Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods

Martyn Unsworth, University of Alberta, CANADA Stéphane Rondenay, University of Bergen, NORWAY

Fluid distribution at depth is important

- changes composition of crust and mantle through metasomatism
- controls rheology, mode of deformation

	Resistivity	Seismic properties
Free water	Decreases Sensitive to salinity	Lowers velocity Changes Poisson's ratio
Hydrous minerals Source of fluids Result of metasomatism	Decreases?	Lower velocity Increased anisotropy
Anhydrous minerals H+ in olivine	Decreases Anisotropy	Lower velocity Increased anisotropy
Partial melt	Decrease	Lower velocity Attenuation Anisotropy if deformed

13.2 : Electromagnetic methods – resistivity of aqueous fluids – free water

Figure 13.1

Figure 13.4

13.2 : Electromagnetic methods - dihedral angles - free water

Dihedral angle from Holness (1993)

Interconnection of aqueous fluids may occur :

(1) In regions with low geothermal gradient

(2) Close to melting point

13.2 : Electromagnetic methods – water in nominally anhydrous minerals

Karato, Nature, 1990

Lizzeralde et al., JGR, 1995, Figure 10c

13.2 : Electromagnetic methods - partial melt

Olivine partial melt ten Grotenhuis et al., JGR (2005) 10% melt

m =1.3 in Archie's Law

Melt resistivity = $1 - 0.1 \Omega m$

Beware of non-uniqueness in geophysics!

Low resistivity : brine, melt, graphite, sulphides

High conductivity = low resistivity

13.2 : Measuring the electrical resistivity of the Earth at depth (magnetotellurics)

Figure 13.7

•Ratio of electric and magnetic fields > resistivity •Depth of investigation varies as $1/\sqrt{frequency}$

Global lightning activity

Aurora Borealis and Australis

13.2 : Measuring the electrical resistivity of the Earth at depth (magnetotellurics)

Figure 13.13 Hyndman and Shearer (1993)

Effect of free water is to -Reduce the stiffness of the rock and lower velocity -Increase or reduce Poisson's ratio (depending on aspect ratio of pores) -Increase attenuation (grain boundary sliding, liquid squirt) -Cause anisotropy

13.3 : Seismic methods - hydrous minerals

Figure 13.15

-contain water as part of chemical structure
-generally lower velocity than equivalent anhydrous mineral
-often anisotropic (antigorite P-wave = 71%; S-wave = 68%).
-macro anisotropy requires orientation by deformation

-H+ point defects in olivine

-Enhancement of anelasticity, modifies velocities

-Causes different types of olivine fabrics, development of seismic anisotropy,

13.3 : Seismic methods for imaging fluids in the deep crust and upper mantle

Seismic tomography

Energy sources : earthquakes, explosions Can use travel times and waveform inversion Fully 3-D approaches from large arrays

13.3 : Seismic methods for imaging fluids in the deep crust and upper mantle

http://gcc.asu.edu/snair/research.html

13.3 : Seismic methods for imaging fluids in the deep crust and upper mantle

Shear wave splitting – detect anisotropy

Figure by Ed Garnero, ASU

120

124

JDF plate is hot and young (6-10 Ma)

Oregon : Profile AA' Magnetotellurics : Wannamaker et al., (1989) Seismic RF : Rondenay et al., (2001)

E : fluids expelled from plate into overlying crust Channel in crust or along boundary?

A : Mantle wedge conductor. Antigorite lowers seismic velocity, but not enough. Free fluids?

Southern British Columbia (BB') Magnetotellurics : Soyer and Unsworth (2006) Seismic RF : Nicholson et al., (2005)

Water transported to depth as

-Free water in sediments and oceanic crust

-Hydrated minerals in oceanic crust and upper mantle (serpentine)

PT paths : Alaska Cascadia

Rondenay et al., 2008

Hyndman et al., GSA Today, (2005)

Is the low resistivity in back arc due to melt / aqueous fluids?

Soyer and Unsworth, Geology, 2006

Is the low resistivity in back arc due to hydrogen diffusion?

Soyer and Unsworth, Geology, 2006

Phanerozoic crust often characterized by

- -Elevated conductivity in lower crust
- -Enhanced seismic reflectivity
- -Lower velocities than predicted by measurements on dry xenoliths

13.6 : Metasomatism in the stable continental lithosphere (Archean Cratons)

Slave Craton, Canada

Chen et al., (2009)

9-21% seismic velocity reduction – hydrated minerals Resistivity decrease – graphite Subduction event at 3.5 Ga

Jones and Ferguson (2001) Decrease in resistivity at Moho (50000 – 5000 Ω m)

13.7 : Fluids generated in collision zones (arc-continent collision)

Bertrand et al., Geology, 2009

- Lishan fault conductor extends across inferred decollement
- Inconsistent with thin-skinned model
- Fluid originates in crustal root (prograde metamorphism)

13.7 : Fluids generated in collision zones (arc-continent collision)

13.7 : Fluids generated in collision zones

13.7 : Fluids generated in collision zones

Nelson et al., Science, (1996)

Magnetotelluric studies (1995 – 2001)

International Deep Profiling of Tibet and the Himalaya (INDEPTH)

•Beaumont et al., *Nature* (2002) model requires factor of 10 reduction in viscosity for crustal flow to occur

•MT data require 5-12% melt. This is consistent with a factor of 10 strength reduction.

Unsworth et al., Nature, (2005)

NLCG6 inversions using code of Rodi and Mackie (2000)

ACKNOWLEDGEMENTS

- Invitation from Dan Harlov and Tom Chacko to attend Goldschmidt meeting in 2008.
- Models and data from many colleagues.
- Funding from NSF, NSERC, DOE, US Geological Survey, Alberta Ingenuity fund and University of Alberta
- Many people who worked in the field to collect the data

