the extensive
size typical of the late Pliocene/early Pleistocene glacial/interglacial
oscillations. In Scandinavia, glaciation remained mainly restricted to
mountain, valley or possibly fjord glaciers until c. 2.7 Ma (Jansen and
Sjoholm, 1991; Jansen et al., 2000; Kleiven et al., 2002; Sejrup et al.,
2005). This supports the interpretation of the Svalbard-Barents Sea Ice
Sheet, where a synchronous moderate IRD flux and kaolinite/illite-rich
sediment supply along its northern margin implies the occurrence of
glaciation reaching the coastline only during short-term glacial events
(Knies et al., 2014). Direct evidence of glaciation and distinct IRD pulses
in the North Atlantic (e.g. Bailey et al., 2013), Fram Strait-Barents Sea
region (Knies et al., 2009, 2014) and the mid-Norwegian margin at
2.74 Ma (Jansen et al., 2000; Kleiven et al., 2002) indicates ice-sheet
expansion on Greenland and the Scandinavian Peninsula around
. 2.72 Ma (Figs. 2, 3, 4). This expansion was thought to reflect a syn-
chronous response across the Northern Hemisphere to deteriorating cli-
mate, thus also including the North American Ice Sheet (Kleiven et al.,
2002). However, recent IRD fingerprinting in the North Atlantic indi-
cates that Greenland and Scandinavia were the major source of icebergs
until MIS G2, whereas the contribution from a North American Ice Sheet
was only found from 2.64 Ma onwards (Bailey et al., 2013). While ice
sheets existed somewhere on North America (Naafs et al., 2012), the ex-
tension of a North American Ice Sheet to the coastline and a size suffi-
ciently large to produce significant numbers of icebergs was delayed
relative to the Greenland and Scandinavian Ice Sheets (Bailey et al.,
2013). At c. 2.6 Ma, the British and Irish Ice Sheet also became a source
for IRD in the North Atlantic (Thierens et al., 2012). The later expansion
of the more southern North American Ice Sheet (and British/Irish Ice
Sheets) is in agreement with a gradual forcing resulting from decreasing
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atmospheric carbon dioxide concentrations (Deconto et al., 2008; Seki
et al., 2010; Bailey et al., 2013).

We do not intend to review mechanisms responsible for the initia-
tion of the Pleistocene glaciation, but refer to the literature for detailed
discussions (e.g. reviews in Raymo, 1994; Ravelo et al., 2007). The
debated mechanisms for intensification of Northern Hemisphere
glaciation include: the influence, delaying effect or a necessary precon-
dition of the closure of the Central American Seaway (Berger and Wefer,
1996; Haug and Tiedemann, 1998; Bartoli et al., 2005; Klocker et al.,
2005; Lunt et al., 2008a,b), changes in orbital parameters (Maslin
et al,, 1998); stratification, development of a permanent halocline and
increased seasonality in the North Pacific (Haug et al., 1999), declining
carbon dioxide levels (Lunt et al., 2008a; Pagani et al., 2009; Seki et al.,
2010; Bartoli et al., 2011), tectonic uplift of the Greenland-Scotland
Ridge (Poore et al., 2006), variation in sea-floor spreading rates
(Raymo, 1994), narrowing of the Indonesian Seaway and associated
changes in tropical Pacific oceanography (Cane and Molnar, 2001),
cooling of upwelling regions (Marlow et al., 2000), termination of
early Pliocene “permanent El Nifio conditions” (Ravelo et al., 2004),
changes in thermocline depth (Fedorov et al., 2006), and necessary tec-
tonic uplift in the circum-Arctic region (Knies et al.,, 2014). In addition,
changes in the Southern Ocean frontal system may have led to reduced
Atlantic Meridional Overturning Circulation and heat transport to high
latitudes (McKay et al., 2012).

7. Conclusions

We have compiled all available terrestrial and marine evidence for
glaciation in the Pliocene, bridging a gap between the terrestrial and
marine communities investigating Pliocene climate and cryosphere
(Figs. 2, 3). The Pliocene glacial history is mainly a history of the pro-
gressive glaciation of the circum-Arctic region, and cooling and waxing
of the EAIS and WAIS (Fig. 4). Already in the Miocene, East Antarctica
became fully glaciated, limiting further geographical expansion of conti-
nental ice sheets in the Southern Hemisphere.

Our review of the terrestrial and marine records primarily empha-
sises the paucity of terrestrial records, which sometimes have poor
age control. Nevertheless, it appears that major Pliocene glacial expan-
sion occurred on at least four different occasions (c. 4.9-4.8, 4.0, 3.6
and 3.3 Ma) prior to the intensification of the Northern Hemisphere
glaciation in the latest Pliocene. These events are exceptions in the
otherwise globally warm Pliocene, when atmospheric carbon dioxide
concentrations were still considerably higher than present, but they
may be a consequence of the increased climate sensitivity in the
Pliocene (Pagani et al., 2009; Lariviere et al., 2012). Although it is not
possible to identify the mechanism(s) causing each of the events, the
early Pliocene events (c. 4.9-4.8 and 4.0 Ma) do seem to be unrelated
to the oceanographic change due to reorganisation of the Pacific—
Atlantic gateways (Central American Seaway, Bering Strait). In contrast,
the late Pliocene glaciation in the Northern Hemisphere during MIS M2
(3.3 Ma) might in fact be caused by changes in Pacific-to-Atlantic flow
via the Central American Seaway and consequent changes in North
Atlantic surface. The direct and indirect evidence for an extensive
Northern and Southern Hemisphere glaciation around c. 3.6 Ma is not
reflected in global ice volume records. This could be an artefact of poor
age control on these records, since a major increase in global ice volume
characterises the earlier MIS Gi2 and Gi4 (3.7-3.6 Ma). It is clear that the
cause(s) for each of these events are not fully understood at present, and
requires further detailed investigation.

Anti-phasing of the Greenland and East Antarctic ice sheets has been
demonstrated by modelling studies for the mid-Piacenzian Warm
Period (Dolan et al.,, 2011). Because we reviewed data on the long-
term Pliocene time scale and accurate ages of terrestrial evidence for
glaciation are scarcely available, we could not identify any (anti-)phas-
ing of the Greenland and Antarctic Ice Sheets. Future high-resolution
studies of the marine and terrestrial realms for the four identified

Pliocene glacial events (Fig. 2) may be able to determine the synchronic-
ity of each ice-sheet expansion. For example, using geochemical finger-
printing of IRD, a delayed response of the North American Ice Sheet to
the intensification of the Northern Hemisphere glaciation has been
demonstrated (Bailey et al., 2013).

Examination of the frequency of glaciation through the Neogene in-
dicates that Southern Hemisphere glaciation, having been established
principally in Antarctica and southern South America first, occurred
continuously from the early Neogene to the present day. By contrast,
Northern Hemisphere glaciation, although initially somewhat restrict-
ed, increased markedly around the beginning of the Quaternary,
increasing again in frequency in the latest early Pleistocene and
reaching very high intensity in the middle to late Pleistocene. The
declining carbon dioxide concentrations in the atmosphere (Seki
et al., 2010), possibly in combination with necessary preconditions
(e.g. circum-Arctic tectonic uplift, Central American Seaway closure,
Bering Strait through flow), were probably ultimately responsible for
the intensification in Northern Hemisphere glaciation at the Pliocene-
Pleistocene transition. Until c. 2.8 Ma, the Pliocene is characterised
with low-amplitude glacial-interglacial oscillations, marked with only
few larger amplitude glacial events (e.g. MIS Si4/S6, G20, M2). Whilst
these Pliocene glaciations were substantial, they remained less exten-
sive than their Pleistocene counterparts, although this observation
may be biased by the incompleteness of the geological record. Under
the globally warm conditions and high atmospheric carbon dioxide
concentrations of the Pliocene, it is improbable that large Pleistocene-
like glaciations could occur in the Northern Hemisphere.
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Appendix A. Abbreviations used in text

IRD ice-rafted debris or detritus
MIS marine isotope stage
DSDP Deep Sea Drilling Project

ODP Ocean Drilling Program

I0DP Integrated Ocean Drilling Program
GIS Greenland Ice Sheet

EAIS East Antarctic Ice Sheet

WAIS West Antarctic Ice Sheet
APIS Antarctic Peninsula Ice Sheet
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