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Economic Profit

A firm uses inputs j = 1…,m to make 

products i = 1,…n.

Output levels are y1,…,yn.

Input levels are x1,…,xm.

Product prices are p1,…,pn.

Input prices are w1,…,wm.
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The Competitive Firm

The competitive firm takes all output 

prices p1,…,pn and all input prices 

w1,…,wm as given constants.
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Economic Profit

The economic profit generated by the 

production plan (x1,…,xm,y1,…,yn) is

 = + + − −p y p y w x w xn n m m1 1 1 1  .
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Economic Profit
Output and input levels are typically 

flows.

E.g. x1 might be the number of labor 

units used per hour.

And y3 might be the number of cars 

produced per hour.

Consequently, profit is typically a 

flow also; e.g. the number of dollars 

of profit earned per hour.
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Economic Profit
How do we value a firm?

Suppose the firm’s stream of 

periodic economic profits  is 0, 1, 

2, … and r is the rate of interest.

Then the present-value of the firm’s 

economic profit stream is

PV
r r

= +
+

+
+

+
 

0
1 2

21 1( )

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Economic Profit

A competitive firm seeks to maximize 

its present-value.

How?
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Economic Profit

Suppose the firm is in a short-run 

circumstance in which 

Its short-run production function is

y f x x= ( , ~ ).1 2

x x2 2 ~ .
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Economic Profit

Suppose the firm is in a short-run 

circumstance in which 

Its short-run production function is

The firm’s fixed cost is

and its profit function is

y f x x= ( , ~ ).1 2

 = − −py w x w x1 1 2 2
~ .

x x2 2 ~ .

FC w x= 2 2
~
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Short-Run Iso-Profit Lines

A $ iso-profit line contains all the 

production plans that provide a profit 

level $ .

A $ iso-profit line’s equation is

  − −py w x w x1 1 2 2
~ .
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Short-Run Iso-Profit Lines

A $ iso-profit line contains all the 

production plans that yield a profit 

level of $ .

The equation of a $ iso-profit line is

I.e.

  − −py w x w x1 1 2 2
~ .

y
w

p
x

w x

p
= +

+1
1

2 2 ~
.



13

Short-Run Iso-Profit Lines

y
w

p
x

w x

p
= +

+1
1

2 2 ~

has a slope of

+
w

p
1

and a vertical intercept of

 + w x

p
2 2
~

.
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Short-Run Iso-Profit Lines

  

  

  

y

x1

Slopes
w

p
= + 1
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Short-Run Profit-Maximization

The firm’s problem is to locate the 

production plan that attains the 

highest possible iso-profit line, given 

the firm’s constraint on choices of 

production plans.

Q: What is this constraint?
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Short-Run Profit-Maximization

The firm’s problem is to locate the 

production plan that attains the 

highest possible iso-profit line, given 

the firm’s constraint on choices of 

production plans.

Q: What is this constraint?

A:  The production function.
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Short-Run Profit-Maximization

x1

Technically

inefficient

plans

y The short-run production function and

technology set for x x2 2 ~ .

y f x x= ( , ~ )1 2
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Short-Run Profit-Maximization

x1

Slopes
w

p
= + 1

y

y f x x= ( , ~ )1 2

  

  

  
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Short-Run Profit-Maximization

x1

y

  

  

  

Slopes
w

p
= + 1

x1
*

y*
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Short-Run Profit-Maximization

x1

y

Slopes
w

p
= + 1

Given p, w1 and                 the short-run

profit-maximizing plan is  

  

x1
*

y*

x x2 2 ~ ,
( , ~ , ).

* *x x y1 2
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Short-Run Profit-Maximization

x1

y

Slopes
w

p
= + 1

Given p, w1 and                 the short-run

profit-maximizing plan is  

And the maximum

possible profit

is 

x x2 2 ~ ,
( , ~ , ).

* *x x y1 2

 .

  

x1
*

y*
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Short-Run Profit-Maximization

x1

y

Slopes
w

p
= + 1

At the short-run profit-maximizing plan, 

the slopes of the short-run production 

function and the maximal

iso-profit line are

equal.

  

x1
*

y*
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Short-Run Profit-Maximization

x1

y

Slopes
w

p
= + 1

At the short-run profit-maximizing plan, 

the slopes of the short-run production 

function and the maximal

iso-profit line are

equal.

MP
w

p

at x x y

1
1

1 2

=

( , ~ , )
* *

  

x1
*

y*



24

Short-Run Profit-Maximization

MP
w

p
p MP w1

1
1 1=   =

p MP 1 is the marginal revenue product of

input 1, the rate at which revenue increases

with the amount used of input 1.

If                      then profit increases with x1.

If                      then profit decreases with x1.

p MP w 1 1

p MP w 1 1
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Short-Run Profit-Maximization; 

A Cobb-Douglas Example
Suppose the short-run production

function is y x x= 1
1/3

2
1/3~ .

The marginal product of the variable

input 1 is
MP

y

x
x x1

1
1

2 3
2
1/31

3
= = −



/ ~ .

The profit-maximizing condition is

MRP p MP
p

x x w1 1 1
2 3

2
1/3

1
3

=  = =−
( ) ~ .

* /
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Short-Run Profit-Maximization; 

A Cobb-Douglas Example
p

x x w
3

1
2 3

2
1/3

1( ) ~* /− =Solving for x1 gives

( )
~

.
* /x

w

px
1

2 3 1

2
1/3

3− =
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Short-Run Profit-Maximization; 

A Cobb-Douglas Example
p

x x w
3

1
2 3

2
1/3

1( ) ~* /− =Solving for x1 gives

( )
~

.
* /x

w

px
1

2 3 1

2
1/3

3− =

That is,
( )

~
* /x

px

w
1

2 3 2
1/3

13
=
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Short-Run Profit-Maximization; 

A Cobb-Douglas Example
p

x x w
3

1
2 3

2
1/3

1( ) ~* /− =Solving for x1 gives

( )
~

.
* /x

w

px
1

2 3 1

2
1/3

3− =

That is,
( )

~
* /x

px

w
1

2 3 2
1/3

13
=

so x
px

w

p

w
x1

2
1/3

1

3 2

1

3 2

2
1/2

3 3

*

/ /~
~ .=











 =










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Short-Run Profit-Maximization; 

A Cobb-Douglas Example

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=








 is the firm’s

short-run demand

for input 1 when the level of input 2 is 

fixed at       units. ~x2
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Short-Run Profit-Maximization; 

A Cobb-Douglas Example

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=








 is the firm’s

short-run demand

for input 1 when the level of input 2 is 

fixed at       units. ~x2

The firm’s short-run output level is thus

y x x
p

w
x* *

( ) ~ ~ .= =








1

1/3
2
1/3

1

1/2

2
1/2

3
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Comparative Statics of Short-

Run Profit-Maximization

What happens to the short-run profit-

maximizing production plan as the 

output price p changes?
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Comparative Statics of Short-

Run Profit-Maximization

y
w

p
x

w x

p
= +

+1
1

2 2 ~
The equation of a short-run iso-profit line

is

so an increase in p causes

-- a reduction in the slope, and

-- a reduction in the vertical intercept.
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Comparative Statics of Short-

Run Profit-Maximization

x1

  

  

  

Slopes
w

p
= + 1

y

y f x x= ( , ~ )1 2

x1
*

y*
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Comparative Statics of Short-

Run Profit-Maximization

x1

Slopes
w

p
= + 1

y

y f x x= ( , ~ )1 2

x1
*

y*
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Comparative Statics of Short-

Run Profit-Maximization

x1

Slopes
w

p
= + 1

y

y f x x= ( , ~ )1 2

x1
*

y*
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Comparative Statics of Short-

Run Profit-Maximization
An increase in p, the price of the 

firm’s output, causes

–an increase in the firm’s output 

level (the firm’s supply curve 

slopes upward), and

–an increase in the level of the 

firm’s variable input (the firm’s 

demand curve for its variable input 

shifts outward).
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Comparative Statics of Short-

Run Profit-Maximization

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=










The Cobb-Douglas example:   When

then the firm’s short-run

demand for its variable input 1 is

y x x= 1
1/3

2
1/3~

y
p

w
x* ~ .=











3 1

1/2

2
1/2

and its short-run

supply is
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Comparative Statics of Short-

Run Profit-Maximization
The Cobb-Douglas example:   When

then the firm’s short-run

demand for its variable input 1 is

y x x= 1
1/3

2
1/3~

x1
* increases as p increases.

and its short-run

supply is

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=










y
p

w
x* ~ .=











3 1

1/2

2
1/2
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Comparative Statics of Short-

Run Profit-Maximization
The Cobb-Douglas example:   When

then the firm’s short-run

demand for its variable input 1 is

y x x= 1
1/3

2
1/3~

y* increases as p increases.

and its short-run

supply is

x1
* increases as p increases.

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=










y
p

w
x* ~ .=











3 1

1/2

2
1/2
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Comparative Statics of Short-

Run Profit-Maximization

What happens to the short-run profit-

maximizing production plan as the 

variable input price w1 changes?
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Comparative Statics of Short-

Run Profit-Maximization

y
w

p
x

w x

p
= +

+1
1

2 2 ~
The equation of a short-run iso-profit line

is

so an increase in w1 causes

-- an increase in the slope, and

-- no change to the vertical intercept.
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Comparative Statics of Short-

Run Profit-Maximization

x1

  

  

  

Slopes
w

p
= + 1

y

y f x x= ( , ~ )1 2

x1
*

y*
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Comparative Statics of Short-

Run Profit-Maximization

x
1

Slopes
w

p
= + 1

y

y f x x= ( , ~ )1 2

x1
*

y*

  

  

  
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Comparative Statics of Short-

Run Profit-Maximization

x
1

Slopes
w

p
= + 1

y

y f x x= ( , ~ )1 2

x1
*

y*

  

  

  
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Comparative Statics of Short-

Run Profit-Maximization
An increase in w1, the price of the 

firm’s variable input, causes

–a decrease in the firm’s output 

level (the firm’s supply curve 

shifts inward), and

–a decrease in the level of the firm’s 

variable input (the firm’s demand 

curve for its variable input slopes 

downward).
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Comparative Statics of Short-

Run Profit-Maximization

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=










The Cobb-Douglas example:   When

then the firm’s short-run

demand for its variable input 1 is

y x x= 1
1/3

2
1/3~

y
p

w
x* ~ .=











3 1

1/2

2
1/2

and its short-run

supply is
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Comparative Statics of Short-

Run Profit-Maximization

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=










The Cobb-Douglas example:   When

then the firm’s short-run

demand for its variable input 1 is

y x x= 1
1/3

2
1/3~

x1
* decreases as w1 increases.

y
p

w
x* ~ .=











3 1

1/2

2
1/2

and its short-run

supply is
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Comparative Statics of Short-

Run Profit-Maximization

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=










The Cobb-Douglas example:   When

then the firm’s short-run

demand for its variable input 1 is

y x x= 1
1/3

2
1/3~

x1
* decreases as w1 increases.

y*
decreases as w1 increases.

y
p

w
x* ~ .=











3 1

1/2

2
1/2

and its short-run

supply is
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Long-Run Profit-Maximization

Now allow the firm to vary both input 

levels.

Since no input level is fixed, there 

are no fixed costs.
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Long-Run Profit-Maximization

Both x1 and x2 are variable.

Think of the firm as choosing the 

production plan that maximizes 

profits for a given value of x2, and 

then varying x2 to find the largest 

possible profit level.
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Long-Run Profit-Maximization

y
w

p
x

w x

p
= +

+1
1

2 2

The equation of a long-run iso-profit line

is

so an increase in x2 causes

-- no change to the slope, and

-- an increase in the vertical intercept.
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Long-Run Profit-Maximization

x1

y

y f x x= ( , )1 2
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Long-Run Profit-Maximization

x1

y

y f x x= ( , )1 22

y f x x= ( , )1 2

y f x x= ( , )1 23

Larger levels of input 2 increase the

productivity of input 1.
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Long-Run Profit-Maximization

x1

y

y f x x= ( , )1 22

y f x x= ( , )1 2

y f x x= ( , )1 23

Larger levels of input 2 increase the

productivity of input 1.

The marginal product

of input 2 is

diminishing.
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Long-Run Profit-Maximization

x1

y

y f x x= ( , )1 22

y f x x= ( , )1 2

y f x x= ( , )1 23

Larger levels of input 2 increase the

productivity of input 1.

The marginal product

of input 2 is

diminishing.
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Long-Run Profit-Maximization

x1

y

y f x x= ( , )1 22

y f x x= ( , )1 2

y f x x= ( , )1 23

y x*
( )2

x x1 2
*
( )

x x1 22
*
( )

x x1 23
*
( )

y x*
( )2 2

y x*
( )3 2

p MP w − =1 1 0 for each short-run

production plan.
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Long-Run Profit-Maximization

x1

y

y f x x= ( , )1 22

y f x x= ( , )1 2

y f x x= ( , )1 23

The marginal product

of input 2 is

diminishing so ...

y x*
( )2

x x1 2
*
( )

x x1 22
*
( )

x x1 23
*
( )

y x*
( )2 2

y x*
( )3 2

for each short-run

production plan.

p MP w − =1 1 0
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Long-Run Profit-Maximization

x1

y

y f x x= ( , )1 22

y f x x= ( , )1 2

y f x x= ( , )1 23

the marginal profit

of input 2 is

diminishing.

   

y*( ¢ x 2)

x x1 2
*
( )

x x1 22
*
( )

x x1 23
*
( )

   

y*(2 ¢ x 2)

   

y*(3 ¢ x 2)

for each short-run

production plan.

p MP w − =1 1 0
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Long-Run Profit-Maximization

Profit will increase as x2 increases so 

long as the marginal profit of input 2

The profit-maximizing level of input 2 

therefore satisfies

p MP w − 2 2 0.

p MP w − =2 2 0.
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Long-Run Profit-Maximization

Profit will increase as x2 increases so 

long as the marginal profit of input 2

The profit-maximizing level of input 2 

therefore satisfies

And                            is satisfied in 

any short-run, so ...

p MP w − =1 1 0

p MP w − 2 2 0.

p MP w − =2 2 0.
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Long-Run Profit-Maximization

The input levels of the long-run 

profit-maximizing plan satisfy

That is, marginal revenue equals 

marginal cost for all inputs.

p MP w − =2 2 0.p MP w − =1 1 0 and
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Long-Run Profit-Maximization

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=










The Cobb-Douglas example:   When

then the firm’s short-run

demand for its variable input 1 is

y x x= 1
1/3

2
1/3~

y
p

w
x* ~ .=











3 1

1/2

2
1/2

and its short-run

supply is

Short-run profit is therefore …
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Long-Run Profit-Maximization
 = − −

=








 −









 −

py w x w x

p
p

w
x w

p

w
x w x

* *

/

~

~ ~ ~

1 1 2 2

1

1/2

2
1/2

1
1

3 2

2
1/2

2 2
3 3
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Long-Run Profit-Maximization
 = − −

=








 −









 −

=








 −









 −

py w x w x

p
p

w
x w

p

w
x w x

p
p

w
x w

p

w

p

w
w x

* *

/

~

~ ~ ~

~ ~

1 1 2 2

1

1/2

2
1/2

1
1

3 2

2
1/2

2 2

1

1/2

2
1/2

1
1 1

1/2

2 2

3 3

3 3 3
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Long-Run Profit-Maximization
 = − −

=








 −









 −

=








 −









 −

=








 −

py w x w x

p
p

w
x w

p

w
x w x

p
p

w
x w

p

w

p

w
w x

p p

w
x w x

* *

/

~

~ ~ ~

~ ~

~ ~

1 1 2 2

1

1/2

2
1/2

1
1

3 2

2
1/2

2 2

1

1/2

2
1/2

1
1 1

1/2

2 2

1

1/2

2
1/2

2 2

3 3

3 3 3

2

3 3
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Long-Run Profit-Maximization
 = − −

=








 −









 −

=








 −









 −

=








 −

=












py w x w x

p
p

w
x w

p

w
x w x

p
p

w
x w

p

w

p

w
w x

p p

w
x w x

p

w
x

* *

/

~

~ ~ ~

~ ~

~ ~

~

1 1 2 2
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Long-Run Profit-Maximization

 =










 −

4

27

3

1

1/2

2
1/2

2 2
p

w
x w x~ ~ .

What is the long-run profit-maximizing

level of input 2?  Solve

0
1

2

4

272

3

1

1/2

2
1/2

2= =










 −−




~

~

x

p

w
x w

to get ~ .
*x x

p

w w
2 2

3

1 2
2

27
= =
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Long-Run Profit-Maximization

What is the long-run profit-maximizing

input 1 level?  Substitute

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=








x

p

w w
2

3

1 2
2

27

* = into

to get
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Long-Run Profit-Maximization

What is the long-run profit-maximizing

input 1 level?  Substitute

x
p

w
x1

1

3 2

2
1/2

3

*
/

~=








x

p

w w
2

3

1 2
2

27

* = into

to get

x
p

w

p

w w

p

w w
1

1

3 2 3

1 2
2

1/2
3

1
2

2
3 27 27

*
/

.=




















 =
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Long-Run Profit-Maximization

What is the long-run profit-maximizing

output level?  Substitute

x
p

w w
2

3

1 2
2

27

* = into

to get

y
p

w
x* ~=











3 1

1/2

2
1/2
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Long-Run Profit-Maximization

What is the long-run profit-maximizing

output level?  Substitute

x
p

w w
2

3

1 2
2

27

* = into

to get

y
p

w

p

w w

p

w w

*
.=





















 =

3 27 91

1/2 3

1 2
2

1/2
2

1 2

y
p

w
x* ~=











3 1

1/2

2
1/2



72

Long-Run Profit-Maximization

So given the prices p, w1 and w2, and

the production function y x x= 1
1/3

2
1/3

the long-run profit-maximizing production

plan is

( , , ) , , .
* * *x x y

p

w w

p

w w

p

w w
1 2

3

1
2

2

3

1 2
2

2

1 227 27 9
=












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Returns-to-Scale and Profit-

Maximization

If a competitive firm’s technology 

exhibits decreasing returns-to-scale 

then the firm has a single long-run 

profit-maximizing production plan.
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Returns-to Scale and Profit-

Maximization

x

y

y f x= ( )

y*

x*

Decreasing

returns-to-scale
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Returns-to-Scale and Profit-

Maximization

If a competitive firm’s technology 

exhibits exhibits increasing returns-

to-scale then the firm does not have 

a profit-maximizing plan.
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Returns-to Scale and Profit-

Maximization

x

y

y f x= ( )

y”

x’

Increasing

returns-to-scale

y’

x”
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Returns-to-Scale and Profit-

Maximization

So an increasing returns-to-scale 

technology is inconsistent with firms 

being perfectly competitive.
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Returns-to-Scale and Profit-

Maximization

What if the competitive firm’s 

technology exhibits constant 

returns-to-scale?
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Returns-to Scale and Profit-

Maximization

x

y

y f x= ( )

y”

x’

Constant

returns-to-scaley’

x”
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Returns-to Scale and Profit-

Maximization

So if any production plan earns a 

positive profit, the firm can double 

up all inputs to produce twice the 

original output and earn twice the 

original profit.
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Returns-to Scale and Profit-

Maximization

Therefore, when a firm’s technology 

exhibits constant returns-to-scale, 

earning a positive economic profit is 

inconsistent with firms being 

perfectly competitive.

Hence constant returns-to-scale 

requires that competitive firms earn 

economic profits of zero.
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Returns-to Scale and Profit-

Maximization

x

y

y f x= ( )

y”

x’

Constant

returns-to-scaley’

x”

 = 0
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Revealed Profitability

Consider a competitive firm with a 

technology that exhibits decreasing 

returns-to-scale.

For a variety of output and input 

prices we observe the firm’s choices 

of production plans.

What can we learn from our 

observations?
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Revealed Profitability

If a production plan (x’,y’) is chosen 

at prices (w’,p’) we deduce that the 

plan (x’,y’) is revealed to be profit-

maximizing for the prices (w’,p’).
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Revealed Profitability

x

y

Slope
w

p
=





x

y

( , ) x y is chosen at prices ( , ) w p
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Revealed Profitability

x

y
is chosen at prices             so

is profit-maximizing at these prices.

Slope
w

p
=





x

y

( , ) x y ( , ) w p

( , ) x y
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Revealed Profitability

x

y
is chosen at prices             so

is profit-maximizing at these prices.

Slope
w

p
=





x

y

( , ) x y ( , ) w p

( , ) x y

x

y ( , ) x y would give higher

profits, so why is it not

chosen?
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Revealed Profitability

x

y
is chosen at prices             so

is profit-maximizing at these prices.

Slope
w

p
=





x

y

( , ) x y ( , ) w p

( , ) x y

x

y ( , ) x y would give higher

profits, so why is it not

chosen?  Because it is

not a feasible plan.
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Revealed Profitability

x

y
is chosen at prices             so

is profit-maximizing at these prices.

Slope
w

p
=





x

y

( , ) x y ( , ) w p

( , ) x y

x

y ( , ) x y would give higher

profits, so why is it not

chosen?  Because it is

not a feasible plan.

So the firm’s technology set must lie under the

iso-profit line.
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Revealed Profitability

x

y
is chosen at prices             so

is profit-maximizing at these prices.

Slope
w

p
=





x

y

( , ) x y ( , ) w p

( , ) x y

x

y

So the firm’s technology set must lie under the

iso-profit line.

The technology

set is somewhere

in here
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Revealed Profitability

x

y
is chosen at prices                so

maximizes profit at these prices.

( , ) x y ( , ) w p

y

x

Slope
w

p
=





x

y

( , ) x y

would provide higher

profit but it is not chosen

( , ) x y
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Revealed Profitability

x

y
is chosen at prices                so

maximizes profit at these prices.

( , ) x y ( , ) w p

y

x x

y

( , ) x y

would provide higher

profit but it is not chosen

because it is not feasible

( , ) x y

Slope
w

p
=







93

Revealed Profitability

x

y
is chosen at prices                so

maximizes profit at these prices.

( , ) x y ( , ) w p

y

x x

y

( , ) x y

would provide higher

profit but it is not chosen

because it is not feasible so

the technology set lies under

the iso-profit line.

( , ) x y

Slope
w

p
=




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Revealed Profitability

x

y
is chosen at prices                so

maximizes profit at these prices.

( , ) x y ( , ) w p

y

x x

y

( , ) x y

Slope
w

p
=





The technology set is

also somewhere in

here.
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Revealed Profitability

x

y

y

x x

y

The firm’s technology set must lie under

both iso-profit lines
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Revealed Profitability

x

y

y

x x

y

The firm’s technology set must lie under

both iso-profit lines

The technology set

is somewhere

in this intersection
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Revealed Profitability

Observing more choices of 

production plans by the firm in 

response to different prices for its 

input and its output gives more 

information on the location of its 

technology set.
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Revealed Profitability

x

y

y

x x

y

The firm’s technology set must lie under

all the iso-profit lines

y

x

( , ) w p

( , ) w p
( , ) w p
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Revealed Profitability

x

y

y

x x

y

The firm’s technology set must lie under

all the iso-profit lines

y

x

( , ) w p

( , ) w p
( , ) w p
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Revealed Profitability

x

y

y

x x

y

The firm’s technology set must lie under

all the iso-profit lines

y

x

( , ) w p

( , ) w p
( , ) w p

y f x= ( )
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Revealed Profitability

What else can be learned from the 

firm’s choices of profit-maximizing 

production plans?



102

Revealed Profitability

x

y

y

x x

y

The firm’s technology set must lie under

all the iso-profit lines
( , ) w p

( , ) w p

is chosen at prices

so

( , ) x y

( , ) w p
  −      −  p y w x p y w x .

is chosen at prices

so

( , ) x y

( , ) w p
  −      −  p y w x p y w x .
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Revealed Profitability

   

¢ p ¢ y - ¢ w ¢ x ³ ¢ p ¢ ¢ y - ¢ w ¢ ¢ x 

   

¢ ¢ p ¢ ¢ y - ¢ ¢ w ¢ ¢ x ³ ¢ ¢ p ¢ y - ¢ ¢ w ¢ x 

and

so

   

¢ p ¢ y - ¢ w ¢ x ³ ¢ p ¢ ¢ y - ¢ w ¢ ¢ x 

   

- ¢ ¢ p ¢ y + ¢ ¢ w ¢ x ³ - ¢ ¢ p ¢ ¢ y + ¢ ¢ w ¢ ¢ x .

and

Adding gives

   

( ¢ p - ¢ ¢ p ) ¢ y - ( ¢ w - ¢ ¢ w ) ¢ x ³

( ¢ p - ¢ ¢ p ) ¢ ¢ y - ( ¢ w - ¢ ¢ w ) ¢ ¢ x .
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Revealed Profitability
( ) ( )

( ) ( )

 −   −  −   

 −   −  −  

p p y w w x

p p y w w x
so

( )( ) ( )( ) −   −    −   − p p y y w w x x

That is,
   p y w x

is a necessary implication of profit-

maximization.
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Revealed Profitability
   p y w x

is a necessary implication of profit-

maximization.

Suppose the input price does not change.

Then w = 0 and profit-maximization

implies                       ; i.e., a competitive

firm’s output supply curve cannot slope

downward.

 p y  0
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Revealed Profitability
   p y w x

is a necessary implication of profit-

maximization.

Suppose the output price does not change.

Then p = 0 and profit-maximization

implies                        ; i.e., a competitive

firm’s input demand curve cannot slope

upward.

0   w x
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Cost Minimization

A firm is a cost-minimizer if it 

produces any given output level y  0 

at smallest possible total cost.

c(y) denotes the firm’s smallest 

possible total cost for producing y 

units of output.

c(y) is the firm’s total cost function.
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Cost Minimization

When the firm faces given input 

prices w = (w1,w2,…,wn) the total cost 

function will be written as

c(w1,…,wn,y).
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The Cost-Minimization Problem

Consider a firm using two inputs to 

make one output.

The production function is

y = f(x1,x2).

Take the output level y  0 as given.

Given the input prices w1 and w2, the 

cost of an input bundle (x1,x2) is       

w1x1 + w2x2.
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The Cost-Minimization Problem

For given w1, w2 and y, the firm’s 

cost-minimization problem is to 

solve min
,x x

w x w x
1 2 0

1 1 2 2


+

subject to f x x y( , ) .1 2 =
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The Cost-Minimization Problem

The levels x1*(w1,w2,y) and x1*(w1,w2,y) 

in the least-costly input bundle are the 

firm’s conditional demands for inputs 

1 and 2.

The (smallest possible) total cost for 

producing y output units is therefore

c w w y w x w w y

w x w w y

( , , ) ( , , )

( , , ).

*

*

1 2 1 1 1 2

2 2 1 2

=

+
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Conditional Input Demands

Given w1, w2 and y, how is the least 

costly input bundle located?

And how is the total cost function 

computed?
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Iso-cost Lines

A curve that contains all of the input 

bundles that cost the same amount 

is an iso-cost curve.

E.g., given w1 and w2, the $100 iso-

cost line has the equation
w x w x1 1 2 2 100+ = .
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Iso-cost Lines

Generally, given w1 and w2, the 

equation of the $c iso-cost line is

i.e.

Slope is - w1/w2.

x
w

w
x

c

w
2

1

2
1

2

= − + .

w x w x c1 1 2 2+ =
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Iso-cost Lines

c’  w1x1+w2x2

c”  w1x1+w2x2

c’ < c”

x1

x2
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Iso-cost Lines

c’  w1x1+w2x2

c”  w1x1+w2x2

c’ < c”

x1

x2 Slopes = -w1/w2.
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The y’-Output Unit Isoquant

x1

x2 All input bundles yielding y’ units

of output.  Which is the cheapest?

f(x1,x2)  y’
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The Cost-Minimization Problem

x1

x2 All input bundles yielding y’ units

of output.  Which is the cheapest?

f(x1,x2)  y’
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The Cost-Minimization Problem

x1

x2 All input bundles yielding y’ units

of output.  Which is the cheapest?

f(x1,x2)  y’
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The Cost-Minimization Problem

x1

x2 All input bundles yielding y’ units

of output.  Which is the cheapest?

f(x1,x2)  y’
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The Cost-Minimization Problem

x1

x2 All input bundles yielding y’ units

of output.  Which is the cheapest?

f(x1,x2)  y’

x1*

x2*
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The Cost-Minimization Problem

x1

x2

f(x1,x2)  y’

x1*

x2*

At an interior cost-min input bundle:

(a)                       f x x y( , )
* *
1 2 = 
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The Cost-Minimization Problem

x1

x2

f(x1,x2)  y’

x1*

x2*

At an interior cost-min input bundle:

(a)                       and

(b) slope of isocost = slope of

isoquant

f x x y( , )
* *
1 2 = 
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The Cost-Minimization Problem

x1

x2

f(x1,x2)  y’

x1*

x2*

At an interior cost-min input bundle:

(a)                       and

(b) slope of isocost = slope of

isoquant; i.e.

f x x y( , )
* *
1 2 = 

− = = −
w

w
TRS

MP

MP
at x x1

2

1

2
1 2( , ).
* *
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A Cobb-Douglas Example of 

Cost Minimization

A firm’s Cobb-Douglas production 

function is

Input prices are w1 and w2.

What are the firm’s conditional input 

demand functions?

y f x x x x= =( , ) .
/ /

1 2 1
1 3

2
2 3
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A Cobb-Douglas Example of 

Cost Minimization

At the input bundle (x1*,x2*) which minimizes

the cost of producing y output units:

(a)

(b) 

y x x= ( ) ( )
* / * /
1

1 3
2

2 3
and

− = − = −

= −

−

−

w

w

y x

y x

x x

x x

x

x

1

2

1

2

1
2 3

2
2 3

1
1 3

2
1 3

2

1

1 3

2 3

2

 

 

/

/

( / )( ) ( )

( / )( ) ( )

.

* / * /

* / * /

*

*
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A Cobb-Douglas Example of 

Cost Minimization
y x x= ( ) ( )

* / * /
1

1 3
2

2 3 w

w

x

x

1

2

2

12
=

*

*
.(a) (b)
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A Cobb-Douglas Example of 

Cost Minimization
y x x= ( ) ( )

* / * /
1

1 3
2

2 3 w

w

x

x

1

2

2

12
=

*

*
.(a) (b)

From (b), x
w

w
x2

1

2
1

2* *
.=
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A Cobb-Douglas Example of 

Cost Minimization
y x x= ( ) ( )

* / * /
1

1 3
2

2 3 w

w

x

x

1

2

2

12
=

*

*
.(a) (b)

From (b), x
w

w
x2

1

2
1

2* *
.=

Now substitute into (a) to get

y x
w

w
x=









( )

* / *
/

1
1 3 1

2
1

2 3
2
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A Cobb-Douglas Example of 

Cost Minimization
y x x= ( ) ( )

* / * /
1

1 3
2

2 3 w

w

x

x

1

2

2

12
=

*

*
.(a) (b)

From (b), x
w

w
x2

1

2
1

2* *
.=

Now substitute into (a) to get

y x
w

w
x

w

w
x=









 =









( ) .

* / *
/ /

*
1

1 3 1

2
1

2 3
1

2

2 3

1
2 2
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A Cobb-Douglas Example of 

Cost Minimization
y x x= ( ) ( )

* / * /
1

1 3
2

2 3 w

w

x

x

1

2

2

12
=

*

*
.(a) (b)

From (b), x
w

w
x2

1

2
1

2* *
.=

Now substitute into (a) to get

y x
w

w
x

w

w
x=









 =









( ) .

* / *
/ /

*
1

1 3 1

2
1

2 3
1

2

2 3

1
2 2

x
w

w
y1

2

1

2 3

2

*
/

=








So is the firm’s conditional

demand for input 1.
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A Cobb-Douglas Example of 

Cost Minimization

x
w

w
x2

1

2
1

2* *= x
w

w
y1

2

1

2 3

2

*
/

=










is the firm’s conditional demand for input 2.

Since and

x
w

w

w

w
y

w

w
y2

1

2

2

1

2 3
1

2

1 3
2

2

2*
/ /

=








 =










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A Cobb-Douglas Example of 

Cost Minimization

So the cheapest input bundle yielding y 

output units is

( )x w w y x w w y

w

w
y

w

w
y

1 1 2 2 1 2

2

1

2 3
1

2

1 3

2

2

* *

/ /

( , , ), ( , , )

, .=

































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Fixed w1 and w2.

Conditional Input Demand Curves

y
y
y
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Fixed w1 and w2.

Conditional Input Demand Curves

x y1
*
( )

x y2
*

( )
y

y
y

y

y

x y2
*

( )

x y1
*
( )

x2
*

x1
*

y

y
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Fixed w1 and w2.

Conditional Input Demand Curves

x y1
*
( )

x y1
*
( )

x y2
*

( )

x y2
*

( )
y

y
y

y

y

y

y

x y2
*

( )

x y2
*

( )

x y1
*
( )

x y1
*
( )

x2
*

x1
*

y

y
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Fixed w1 and w2.

Conditional Input Demand Curves

x y1
*
( )

x y2
*

( )

x y1
*
( )

x y1
*
( )

x y2
*

( )

x y2
*

( )
y

y
y

y

y

y

y

y

y

x y2
*

( )

x y2
*

( )

x y2
*

( )

x y1
*
( )

x y1
*
( )

x y1
*
( )

x2
*

x1
*

y

y
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Fixed w1 and w2.

Conditional Input Demand Curves

x y1
*
( )

x y2
*

( )

x y1
*
( )

x y1
*
( )

x y2
*

( )

x y2
*

( )

output

expansion

path

y
y
y

x y2
*

( )

x y2
*

( )

x y2
*

( )

x y1
*
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x y1
*
( )

x y1
*
( )

y

y

y

y

y

y

x2
*

x1
*

y

y
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Fixed w1 and w2.

Conditional Input Demand Curves

x y1
*
( )

x y2
*

( )

x y1
*
( )

x y1
*
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x y2
*
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*
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output

expansion

path

y
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y

y

y

x y2
*
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*
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A Cobb-Douglas Example of 

Cost Minimization

For the production function

the cheapest input bundle yielding y output 

units is

( )x w w y x w w y

w

w
y

w

w
y

1 1 2 2 1 2

2

1

2 3
1

2

1 3

2

2

* *

/ /

( , , ), ( , , )

, .=








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
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

















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A Cobb-Douglas Example of 

Cost Minimization
So the firm’s total cost function is

c w w y w x w w y w x w w y( , , ) ( , , ) ( , , )
* *

1 2 1 1 1 2 2 2 1 2= +
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A Cobb-Douglas Example of 

Cost Minimization
So the firm’s total cost function is

c w w y w x w w y w x w w y

w
w

w
y w

w

w
y

( , , ) ( , , ) ( , , )
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
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


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A Cobb-Douglas Example of 

Cost Minimization
So the firm’s total cost function is

c w w y w x w w y w x w w y

w
w

w
y w

w

w
y

w w y w w y
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
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A Cobb-Douglas Example of 

Cost Minimization

c w w y w x w w y w x w w y

w
w

w
y w

w

w
y

w w y w w y

w w
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So the firm’s total cost function is



145

A Perfect Complements Example 

of Cost Minimization

The firm’s production function is

Input prices w1 and w2 are given.

What are the firm’s conditional 

demands for inputs 1 and 2?

What is the firm’s total cost 

function? 

y x x= min{ , }.4 1 2
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A Perfect Complements Example 

of Cost Minimization

x1

x2

min{4x1,x2}  y’

4x1 = x2
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A Perfect Complements Example 

of Cost Minimization

x1

x2 4x1 = x2

min{4x1,x2}  y’
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A Perfect Complements Example 

of Cost Minimization

x1

x2 4x1 = x2

min{4x1,x2}  y’

Where is the least costly

input bundle yielding

y’ output units?
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A Perfect Complements Example 

of Cost Minimization

x1

x2

x1*

= y/4

x2* = y

4x1 = x2

min{4x1,x2}  y’

Where is the least costly

input bundle yielding

y’ output units?
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A Perfect Complements Example 

of Cost Minimization

y x x= min{ , }4 1 2

The firm’s production function is

and the conditional input demands are

x w w y
y

1 1 2
4

*
( , , ) = x w w y y2 1 2

*
( , , ) .=and
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A Perfect Complements Example 

of Cost Minimization

y x x= min{ , }4 1 2

The firm’s production function is

and the conditional input demands are

x w w y
y

1 1 2
4

*
( , , ) = x w w y y2 1 2

*
( , , ) .=and

So the firm’s total cost function is

c w w y w x w w y

w x w w y

( , , ) ( , , )

( , , )

*

*
1 2 1 1 1 2

2 2 1 2

=

+
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A Perfect Complements Example 

of Cost Minimization

y x x= min{ , }4 1 2

The firm’s production function is

and the conditional input demands are

x w w y
y

1 1 2
4

*
( , , ) = x w w y y2 1 2

*
( , , ) .=and

So the firm’s total cost function is

c w w y w x w w y

w x w w y

w
y

w y
w

w y

( , , ) ( , , )

( , , )

.

*

*
1 2 1 1 1 2

2 2 1 2

1 2
1

2
4 4

=

+

= + = +







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Average Total Production Costs

For positive output levels y, a firm’s 

average total cost of producing y 

units is
AC w w y

c w w y

y
( , , )

( , , )
.1 2

1 2=
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Returns-to-Scale and Av. Total 

Costs
The returns-to-scale properties of a 

firm’s technology determine how 

average production costs change with 

output level.

Our firm is presently producing y’
output units.

How does the firm’s average 

production cost change if it instead 

produces 2y’ units of output?
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Constant Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

constant returns-to-scale then 

doubling its output level from y’ to 

2y’ requires doubling all input levels. 
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Constant Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

constant returns-to-scale then 

doubling its output level from y’ to 

2y’ requires doubling all input levels. 

Total production cost doubles.
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Constant Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

constant returns-to-scale then 

doubling its output level from y’ to 

2y’ requires doubling all input levels. 

Total production cost doubles.

Average production cost does not 

change.
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Decreasing Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

decreasing returns-to-scale then 

doubling its output level from y’ to 

2y’ requires more than doubling all 

input levels. 
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Decreasing Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

decreasing returns-to-scale then 

doubling its output level from y’ to 

2y’ requires more than doubling all 

input levels. 

Total production cost more than 

doubles.
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Decreasing Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

decreasing returns-to-scale then 

doubling its output level from y’ to 

2y’ requires more than doubling all 

input levels. 

Total production cost more than 

doubles.

Average production cost increases.
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Increasing Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

increasing returns-to-scale then 

doubling its output level from y’ to 

2y’ requires less than doubling all 

input levels. 
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Increasing Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

increasing returns-to-scale then 

doubling its output level from y’ to 

2y’ requires less than doubling all 

input levels. 

Total production cost less than 

doubles.
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Increasing Returns-to-Scale and 

Average Total Costs

If a firm’s technology exhibits 

increasing returns-to-scale then 

doubling its output level from y’ to 

2y’ requires less than doubling all 

input levels. 

Total production cost less than 

doubles.

Average production cost decreases.



164

Returns-to-Scale and Av. Total 

Costs

y

$/output unit

constant r.t.s.

decreasing r.t.s.

increasing r.t.s.

AC(y)
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Returns-to-Scale and Total Costs

What does this imply for the shapes 

of total cost functions?
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Returns-to-Scale and Total Costs

y

$

y’ 2y’

c(y’)

c(2y’) Slope = c(2y’)/2y’
= AC(2y’).

Slope = c(y’)/y’
= AC(y’).

Av. cost increases with y if the firm’s
technology exhibits decreasing r.t.s.
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Returns-to-Scale and Total Costs

y

$
c(y)

y’ 2y’

c(y’)

c(2y’) Slope = c(2y’)/2y’
= AC(2y’).

Slope = c(y’)/y’
= AC(y’).

Av. cost increases with y if the firm’s
technology exhibits decreasing r.t.s.
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Returns-to-Scale and Total Costs

y

$

y’ 2y’

c(y’)

c(2y’)
Slope = c(2y’)/2y’

= AC(2y’).

Slope = c(y’)/y’
= AC(y’).

Av. cost decreases with y if the firm’s
technology exhibits increasing r.t.s.
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Returns-to-Scale and Total Costs

y

$
c(y)

y’ 2y’

c(y’)

c(2y’)
Slope = c(2y’)/2y’

= AC(2y’).

Slope = c(y’)/y’
= AC(y’).

Av. cost decreases with y if the firm’s
technology exhibits increasing r.t.s.
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Returns-to-Scale and Total Costs

y

$
c(y)

y’ 2y’

c(y’)

c(2y’)
=2c(y’) Slope = c(2y’)/2y’

= 2c(y’)/2y’
= c(y’)/y’

so 

AC(y’) = AC(2y’).

Av. cost is constant when the firm’s
technology exhibits constant r.t.s.
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Short-Run & Long-Run Total 

Costs

In the long-run a firm can vary all of 

its input levels.

Consider a firm that cannot change 

its input 2 level from x2’ units.

How does the short-run total cost of 

producing y output units compare to 

the long-run total cost of producing y 

units of output?
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Short-Run & Long-Run Total 

Costs

The long-run cost-minimization 

problem is

The short-run cost-minimization 

problem is
  

min
x1 ,x2 ³0

w1x1 + w2x2

subject to

  

f (x1,x2) = y.

  

min
x1 ³0

w1x1 + w2 ¢ x 2

subject to

  

f (x1, ¢ x 2) = y.
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Short-Run & Long-Run Total 

Costs
The short-run cost-min. problem is the 

long-run problem subject to the extra 

constraint that x2 = x2’.

If the long-run choice for x2 was x2’
then the extra constraint x2 = x2’ is not 

really a constraint at all and so the 

long-run and short-run total costs of 

producing y output units are the same.
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Short-Run & Long-Run Total 

Costs
The short-run cost-min. problem is 

therefore the long-run problem subject to 

the extra constraint that x2 = x2”.

But, if the long-run choice for x2  x2”
then the extra constraint x2 = x2”
prevents the firm in this short-run from 

achieving its long-run production cost, 

causing the short-run total cost to 

exceed the long-run total cost of 

producing y output units.
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Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

Consider three output levels.
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Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

In the long-run when the firm

is free to choose both x1 and

x2, the least-costly input

bundles are ...
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Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

x1 x1 x1

x2

x2

x2

Long-run

output

expansion

path
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Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

Long-run

output

expansion

path

x1 x1 x1

x2

x2

x2

Long-run costs are:
c y w x w x

c y w x w x

c y w x w x

( )

( )

( )

 =  + 

 =  + 

 = + 

1 1 2 2

1 1 2 2

1 1 2 2
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Short-Run & Long-Run Total 

Costs

Now suppose the firm becomes 

subject to the short-run constraint 

that x2 = x2”.
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Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

x1 x1 x1

x2

x2

x2

Short-run

output

expansion

path

Long-run costs are:
c y w x w x

c y w x w x

c y w x w x

( )

( )

( )

 =  + 

 =  + 

 = + 

1 1 2 2

1 1 2 2

1 1 2 2
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Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

x1 x1 x1

x2

x2

x2

Short-run

output

expansion

path

Long-run costs are:
c y w x w x

c y w x w x

c y w x w x

( )

( )

( )

 =  + 

 =  + 

 = + 

1 1 2 2

1 1 2 2

1 1 2 2
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Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

x1 x1 x1

x2

x2

x2

Short-run

output

expansion

path

Long-run costs are:
c y w x w x

c y w x w x

c y w x w x

( )

( )

( )

 =  + 

 =  + 

 = + 

1 1 2 2

1 1 2 2

1 1 2 2

Short-run costs are:
c y c ys ( ) ( )  



183

Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

x1 x1 x1

x2

x2

x2

Short-run

output

expansion

path

Long-run costs are:
c y w x w x

c y w x w x

c y w x w x

( )

( )

( )

 =  + 

 =  + 

 = + 

1 1 2 2

1 1 2 2

1 1 2 2

Short-run costs are:
c y c y

c y c y
s

s

( ) ( )

( ) ( )

  

 = 
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Short-Run & Long-Run Total 

Costs

x1

x2

y

y

y

x1 x1 x1

x2

x2

x2

Short-run

output

expansion

path

Long-run costs are:
c y w x w x

c y w x w x

c y w x w x

( )

( )

( )

 =  + 

 =  + 

 = + 

1 1 2 2

1 1 2 2

1 1 2 2

Short-run costs are:
c y c y

c y c y
s

s

( ) ( )

( ) ( )

  

 = 
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Short-Run & Long-Run Total 

Costs

Short-run costs are:

x1

x2

y

y

y

x1 x1 x1

x2

x2

x2

Short-run

output

expansion

path

Long-run costs are:
c y w x w x

c y w x w x

c y w x w x

( )

( )
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Short-Run & Long-Run Total 

Costs

Short-run total cost exceeds long-run 

total cost except for the output level 

where the short-run input level 

restriction is the long-run input level 

choice.

This says that the long-run total cost 

curve always has one point in 

common with any particular short-

run total cost curve.
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Short-Run & Long-Run Total 

Costs

y

$

c(y)

yyy

cs(y)

F
w x

=
2 2

A short-run total cost curve always has

one point in common with the long-run

total cost curve, and is elsewhere higher

than the long-run total cost curve.
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