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A B S T R A C T

There is increasing interest in mining minerals on the seabed, including seafloor massive sulfide deposits that
form at hydrothermal vents. The International Seabed Authority is currently drafting a Mining Code, including
environmental regulations, for polymetallic sulfides and other mineral exploitation on the seabed in the area
beyond national jurisdictions. This paper summarizes 1) the ecological vulnerability of active vent ecosystems
and aspects of this vulnerability that remain subject to conjecture, 2) evidence for limited mineral resource
opportunity at active vents, 3) non-extractive values of active vent ecosystems, 4) precedents and international
obligations for protection of hydrothermal vents, and 5) obligations of the International Seabed Authority under
the UN Convention on the Law of the Sea for protection of the marine environment from the impacts of mining.
Heterogeneity of active vent ecosystems makes it extremely challenging to identify “representative” systems for
any regional, area-based management approach to conservation. Protection of active vent ecosystems from
mining impacts (direct and indirect) would set aside only a small fraction of the international seabed and its
mineral resources, would contribute to international obligations for marine conservation, would have non-ex-
tractive benefits, and would be a precautionary approach.

1. Introduction

Hydrothermal vent ecosystems are natural wonders of the ocean.
They exist as tiny islands in the unimaginably vast expanse of the deep
sea; they are oases of vibrant and exotic life dependent on microbes that
produce food using chemical energy through chemosynthesis. Biomass
at active vents is dominated by species that rely on venting fluids and

that can live nowhere else (Fig. 1). Active vent ecosystems are living
libraries [1], sites where the sciences, arts, and humanities gain new
knowledge and understanding at the intersection of Life and Earth
processes. They are storehouses of endemic marine genetic diversity
[2], including resources that contribute to the well-being of humans,
and they catalyze research into the possibilities for, and limits of, Life
itself.
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Active hydrothermal vents also host high-temperature (350 °C)
“black smokers” that discharge metal-rich fluids. These metals pre-
cipitate at or below the seafloor to form polymetallic (especially copper
and zinc) sulfides. Locations where metal-rich particulates accumulate
over thousands of years are of interest to an emergent, international,
deep-sea mining industry [3]. Regulations are being developed by the
International Seabed Authority for the exploitation of deep-sea man-
ganese nodules, cobalt crusts, and polymetallic sulfide deposits found in
areas beyond national jurisdiction. There is thus urgency in considering
whether ecological characteristics, international obligations, and other
insights concerning the value of active hydrothermal vent ecosystems
indicate that they should be protected, not mined.

Proposed mining of seafloor sulfide deposits will likely resemble
open-cut mining on land, with removal of ore to depths of 20–30m or
more beneath the level of the natural seafloor. Our understanding of
seabed mining concepts is derived primarily from pioneer documents
associated with the Nautilus Minerals Niugini Limited “Solwara 1

Prospect”, an area of active venting (considered to be a ‘waning’ system
based on observations by Nautilus Minerals) that supports chemosyn-
thetic communities [4]. While hydrothermal flux sustaining these
chemosynthetic communities will not cease as a result of mining, the
Environmental Impact Assessment prepared for Nautilus Minerals [5]
states that “[m]ost of the animals and their existing habitat in the path of
the SMT [Seafloor Mining Tool] are likely to be removed by mining, hence
the immediate loss at the local scale will be severe” (Chapter 9, p. 24).
Environmental impact assessments and management plans that only
require miners to avoid and minimize environmental impacts at hy-
drothermal vents where possible [6] may not afford sufficient protection;
the act of mining itself will cause severe, if not total, loss of biodiversity
at the mine site.

2. Vulnerability of active hydrothermal vent ecosystems

Active vent ecosystems are “Small Natural Features” [7] with

Fig. 1. Variation in the dominant, symbiont-hosting
invertebrates at active hydrothermal vents around
the globe. Vent communities differ widely among
biogeographic regions. A key observation not evident
in these regionally “iconic” photos is that different
vents within a region support different assemblages
of species. Eastern Pacific Ocean: (A) Giant tube-
worms (Riftia pachyptila) with limpets and anemones;
Galapagos Spreading Center; courtesy Wikimedia; B)
Tubeworms (Ridgeia piscesae) with alvinellid poly-
chaetes, Endeavour Hydrothermal Vents Marine
Protected Area, Juan de Fuca Ridge; courtesy Ocean
Networks Canada. Western Pacific Ocean: (C)
Mussels (Bathymodiolus septemdierum) and tube-
worms (Lamellibrachia sp) with lithodid crabs,
Nifonea Vent Field, New Hebrides Volcanic Arc;
courtesy ROV Kiel 6000, GEOMAR; D) Hairy
(Alviniconcha spp.) and black (Ifremeria nautilei)
snails with bythograeid crabs (Austinograea alaysae),
Tu’i Malila Vent Field, Lau Basin; courtesy Woods
Hole Oceanographic Institution. Indian Ocean: (E)
Lepadid barnacles, scaly-foot snails (Chrysomallon
squamiferum), mussels (Bathymodiolus aff. brevior),
Solitaire Vent Field, Central Indian Ridge; courtesy
JAMSTEC. Southern Ocean: (F) Yeti squat lobster
(Kiwa tyleri), East Scotia Ridge; courtesy NERC
ChEsSo Consortium. Atlantic Ocean: (G) Mussels
(Bathymodiolus azoricus) with bythograeid crabs,
Lucky Strike Vent Field, Mid-Atlantic Ridge; courtesy
IFREMER. Caribbean Sea: ( H) Swarming shrimp
(Rimicaris hybisae), Beebe Vent, Mid-Cayman Rise;
courtesy Woods Hole Oceanographic Institution.
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ecological importance disproportionate to their size [8]. Active vent
fields are located in narrow corridors along the 60,000-km-long path of
the mid-ocean ridge axis, along 10,000 km of back-arc spreading cen-
ters, and at many volcanoes belonging to the submerged portions of
volcanic arcs [9]. Most active vent sites would easily fit into a public
auditorium. Even where vent fields are “large”, the area of active vent
ecosystems is commonly over-estimated. For example, the Pacmanus
vent field in the eastern Manus Basin (Papua New Guinea), is described
as 1-km long and several hundred meters wide. In reality, Pacmanus
comprises a number of small sulfide mounds (e.g., Roman Ruins,
Fenway, Snow Cap) and many individual active vents (a few square
meters each) protruding through volcanic rocks [10], rather than a
continuous expanse of vent ecosystem. The active vent ecosystem at
TAG on the Mid-Atlantic Ridge—one of the largest known vent
fields—covers an area not much larger than about two soccer fields
(football pitches) [11]. Globally, the active vent ecosystem is a rare
habitat, comprising an estimated 50 km2, or< 0.00001% of the surface
area of the planet,1 and less than 1% of the total area of Yellowstone
National Park (USA) and its hot springs. Even if this areal extent is an
underestimate by one or even a few orders of magnitude, the scarcity of
the vent habitat is uncontroversial and places vent ecosystems at risk.

The physical, geological, and biological consequences of mining
active hydrothermal vents are uncertain, and the ability of vent eco-
systems to recover from mining is open to conjecture [12]. Although
scientific drilling is nowhere near as invasive or environmentally de-
grading as the bulk-mining envisioned by industry, the impact of sci-
entific drilling at vents provides a glimpse into the unpredictability of
responses of active vent ecosystems to major disturbances. A deep
drilling operation at the Iheya North hydrothermal field (Okinawa
Trough, Pacific Ocean) resulted in transformation of a vent-clam/soft-
sediment habitat to a crust with higher temperature flow colonized by
bacterial mat and squat lobsters [13]. In contrast, there was little per-
ceptible change in the nature of the shrimp-dominated vent ecosystem
of black smoker chimneys and the fauna of the sulfide apron at the TAG
hydrothermal mound on the Mid-Atlantic Ridge following scientific
drilling operations (ODP Leg 158; [14]). These different outcomes of
scientific drilling underscore our inability to predict ecosystem re-
sponses to anthropogenic disturbance at hydrothermal vents.

Decadal-scale recovery of vent communities following seabed vol-
canic eruptions has been documented on the East Pacific Rise [15] and
at Axial Volcano on the Juan de Fuca Ridge [16,17]. At NW Rota-1 on
the Mariana Arc, recovery has been observed on even shorter timescales
[18]. These observations are commonly used as evidence for the resi-
lience of vent ecosystems to disturbance [12,19,20]. However, these
volcanically active sites with high-disturbance regimes are not re-
presentative of active vent settings at slow-spreading mid-ocean ridges,
where large ore deposits may be found and where major disturbance
events are infrequent. Are species endemic to long-lived vent sites also
resilient? While species may recolonize an active vent site after mining
has taken place, it is not certain how much the habitability of a long-
lived site will be modified, nor how many or which species would re-
colonize, how interactions among species might be altered, or how long
recovery might take.

To predict recovery from a disturbance event, an understanding of
how populations of endemic species at these small islands are con-
nected by pelagic larval stages is essential. Even for well-studied vent
species, where genetic data suggests extensive (1000 s of km) popula-
tion connectivity on evolutionary time scales [e.g., Rimicaris exoculata
on the Mid-Atlantic Ridge [21]], life-history processes that enable local
populations to be maintained are not well understood, nor are there

reliable recruitment models. Populations of a vent species at different
sites are unlikely to contribute equally to establishment and main-
tenance of populations at other sites [22]. This inequality means that
habitat destruction and population loss from a “source” site (that sup-
plies recruits to other sites) will place “sink” sites at risk of loss of
biodiversity [8]. Mining multiple vent sites in a region may be the only
way that a company might realize a profit [3]; cumulative impacts at
the seabed and in the water column from multiple mining events would
exacerbate mining-related loss of biodiversity.

In theory, establishment of effective, replicated, representative
networks of protected areas, currently recommended as a key con-
servation effort by member States to the Convention on Biological
Diversity [23] and by the deep-sea scientific community [24,25], would
help reduce biodiversity loss resulting from mining. But in practice, it
would be challenging, if not impossible, to design replicated networks
of representative sites for active vent ecosystems, given site-to-site
differences in habitats and species assemblages in areas of the inter-
national seabed that are of interest to mining contractors. Between
oceanic regions, differences among vent faunas are on the same order as
species differences between tropical and boreal forests on different
continents [26] (Fig. 1). Even within an ocean region, few vent species
are shared across all vent sites (< 5% of the regional species list), with
most species (~ 60%) found at only one site [27]. Vent organisms are
exquisitely sensitive to nuances in fluid flux, chemical composition of
vent fluids, and temperature [28,29], to the geological setting [30], and
to biological interactions [31]. Species assemblages may differ mark-
edly from one vent site to the next in the same region because habitat
conditions are also markedly different [27,28,32,33].

Adaptation and response to such environmental drivers results in
variable distributions of species along any geological feature that hosts
hydrothermal activity [34]. Terrestrial environments such as island-
chain habitats show similar species-assembly characteristics: species
composition varies with size of an island, distance, habitat diversity
among islands, etc. [35]. An important consequence of this pattern of
natural variability in island systems is that it is difficult to designate a
“representative” ecosystem in most regions. This lack of a re-
presentative ecosystem has been well documented for active vent fields
of the northern Mid-Atlantic Ridge by the work of Desbruyeres et al.
([36]; see especially Table 4), wherein species composition and abun-
dances at the Menez Gwen, Lucky Strike, Rainbow, Broken Spur, TAG,
Snake Pit, and Logatchev active vents are compared. Striking differ-
ences among these sites are recorded in dominant species on sulfide
chimneys, at chimney bases, and in dominant accompanying species,
dominant peripheral species, and dominant carnivorous species. Im-
portant dissimilarities among the faunas of adjacent vent sites are thus
viewed as the norm, not the exception.

While vent ecosystems are visually dominated by a few abundant
species, many taxa at vents appear to be rare (comprising< 5% of the
total abundance in samples), and some are known from only one or a
few collected specimens, even where sampling efforts have been ex-
tensive (e.g., [32,4]). Rarity is likely a consequence of multiple factors
within vent ecosystems, including the scarcity of habitat, the high de-
gree of specialization to narrow niches, the disjunct nature of the ha-
bitat, and limited sampling effort. Further attention is necessary to
understand the functional role of rare species at vents and their vul-
nerability [37].

International, regional, and state regulations call for restorative
actions in degraded habitats, but there are no tested approaches to
restore or rehabilitate vent ecosystems (including the overlying water
column). Similar efforts on land or in near-shore ecosystems, such as
seagrass beds and coral reefs, demonstrate that successful restoration is
challenging in better known systems and far more tractable contexts
[38,39]. Industrial-scale, active interventions to restore hydrothermal
vents in the deep sea, even if logistically feasible, will likely be orders of
magnitude costlier per hectare than any effort on land [40]. Scientific
assessment of restoration or remediation is a critical action toward best

1 Average active vent area estimated at ~ 30m diameter; number of active vent sites
estimated at ~ 5000 [689 known vents (InterRidge Database: https://vents-data.
interridge.org/ventfields_list_all, accessed 17 June 2017) multiplied by the Baker et al.
[45] estimate that 3× to 6×more active vents exist than are currently known]; total area
of active vents = ~ 50 km2; total area of planet = 510,000,000 km2.

C.L. Van Dover et al. Marine Policy 90 (2018) 20–28

22

https://vents-data.interridge.org/ventfields_list_all
https://vents-data.interridge.org/ventfields_list_all


practices, but restoration as an environmental management tool at an
industrial scale will require years to decades (possibly more) before it
can be responsibly applied and reliable [40]. Further, given the biolo-
gical, hydrological, chemical, and physical heterogeneity of vent eco-
systems, there is no guarantee that a practice developed for one vent
ecosystem would be effective in another.

3. A limited mineral resource opportunity

The prevalence of metals in modern technology, competition for
mineral resources, rising metal prices, and acknowledgement of the
widespread societal and ecological harm caused by some land-based
mining activities fuel the search for minerals on the seabed, despite the
additional cost of extracting minerals from great oceanic depths. Part of
the rationale for exploitation of polymetallic sulfides seems to be based
on the misconception that mining seafloor massive sulfides at active
vents will contribute significantly to the global metal supply. However,
a recent assessment of the global metal resource associated with sul-
fides at hydrothermal vent sites finds this not to be the case. Based on
known and predicted vent site abundance and size along the neo-
volcanic zone of mid-ocean ridges and back-arc spreading centers, only
600 million tons of sulfide (containing ~ 30 million tons of copper and
zinc) are likely to be found at known active and inactive vents com-
bined – irrespective of their size [41]. In contrast, current land-based
mining extracts 19 million tons of copper and 12 million tons of zinc
annually [42], and the static lifetime (i.e., how long proven metal re-
serves will allow mining at current annual production) for these metals
is measured in decades. The presence of trace metals [including so-
called critical metals and even rare-earth elements [43]] at active hy-
drothermal vents is also used as an argument for mining seafloor sulfide
deposits. Yet concentrations of these metals in vent sulfides are usually
low compared to sources on land [44].

Exploration for seafloor massive sulfides in areas beyond national
jurisdiction is focused on slow- and ultra-slow spreading ridges, where
sulfide precipitates accumulate over very long durations (10–100 s of
thousands of years). At present, there are one pending and two ISA-
approved exploration contracts for polymetallic sulfides in the North
Atlantic (Fig. 2), plus another four ISA-approved exploration contracts
in the Indian Ocean. Exploration is mainly occurring along the neo-
volcanic zone, where active vent ecosystems are located. These active
vents are easy to detect by prospecting for chemical and physical
anomalies associated with plumes from black smokers in the water
column (e.g., [45]). So-called “inactive” sulfide occurrences (also re-
ferred to as dormant, extinct, or fossil vent sites), where venting has
ceased and chemosynthetic ecosystems are absent, are harder to detect,
but they may contain more metals than active vent sites. Inactive sul-
fides on older, off-axis oceanic crust are expected to be larger than those
in the axial neovolcanic zone because they have undergone a complete
formation cycle [46]. Due to their age, however, off-axis sulfides will
likely be overlain by meters or more of sediment. New geophysical tools
currently under development may allow discovery of such large, in-
active sulfide occurrences that could become viable future mining tar-
gets [47].

4. Other values of hydrothermal vent ecosystems

Protection of active hydrothermal vents may represent an oppor-
tunity cost for the mining industry, but would help maintain benefits
for others. Extensive exploitation of sulfide deposits associated with
active vent ecosystems on a regional basis could interfere with capture
of other societal benefits that might accrue from these ecosystems. Such
benefits include increased scientific knowledge about the deep ocean
and potential applications of this knowledge [48,49]. Recent examples
include electricity generated at the interface between sulfide minerals
and seawater that might be used by microorganisms to fuel cellular
metabolisms [87]; bioinspired materials and mechanical design

principles for synthetic, multilayered structural composites as protec-
tive materials, based on the shell of the scaly-foot snail [50]; and
methods to improve organ transplant preservation using the extra-
ordinary oxygen transport and delivery properties of hemoglobin from
vent tubeworms [51].

Active vent ecosystems are also valued for their genetic diversity
and for the potential for discovery of marine genetic resources.
Bioprospecting, when undertaken using non-harvest approaches, is
environmentally friendly, and there are already examples of marine
genetic resources derived from vent discoveries. These include enzymes
that function under extremes of temperature, chemistry, and pressure
(“extremozymes” developed from very small samples of vent organ-
isms) that have substantial impact on society, as well as commercial
value. The Valley UltraThin™ enzyme, which increases the efficiency of
ethanol production from cornstarch and is sourced from a deep-sea
hydrothermal vent organism, posted annual sales value of $150M
(USD) [52]. The market for enzyme products derived from all marine
genetic resources has been valued at more than $50B per year [52]. The
value of biotechnology products derived from active vent ecosystems
may compete well against the value of polymetallic sulfide ores, esti-
mated at $1B annually for each mining operation [53]. Exploration to
discover and develop biofuel, nutraceutical, biomimetic, pharmaceu-
tical, cosmetic, and other products from healthy, active vents could be
an alternative, sustainable use of vent ecosystems.

Hydrothermal vents and their ecosystems also appeal to segments of
society, generating important non-extractive use values. For example,
the private, non-profit Ocean Exploration Trust broadcasts their deep-
sea oceanographic explorations using telepresence. In 2016, live feeds
of ROVs working on the seafloor were joined by millions of viewers,
sometimes during a single dive [54,55]. James Cameron's 3-D feature
films Volcanoes of the Deep Sea (2003) and Aliens of the Deep (2005), as
well as segments of the BBC television series Blue Planet (2001), Blue
Planet 2 (2017), and Planet Earth (2006) deliver the wonder of hydro-
thermal vents to millions of children and adults in theatres, in class-
rooms, and at home. Aquaria and museums around the globe (e.g., New
York, Paris, Athens, Moscow) feature exhibits that create a sense of
place; vents represent totems for what is still unknown in natural his-
tory. Catalogs of children's books, coffee table books, and trade books
list titles devoted to or inspired by hydrothermal vents, including The
Octopus's Garden [56], Fountains of Life [57], Kira's Undersea Garden
[58], The Deep [59], Deeper than Light [60], and Alien Deep [61]. In
addition to serving as the foundation of a ‘marine wonderment’ in-
dustry, with revenues that may rival those from mineral extraction at
active vents, these products signal the existence of a type of ecosystem
that the public will never experience in situ, but has proven important
for inspiring curiosity in future generations about science, technology,
our world, and worlds beyond. It is the existence of life in active vent
ecosystems on Earth that compels astrobiologists to seek hydrothermal
activity and life on other ocean worlds, including Saturn's moon En-
celadus and Jupiter's moon Europa [62].

5. Precedents and international obligations for protection of
hydrothermal vents

Recognition of the ecological rarity and vulnerable status of active
hydrothermal vent sites is not new. Key interventions for full protection
of ecosystems at active hydrothermal vents have been enacted by sev-
eral coastal States through establishment and management of area-
based protection (Canada, Mexico, New Caledonia, Portugal, USA)
[63]. Canada recently augmented its 2003 implementation of the En-
deavour Hydrothermal Vents Marine Protected Area by announcing the
intention to protect all hydrothermal vents sites in its waters in a large
offshore area [64].

There exists a multitude of legal obligations, policy statements, and
precedents for the protection of hydrothermal vents because of their
rare and vulnerable (or “fragile”) characteristics. In 2004, the United
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Nations General Assembly (UNGA) Resolution 59/24 called for States to
manage risks to the marine biodiversity of hydrothermal vents and the
UNGA also adopted Resolution 59/25, committing States to take action
urgently to consider interim prohibitions on destructive fishing prac-
tices that have adverse impacts on vulnerable marine ecosystems in-
cluding seamounts, hydrothermal vents and cold-water corals. In the
same year, the Conference of the Parties to the Convention on
Biological Diversity (CBD), in its Decision VII/5 (paragraph 30) agreed
to the “urgent need for international cooperation and action to improve
conservation and sustainable use of biodiversity in marine areas beyond the
limits of national jurisdiction”, including through the establishment of
marine protected areas that include seamounts, hydrothermal vents,
cold-water corals, and/or other vulnerable ecosystems. UNGA
Resolution 61/105 (adopted in 2006) commits States to “protect vul-
nerable marine ecosystems, including … hydrothermal vents …, from de-
structive fishing practices, recognizing the immense importance and value of
deep sea ecosystems and the biodiversity they contain.” The Council of the

European Union requires the protection of hydrothermal vents from
bottom fishing through Council Regulation 734/2008, adopted by the
EU to implement UNGA Resolution 61/105, wherein member States are
“committed to the conservation of marine ecosystems such as … hydro-
thermal vents …”, and explicitly includes hydrothermal vents in a list of
vulnerable marine ecosystems ([65]; Article 2b). In 2008, parties to the
CBD recognized hydrothermal vents as meeting criteria for designation
as “Ecologically and Biologically Significant Areas” (EBSAs; [66,67]),
where enhanced conservation and management measures may be
needed. Provisions of the CBD related to States’ activities regarding
biodiversity protection apply beyond areas under national jurisdiction;
States that currently sponsor exploration for polymetallic sulfides in
such areas (India, Germany, France, Korea, Russia, China) are bound by
the CBD.

The multilaterally negotiated International Guidelines for the
Management of Deep-Sea Fisheries in the High Seas, adopted in 2008 to
assist States in the implementation of UN General Assembly Resolution

Fig. 2. Polymetallic sulfide blocks (each block is ≤

10 km × 10 km) approved for exploration by the
International Seabed Authority (ISA) in the north
Atlantic (yellow blocks: Russian Federation, green
blocks: France) or pending approval by the ISA
(white blocks: Poland) and the locations of known
active vent ecosystems (red stars) and inactive sul-
fide mounds (white stars). The size and distribution
of blocks is prescribed by Regulation 12
(International Seabed Authority 2010): maximum
exploration area per contract is 10,000 km2, max-
imum area after all required relinquishment during
the 15-year exploration contract is ≤ 2500 km2;
blocks must be arranged into ≥ 5 clusters, with each
cluster containing ≥ 5 contiguous blocks, all within
a rectangle not exceeding 300,000 km2, with the
longest dimension ≤ 1000 km. Additional require-
ments may apply (see Regulation 12). Background
topography is the GEBCO 30 arc-second interval grid
(www.gebco.net). (For interpretation of the refer-
ences to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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61/105 and subsequent UNGA resolutions related to managing bottom
fisheries in areas beyond national jurisdiction, list hydrothermal vents
and their endemic communities as an example of a “vulnerable marine
ecosystem” and should be protected from significant adverse impacts
caused by bottom fishing [68]. While UNGA resolutions and Interna-
tional Guidelines are not legally binding, key provisions of these in-
struments, including criteria for identifying vulnerable marine ecosys-
tems and requirements that such ecosystems be protected from
significant adverse impacts, have become binding on States in most
high seas areas through their incorporation into regulations adopted by
Regional Fisheries Management Organizations (RFMOs), which have
the legal competence to manage bottom fisheries in areas beyond na-
tional jurisdiction [69]. In 2016, the UN General Assembly reaffirmed
and strengthened the commitment of States and RFMOs to adopt and
implement regulations to protect vulnerable deep-sea ecosystems from
the adverse impacts of bottom fisheries and encouraged regulatory
bodies with competence over other activities potentially impacting such
ecosystems in areas beyond national jurisdiction (e.g., the ISA) to
consider doing the same (Resolution 71/123).

The Oslo and Paris (OSPAR) Commission for the Convention for the
Protection of the Marine Environment of the North-East Atlantic re-
commends protection and conservation of hydrothermal vent fields as
“priority habitats” [70] in the OSPAR maritime area (NE Atlantic).
OSPAR also called for “raising awareness of the importance of hydro-
thermal vents/fields occurring on oceanic ridges among relevant manage-
ment authorities, relevant actors including industry sectors and the general
public” [71]. Protection has also been accorded to vent ecosystems by
the scientific community through responsible research practices, as
outlined in the 2007 InterRidge Code of Conduct [72]. These practices
were reiterated by the OSPAR Commission for research activities in the
northeast Atlantic [73]. The UNESCO Marine World Heritage Program
also recently highlighted the Lost City vent ecosystem on the Mid-
Atlantic Ridge as one example of a site that meets criteria for out-
standing, universal value in international waters [74]. From these ac-
tions, it is evident that active hydrothermal vent ecosystems are re-
cognized through multiple international, regional, and State
interventions as natural areas in need of protection and conservation.

6. Obligations of the International Seabed Authority under the UN
Convention on the Law of the Sea

Regulation of deep-sea mining and protection of the marine en-
vironment from mining activities on the international seabed are the
responsibility of the International Seabed Authority (ISA), created
through the United Nations Convention on the Law of the Sea
(UNCLOS). The Convention was debated and drafted formally from
1973 to 1982, thus preceding by several years the discovery of active
vents [75] and black smokers [76]. Given its mandate over “all solid,
liquid, or gaseous mineral resources in situ in the Area or beneath the
seabed, including polymetallic nodules” (UNCLOS Article 133), the ISA
became, by default, the body to regulate and manage extraction of
minerals deposited at vents. In the decades since the ISA was estab-
lished, international policy and legal obligations for conservation of
biodiversity, protection of vulnerable ecosystems, and sustainable de-
velopment have evolved. It is time to ask whether active vent ecosys-
tems should be mined, rather than default to mining without discussion.

The ISA, mining contractors, and sponsoring States are required to
apply a precautionary approach to ensure effective protection for the
marine environment from harmful effects of mining (Regulations on
Prospecting and Exploration for Polymetallic Sulfides in the Area;
Regulations 33.2, 33.5) [77,78]. This requirement entails, inter alia, the
implementation of protective measures at an early stage in response to a
risk of harm, even if scientific evidence as to the specific harm remains
uncertain. These measures must be effective in ensuring the protection
of hydrothermal vent ecosystems and must be proportionate to the risk
[79]. While a moratorium on mining impacts on active vent ecosystems

may be considered a far-reaching precautionary measure by some, it is
currently the only known measure that would, with certainty, be ef-
fective in protecting ecosystems associated with active vents in ac-
cordance with UNCLOS Articles 145 and 194. Article 145 requires the
ISA to prevent “damage to the flora and fauna of the marine environment”
from deep seabed mining, and Article 194 requires States to take
measures “necessary to protect and preserve rare or fragile ecosystems as
well as the habitat of depleted, threatened or endangered species and other
forms of marine life”.

As a first step in implementing the UNCLOS obligations outlined in
Articles 145 and 194, the ISA's Mining Code for exploration calls for
application of a precautionary approach and protection of “vulnerable
marine ecosystems, in particular, hydrothermal vents…” from serious harm
(Regulations on Prospecting and Exploration for Polymetallic Sulfides in the
Area; Regulation 33) [77]. This call for protection of vulnerable marine
ecosystems is also included in draft exploitation regulations proposed
by the ISA [80] and in a parallel discussion paper on environmental
matters related to exploitation regulations [81]. Protection of active
hydrothermal vents by the marine mining sector would be consistent
with “No-Go Zones” for mining on land, where avoidance of areas
characterized by high biodiversity and endemism, rare or endangered
species, rare habitats, and intactness, is practiced [82].

The international community has recognized protection as a viable
and proportionate option for particularly vulnerable species and eco-
systems elsewhere. For example, moratoria have been applied to com-
mercial whaling [83] and to all mineral resource activities in the Ant-
arctic [84,85]. Protection of active hydrothermal vent ecosystems from
direct and indirect impacts of mining on the international seabed would
be consistent with the ISA designation of hydrothermal vents as vul-
nerable, the ISA's obligation to employ a precautionary approach, the
obligations under UNCLOS Articles 145 and 194, and the aforemen-
tioned precedents for protection of hydrothermal vents under other
international conventions. Full protection of all active hydrothermal
vents would obviate the need to make difficult and incompletely in-
formed decisions about environmental risks on a case-by-case basis,
which would be a strategy fraught with potential for first-mover ad-
vantage, regulatory capture, and politically driven decision making.
Further, protection of active vent ecosystems would be an important
contribution by ISA member States to Sustainable Development Goal
(SDG) 14, which calls for “conservation and sustainable use of oceans,
seas, and marine resources, and avoidance of significant adverse impacts”,
and would be an appropriate precautionary response. Protection of all
active vents from mining does not obviate the need for networks of
protected areas, referred as Areas of Particular Environmental Interest
(APEI) by the ISA [86]. APEIs are expected to work for broadly dis-
tributed organisms, but are likely inadequate for small, rare, and iso-
lated habitats with idiosyncratic physico-chemical environments and
with faunal assemblages endemic to and dependent on those environ-
ments.

7. Conclusion

Active hydrothermal vent ecosystems are uncommon and unusual,
colonized by endemic and mostly rare species. Though vent species and
ecosystems have been described as ecologically resilient, there remains
uncertainty and scientific debate regarding how quickly and to what
extent vent ecosystems might recover from the unprecedented damages
that could be caused by mining. Even if recovery is rapid, there is un-
certainty regarding how many vent ecosystems in a region could be
disturbed before a tipping point is reached, beyond which species be-
come extinct. Heterogeneity of habitats and species assemblages in vent
ecosystems within and among regions makes them individually—and
potentially equally—important. Active vents are recognized as vulner-
able through multiple international instruments that call for their
protection, and they provide important scientific and cultural benefits
to society. One way to apply a precautionary approach to these
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ecosystems is to protect all active vents from mining impacts, direct and
indirect. This protection in areas beyond national jurisdiction would
have non-extractive benefits and would set aside only a fraction of the
international seabed and its mineral resources. Enactment of full pro-
tection is possible through environmental regulations for the exploita-
tion of mineral resources – currently in draft – of the Mining Code of the
International Seabed Authority. If and when there is scientific evidence
that active hydrothermal vent ecosystems are not areas at risk of serious
harm from mining activities, such a moratorium should be revisited.
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