Microeconomic Theory I

Optimal choice and demand

Stella Tsani
stsani@econ.uoa.gr

Lecture slides kindly offered by

Monetary Measures of Gains-toTrade
\square You can buy as much gasoline as you wish at $\$ 1$ per gallon once you enter the gasoline market.
\square Q: What is the most you would pay to enter the market?

Monetary Measures of Gains-toTrade
\square A: You would pay up to the dollar value of the gains-to-trade you would enjoy once in the market.
\square How can such gains-to-trade be measured?

Monetary Measures of Gains-toTrade
\square Three such measures are:

- Consumer' s Surplus
-Equivalent Variation, and
- Compensating Variation.
\square Only in one special circumstance do these three measures coincide.

\$ Equivalent Utility Gains

- Suppose gasoline can be bought only in lumps of one gallon.
\square Use r_{1} to denote the most a single consumer would pay for a 1st gallon -- call this her reservation price for the 1st gallon.
$\square r_{1}$ is the dollar equivalent of the marginal utility of the 1st gallon.

\$ Equivalent Utility Gains

\square Now that she has one gallon, use r_{2} to denote the most she would pay for a 2nd gallon -- this is her reservation price for the 2nd gallon.
$\square r_{2}$ is the dollar equivalent of the marginal utility of the 2nd gallon.

\$ Equivalent Utility Gains

\square Generally, if she already has n - $\mathbf{1}$ gallons of gasoline then r_{n} denotes the most she will pay for an nth gallon.
$\square r_{n}$ is the dollar equivalent of the marginal utility of the nth gallon.

\$ Equivalent Utility Gains

$\square r_{1}+\ldots+r_{n}$ will therefore be the dollar equivalent of the total change to utility from acquiring n gallons of gasoline at a price of $\$ 0$.
\square So $r_{1}+\ldots+r_{n}-p_{G} n \quad$ will be the dollar equivalent of the total change to utility from acquiring \mathbf{n} gallons of gasoline at a price of $\$ p_{G}$ each.

\$ Equivalent Utility Gains

- A plot of $r_{1}, r_{2}, \ldots, r_{n}, \ldots$ against n is a reservation-price curve. This is not quite the same as the consumer' s demand curve for gasoline.

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Values

Gasoline (gallons)

\$ Equivalent Utility Gains

\square What is the monetary value of our consumer's gain-to-trading in the gasoline market at a price of $\$ p_{G}$?

\$ Equivalent Utility Gains

\square The dollar equivalent net utility gain for the 1st gallon is $\$\left(r_{1}-p_{G}\right)$
\square and is $\$\left(r_{2}-p_{G}\right)$ for the 2nd gallon,
\square and so on, so the dollar value of the gain-to-trade is

$$
\$\left(r_{1}-p_{G}\right)+\$\left(r_{2}-p_{G}\right)+\ldots
$$

for as long as $r_{n}-p_{G}>0$.

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Values

Gasoline (gallons)

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Values

Gasoline (gallons)

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Values

Gasoline (gallons)

\$ Equivalent Utility Gains

\square Now suppose that gasoline is sold in half-gallon units.
$\square r_{1}, r_{2}, \ldots, r_{n}, \ldots$ denote the consumer's reservation prices for successive half-gallons of gasoline.
■ Our consumer's new reservation price curve is

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Values

Gasoline (half gallons)

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Values

Gasoline (half gallons)

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Values

Gasoline (half gallons)

\$ Equivalent Utility Gains

\square And if gasoline is available in onequarter gallon units ...

\$ Equivalent Utility Gains Reservation Price Curve for Gasoline

\$ Equivalent Utility Gains

Reservation Price Curve for Gasoline

\$ Equivalent Utility Gains

Reservation Price Curve for Gasoline

Gasoline (one-quarter gallons)

\$ Equivalent Utility Gains

■ Finally, if gasoline can be purchased in any quantity then ...

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Prices

Gasoline

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Prices

Gasoline

\$ Equivalent Utility Gains

(\$) Res. Reservation Price Curve for Gasoline Prices

Gasoline

\$ Equivalent Utility Gains

\square Unfortunately, estimating a consumer' s reservation-price curve is difficult,

- so, as an approximation, the reservation-price curve is replaced with the consumer's ordinary demand curve.

Consumer' s Surplus

\square A consumer' s reservation-price curve is not quite the same as her ordinary demand curve. Why not?
\square A reservation-price curve describes sequentially the values of successive single units of a commodity.
\square An ordinary demand curve describes the most that would be paid for q units of a commodity purchased simultaneously.

Consumer' s Surplus

\square Approximating the net utility gain area under the reservation-price curve by the corresponding area under the ordinary demand curve gives the Consumer's Surplus measure of net utility gain.

Consumer' s Surplus

Gasoline

Consumer' s Surplus

Gasoline

Consumer' s Surplus

(\$) Reservation price curve for gasoline Ordinary demand curve for gasoline \$ value of net utility gains-to-trade

Gasoline
P_{G}

Consumer' s Surplus

(\$) Reservation price curve for gasoline Ordinary demand curve for gasoline \$ value of net utility gains-to-trade

Gasoline

Consumer' s Surplus

(\$) Reservation price curve for gasoline Ordinary demand curve for gasoline \$ value of net utility gains-to-trade

Gasoline

Consumer' s Surplus

\square The difference between the consumer's reservation-price and ordinary demand curves is due to income effects.

- But, if the consumer' s utility function is quasilinear in income then there are no income effects and Consumer' s Surplus is an exact \$ measure of gains-to-trade.

Consumer's Surplus

The consumer' s utility function is quasilinear in X_{2}.

$$
U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}
$$

Take $p_{2}=1$. Then the consumer's choice problem is to maximize

$$
U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}
$$

subject to

$$
\mathbf{p}_{1} \mathbf{x}_{1}+\mathbf{x}_{2}=\mathbf{m}
$$

Consumer' s Surplus

The consumer' s utility function is quasilinear in X_{2}.

$$
U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}
$$

Take $p_{2}=1$. Then the consumer' s choice problem is to maximize

$$
\begin{aligned}
& U\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2} \\
& \text { ject to }
\end{aligned}
$$

$$
\mathbf{p}_{1} x_{1}+x_{2}=m
$$

Consumer' s Surplus

That is, choose x_{1} to maximize

$$
\mathbf{v}\left(x_{1}\right)+\mathbf{m}-p_{1} x_{1} .
$$

The first-order condition is

$$
v^{\prime}\left(x_{1}\right)-p_{1}=0
$$

That is, $\quad \mathbf{p}_{\mathbf{1}}=\mathbf{v}^{\prime}\left(\mathbf{x}_{1}\right)$.
This is the equation of the consumer's ordinary demand for commodity 1.

Consumer' s Surplus

Consumer' s Surplus

Consumer' s Surplus

Consumer's Surplus

Consumer' s Surplus

■ Consumer's Surplus is an exact dollar measure of utility gained from consuming commodity 1 when the consumer' s utility function is quasilinear in commodity 2.
\square Otherwise Consumer's Surplus is an approximation.

Consumer' s Surplus

\square The change to a consumer's total utility due to a change to p_{1} is approximately the change in her Consumer's Surplus.

Consumer' s Surplus

Consumer' s Surplus

Consumer' s Surplus

Consumer' s Surplus

Compensating Variation and Equivalent Variation

\square Two additional dollar measures of the total utility change caused by a price change are Compensating Variation and Equivalent Variation.

Compensating Variation

व p_{1} rises.
© Q : What is the least extra income that, at the new prices, just restores the consumer's original utility level?

Compensating Variation

$\square \mathrm{p}_{1}$ rises.
\square Q : What is the least extra income that, at the new prices, just restores the consumer's original utility level?
\square A: The Compensating Variation.

Compensating Variation

Compensating Variation

Compensating Variation

Compensating Variation

Equivalent Variation

$\square \mathrm{p}_{1}$ rises.
\square Q: What is the least extra income that, at the original prices, just restores the consumer's original utility level?
\square A: The Equivalent Variation.

Equivalent Variation

Equivalent Variation

Equivalent Variation

Equivalent Variation

Consumer's Surplus, Compensating
 Variation and Equivalent Variation

\square Relationship 1: When the consumer' s preferences are quasilinear, all three measures are the same.

Consumer's Surplus, Compensating
 Variation and Equivalent Variation

व Consider first the change in Consumer's Surplus when p_{1} rises from p_{1} ' to p_{1} ".

Consumer's Surplus, Compensating

 Variation and Equivalent Variation$$
\text { If } \begin{aligned}
& U\left(\mathbf{x}_{1}, x_{2}\right)=v\left(\mathbf{x}_{1}\right)+x_{2} \quad \text { then } \\
& \operatorname{CS}\left(p_{1}^{\prime}\right)=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}
\end{aligned}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

If $\quad U\left(x_{1}, x_{2}\right)=\mathbf{v}\left(\mathbf{x}_{1}\right)+\mathbf{x}_{2} \quad$ then

$$
\operatorname{CS}\left(p_{1}^{\prime}\right)=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}
$$

and so the change in CS when p_{1} rises from p_{1} ' to p_{1} " is

$$
\Delta C S=\operatorname{CS}\left(p_{1}^{\prime}\right)-\operatorname{CS}\left(p_{1}^{\prime \prime}\right)
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

If $\quad U\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{v}\left(\mathbf{x}_{1}\right)+\mathbf{x}_{2} \quad$ then

$$
\operatorname{CS}\left(p_{1}^{\prime}\right)=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}
$$

and so the change in CS when p_{1} rises from p_{1} ' to p_{1} " is

$$
\Delta C S=\operatorname{CS}\left(p_{1}^{\prime}\right)-\operatorname{CS}\left(p_{1}^{\prime \prime}\right)
$$

$=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}-\left[v\left(x_{1}^{\prime \prime}\right)-v(0)-p_{1}^{\prime \prime \prime} x_{1}^{\prime \prime}\right]$

Consumer's Surplus, Compensating Variation and Equivalent Variation

If $\quad U\left(\mathbf{x}_{1}, x_{2}\right)=\mathbf{v}\left(\mathbf{x}_{1}\right)+\mathbf{x}_{2} \quad$ then

$$
\operatorname{CS}\left(p_{1}^{\prime}\right)=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}
$$

and so the change in CS when p_{1} rises from p_{1} ' to p_{1} " is

$$
\Delta C S=\operatorname{CS}\left(p_{1}^{\prime}\right)-\operatorname{CS}\left(p_{1}^{\prime \prime}\right)
$$

$=v\left(x_{1}^{\prime}\right)-v(0)-p_{1}^{\prime} x_{1}^{\prime}-\left[v\left(x_{1}^{\prime \prime}\right)-v(0)-p_{1}^{\prime \prime \prime} x_{1}^{\prime \prime}\right]$
$=v\left(x_{1}^{\prime}\right)-v\left(x_{1}^{\prime \prime}\right)-\left(p_{1}^{\prime} x_{1}^{\prime}-p_{1}^{\prime \prime} x_{1}^{\prime \prime}\right)$.

Consumer's Surplus, Compensating Variation and Equivalent Variation

- Now consider the change in CV when p_{1} rises from $p_{1}{ }^{\prime}$ to p_{1} ".
\square The consumer's utility for given p_{1} is

$$
v\left(x_{1}^{*}\left(p_{1}\right)\right)+m-p_{1} x_{1}^{*}\left(p_{1}\right)
$$

and CV is the extra income which, at the new prices, makes the consumer's utility the same as at the old prices. That is, ...

Consumer's Surplus, Compensating
Variation and Equivalent Variation

$$
\begin{aligned}
& v\left(\mathbf{x}_{1}^{\prime}\right)+\mathbf{m}-\mathbf{p}_{1}^{\prime} \mathbf{x}_{1}^{\prime} \\
= & \mathbf{v}\left(\mathbf{x}_{1}^{\prime \prime}\right)+\mathbf{m}+\mathbf{C V}-\mathbf{p}_{1}^{\prime \prime} \mathbf{x}_{1}^{\prime \prime} .
\end{aligned}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

$$
\begin{aligned}
& v\left(\mathbf{x}_{1}^{\prime}\right)+m-p_{1}^{\prime} \mathbf{x}_{1}^{\prime} \\
= & \mathbf{v}\left(\mathbf{x}_{1}^{\prime \prime}\right)+\mathbf{m}+C V-p_{1}^{\prime \prime} \mathbf{x}_{1}^{\prime \prime} .
\end{aligned}
$$

So

$$
\begin{aligned}
C V & =v\left(x_{1}^{\prime}\right)-v\left(x_{1}^{\prime \prime}\right)-\left(p_{1}^{\prime} x_{1}^{\prime}-p_{1}^{\prime \prime \prime} x_{1}^{\prime \prime}\right) \\
& =\Delta C S .
\end{aligned}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

- Now consider the change in EV when p_{1} rises from $p_{1}{ }^{\prime}$ to p_{1} ".
\square The consumer's utility for given p_{1} is

$$
v\left(x_{1}^{*}\left(p_{1}\right)\right)+m-p_{1} x_{1}^{*}\left(p_{1}\right)
$$

and EV is the extra income which, at the old prices, makes the consumer' s utility the same as at the new prices. That is, ...

Consumer's Surplus, Compensating Variation and Equivalent Variation

$$
\begin{aligned}
& v\left(\mathbf{x}_{1}^{\prime}\right)+m-p_{1}^{\prime} \mathbf{x}_{1}^{\prime} \\
= & \mathbf{v}\left(\mathbf{x}_{1}^{\prime \prime}\right)+\mathbf{m}+E V-p_{1}^{\prime \prime} x_{1}^{\prime \prime} .
\end{aligned}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

$$
\begin{aligned}
& v\left(x_{1}^{\prime}\right)+m-p_{1}^{\prime} \mathbf{x}_{1}^{\prime} \\
= & v\left(\mathbf{x}_{1}^{\prime \prime}\right)+\mathbf{m}+E V-p_{1}^{\prime \prime} \mathbf{x}_{1}^{\prime \prime} .
\end{aligned}
$$

That is,

$$
\begin{aligned}
E V & =\mathbf{v}\left(\mathbf{x}_{1}^{\prime}\right)-\mathbf{v}\left(\mathbf{x}_{1}^{\prime \prime}\right)-\left(\mathbf{p}_{\mathbf{1}}^{\prime} \mathbf{x}_{1}^{\prime}-\mathbf{p}_{\mathbf{1}}^{\prime \prime} \mathbf{x}_{\mathbf{1}}^{\prime \prime}\right) \\
& =\Delta C S .
\end{aligned}
$$

Consumer's Surplus, Compensating Variation and Equivalent Variation

So when the consumer has quasilinear utility,

$$
\mathrm{CV}=\mathrm{EV}=\Delta \mathrm{CS} .
$$

But, otherwise, we have:
Relationship 2: In size, EV < $\Delta C S<C V$.

Producer's Surplus

■ Changes in a firm's welfare can be measured in dollars much as for a consumer.

Producer' s Surplus

Output price (p)

Benefit-Cost Analysis

- Can we measure in money units the net gain, or loss, caused by a market intervention; e.g., the imposition or the removal of a market regulation?
\square Yes, by using measures such as the Consumer' s Surplus and the Producer's Surplus.

Benefit-Cost Analysis

Benefit-Cost Analysis

Price The free-market equilibrium

Benefit-Cost Analysis

Price The gain from freely

Benefit-Cost Analysis

Price The gains from freely

Benefit-Cost Analysis

Price The gains from freely

Benefit-Cost Analysis

Price

Benefit-Cost Analysis

Price An excise tax imposed at a rate of $\$ \mathbf{t}$

Benefit-Cost Analysis

Price An excise tax imposed at a rate of $\$ \mathbf{t}$

Benefit-Cost Analysis

Price An excise tax imposed at a rate of \$t

Benefit-Cost Analysis

Price An excise tax imposed at a rate of \$t

Revenue received by holders of ration coupons. ${ }_{93}$

From Individual to Market Demand Functions

\square Think of an economy containing n consumers, denoted by $i=1, \ldots, n$.
\square Consumer i's ordinary demand function for commodity j is

$$
x_{j}^{* i}\left(p_{1}, p_{2}, m^{i}\right)
$$

From Individual to Market

 Demand Functions\square When all consumers are price-takers, the market demand function for commodity j is
$x_{j}\left(p_{1}, p_{2}, m^{1}, \cdots, m^{n}\right)=\sum_{i=1}^{n} x_{j}^{* i}\left(p_{1}, p_{2}, m^{i}\right)$.
\square If all consumers are identical then

$$
X_{j}\left(p_{1}, p_{2}, M\right)=n \times X_{j}^{*}\left(p_{1}, p_{2}, m\right)
$$

where $\mathrm{M}=\mathrm{nm}$.

From Individual to Market Demand Functions

\square The market demand curve is the "horizontal sum" of the individual consumers' demand curves.
\square E.g. suppose there are only two consumers; $i=A, B$.

From Individual to Market Demand Functions

Elasticities

\square Elasticity measures the "sensitivity" of one variable with respect to another.
\square The elasticity of variable X with respect to variable Y is

$$
\varepsilon_{x, y}=\frac{\% \Delta x}{\% \Delta y}
$$

Economic Applications of

Elasticity

\square Economists use elasticities to measure the sensitivity of
-quantity demanded of commodity \mathbf{i} with respect to the price of commodity i (own-price elasticity of demand)

- demand for commodity i with respect to the price of commodity j (cross-price elasticity of demand).

Economic Applications of Elasticity

-demand for commodity i with respect to income (income elasticity of demand)

- quantity supplied of commodity i with respect to the price of commodity i (own-price elasticity of supply)

Economic Applications of Elasticity

-quantity supplied of commodity i with respect to the wage rate (elasticity of supply with respect to the price of labor)
-and many, many others.

Own-Price Elasticity of Demand

\square Q: Why not use a demand curve's slope to measure the sensitivity of quantity demanded to a change in a commodity' s own price?

Own-Price Elasticity of Demand

p_{1}
10

$$
5
$$

$50 \mathrm{X}_{1}{ }^{*}$

In which case is the quantity demanded $X_{1}{ }^{*}$ more sensitive to changes to p_{1} ?

Own-Price Elasticity of Demand

In which case is the quantity demanded $X_{1}{ }^{*}$ more sensitive to changes to p_{1} ?

Own-Price Elasticity of Demand 10-packs Single Units

In which case is the quantity demanded $X_{1}{ }^{*}$ more sensitive to changes to p_{1} ?

Own-Price Elasticity of Demand 10-packs Single Units

In which case is the quantity demanded $X_{1}{ }^{*}$ more sensitive to changes to p_{1} ? It is the same in both cases.

Own-Price Elasticity of Demand

\square Q: Why not just use the slope of a demand curve to measure the sensitivity of quantity demanded to a change in a commodity's own price?
\square A: Because the value of sensitivity then depends upon the (arbitrary) units of measurement used for quantity demanded.

Own-Price Elasticity of Demand
 $$
\varepsilon_{\mathrm{x}_{1}, \mathrm{p}_{1}}^{*}=\frac{\% \Delta \mathrm{x}_{1}^{*}}{\% \Delta \mathrm{p}_{1}}
$$

is a ratio of percentages and so has no units of measurement.
Hence own-price elasticity of demand is a sensitivity measure that is independent of units of measurement.

Arc and Point Elasticities

- An "average" own-price elasticity of demand for commodity i over an interval of values for p_{i} is an arcelasticity, usually computed by a mid-point formula.
\square Elasticity computed for a single value of p_{i} is a point elasticity.

$$
\% \Delta p_{i}=100 \times \frac{2 h}{p_{i}^{\prime}} \quad \% \Delta X_{i}^{*}=100 \times \frac{\left(X_{i}{ }^{\prime \prime}-X_{i}{ }^{\prime \prime \prime}\right)}{\left(X_{i}^{\prime \prime}+X_{i}^{\prime \prime \prime}\right) / 2}
$$

$$
\begin{gathered}
\text { Arc Own-Price Elasticity } \\
\varepsilon_{X_{i}, p_{i}^{*}}=\frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}} \quad \% \Delta p_{i}=100 \times \frac{2 h}{p_{i}^{\prime}} \\
\% \Delta X_{i}^{*}=100 \times \frac{\left(X_{i}^{\prime \prime}-X_{i}^{\prime \prime \prime}\right)}{\left(X_{i}^{\prime \prime}+X_{i}^{\prime \prime \prime}\right) / \mathbf{2}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Arc Own-Price Elasticity } \\
\varepsilon_{X_{i}, p_{i}}=\frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}} \quad \% \Delta p_{i}=100 \times \frac{2 h}{\mathbf{p}_{i}^{\prime \prime}} \\
\% \Delta X_{i}^{*}=100 \times \frac{\left(X_{i}^{\prime \prime}-X_{i}^{\prime \prime \prime}\right)}{\left(X_{i}^{\prime \prime}+X_{i}^{\prime \prime \prime}\right) / \mathbf{2}}
\end{gathered}
$$

So

$$
\varepsilon_{X_{i}}^{*}, p_{i}=\frac{\% \Delta X_{i}^{*}}{\% \Delta p_{i}}=\frac{\mathbf{p}_{i}^{\prime}}{\left(\mathbf{X}_{\mathbf{i}}^{\prime \prime}+\mathbf{X}_{\mathbf{i}^{\prime}}{ }^{\prime \prime}\right) / 2} \times \frac{\left(\mathbf{X}_{\mathbf{i}}^{\prime \prime}-\mathbf{X}_{\mathbf{i}}{ }^{\prime \prime \prime}\right)}{2 h} .
$$

is the arc own-price elasticity of demand.

Point Own-Price Elasticity What is the own-price elasticity

Point Own-Price Elasticity What is the own-price elasticity

Point Own-Price Elasticity What is the own-price elasticity

$$
\begin{aligned}
& \text { Point Own-Price Elasticity } \\
& \text { What is the own-price elasticity } \\
& \text { of demand in a very small interval } \\
& \text { of prices centered on } p_{i} \text { '? } \\
& \text { As } \mathrm{h} \rightarrow 0 \text {, } \\
& \varepsilon_{X_{i}, p_{i}}^{*}=\frac{\mathbf{X}_{\mathbf{i}}{ }^{\prime} \Delta \mathbf{X}_{\mathbf{i}}^{*}}{\% \Delta \mathbf{p}_{\mathbf{i}}}=\frac{\mathbf{p}_{\mathbf{i}^{\prime}}{ }^{*}}{\left(\mathbf{X}_{\mathbf{i}}{ }^{\prime \prime}+\mathbf{X}_{\mathbf{i}}{ }^{\prime \prime \prime}\right) / 2} \times \frac{\left(\mathbf{X}_{\mathbf{i}}^{\prime \prime}-\mathbf{X}_{\mathbf{i}}{ }^{\prime \prime \prime}\right)}{2 h} .
\end{aligned}
$$

Point Own-Price Elasticity What is the own-price elasticity

$$
\begin{aligned}
& \text { Point Own-Price Elasticity } \\
& \qquad \varepsilon_{\mathbf{x}_{\mathbf{i}}^{*}, \mathbf{p}_{\mathbf{i}}}=\frac{\mathbf{p}_{\mathbf{i}}}{\mathbf{X}_{\mathbf{i}}^{*}} \times \frac{\mathbf{d X _ { i } ^ { * }}}{\mathbf{d} \mathbf{p}_{\mathbf{i}}}
\end{aligned}
$$

E.g. Suppose $p_{i}=a-b X_{i}$.

Then $X_{i}=\left(a-p_{i}\right) / b$ and
$\frac{d X_{i}^{*}}{d p_{i}}=-\frac{1}{b}$. Therefore,

$$
\varepsilon_{X_{i}, p_{i}}^{*}=\frac{p_{i}}{\left(a-p_{i}\right) / b} \times\left(-\frac{1}{b}\right)=-\frac{p_{i}}{a-p_{i}}
$$

Point Own-Price Elasticity

own-price elastic

own-price inelastic $\varepsilon=0$
a/2b
$a / b \quad X_{i}{ }^{*}$

Point Own-Price Elasticity

own-price elastic

$a / 2 \quad \varepsilon=-1$ (own-price unit elastic)

own-price inelastic

$$
\varepsilon=\mathbf{0}
$$

a/2b $\quad a / b \quad X_{i}^{*}$

$$
\begin{aligned}
& \text { Point Own-Price Elasticity } \\
& \qquad \varepsilon_{\mathbf{X}_{\mathbf{i}}^{*}, \mathbf{p}_{\mathbf{i}}}=\frac{\mathbf{p}_{\mathbf{i}}}{\mathbf{X}_{\mathbf{i}}^{*}} \times \frac{\mathbf{d} \mathbf{X}_{\mathbf{i}}^{*}}{\mathbf{d} \mathbf{p}_{\mathbf{i}}}
\end{aligned}
$$

E.g. $X_{i}^{*}=k p_{i}^{a}$. Then $\frac{d X_{i}^{*}}{d p_{i}}=a p_{i}^{a-1}$ so

$$
\varepsilon_{x_{i}^{*}, p_{i}}=\frac{p_{i}}{k p_{i}^{a}} \times k a p_{i}^{a-1}=a \frac{p_{i}^{a}}{p_{i}^{a}}=a .
$$

$$
\underbrace{\substack{\text { Point Own-Price Elasticity } \\ \varepsilon=-2 \\ \mathbf{x}_{\mathbf{i}}^{*} \\ \text { everywhere along } \\ \text { the demand curve. }}}_{\mathbf{p}_{\mathbf{i}}}
$$

Revenue and Own-Price Elasticity of Demand

\square If raising a commodity's price causes little decrease in quantity demanded, then sellers' revenues rise.
\square Hence own-price inelastic demand causes sellers' revenues to rise as price rises.

Revenue and Own-Price Elasticity of Demand

\square If raising a commodity's price causes a large decrease in quantity demanded, then sellers' revenues fall.
\square Hence own-price elastic demand causes sellers' revenues to fall as price rises.

Revenue and Own-Price

 Elasticity of Demand Sellers' revenue is $\mathbf{R}(\mathbf{p})=\mathbf{p} \times \mathbf{X}^{*}(\mathbf{p})$.
Revenue and Own-Price

 Elasticity of Demand Sellers' revenue is $\mathbf{R}(\mathbf{p})=\mathbf{p} \times \mathbf{X}^{*}(\mathbf{p})$.So $\frac{d R}{d p}=X^{*}(p)+p \frac{d X^{*}}{d p}$

Revenue and Own-Price

Elasticity of Demand

Sellers' revenue is $\mathbf{R}(\mathbf{p})=\mathbf{p} \times \mathbf{X}^{*}(\mathbf{p})$.
So $\frac{d R}{d p}=X^{*}(p)+p \frac{d X^{*}}{d p}$

$$
=X^{*}(\mathbf{p})\left[1+\frac{\mathbf{p}}{X^{*}(\mathbf{p})} \frac{\mathbf{d X}}{} \mathbf{d p}\right]
$$

Revenue and Own-Price

Elasticity of Demand

Sellers' revenue is $\mathbf{R}(\mathbf{p})=\mathbf{p} \times \mathbf{X}^{*}(\mathbf{p})$.
So $\frac{d R}{d p}=X^{*}(p)+p \frac{d X^{*}}{d p}$

$$
\begin{aligned}
& =X^{*}(\mathbf{p})\left[1+\frac{\mathbf{p}}{\mathbf{X}^{*}(\mathbf{p})} \frac{\mathbf{d X}^{*}}{\mathbf{d p}}\right] \\
& =\mathrm{X}^{*}(\mathbf{p})[1+\varepsilon] .
\end{aligned}
$$

Revenue and Own-Price Elasticity of Demand $\frac{\mathrm{dR}}{\mathrm{dp}}=\mathrm{X}^{*}(\mathrm{p})[1+\varepsilon]$

> Revenue and Own-Price Elasticity of Demand $\frac{\mathbf{d R}}{\mathrm{dp}}=\mathbf{X}^{*}(\mathbf{p})[\mathbf{1 + \varepsilon}]$
> so if $\varepsilon=-\mathbf{1} \quad$ then $\quad \frac{\mathbf{d R}}{\mathrm{dp}}=\mathbf{0}$
and a change to price does not alter sellers' revenue.

Revenue and Own-Price Elasticity of Demand $\frac{\mathrm{dR}}{\mathrm{dp}}=\mathrm{X}^{*}(\mathrm{p})[1+\varepsilon]$
but if $-1<\varepsilon \leq 0$ then $\frac{d R}{d p}>0$
and a price increase raises sellers' revenue.

Revenue and Own-Price Elasticity of Demand $\frac{\mathrm{dR}}{\mathrm{dp}}=\mathrm{X}^{*}(\mathrm{p})[1+\varepsilon]$
 And if $\varepsilon<-1$ then $\frac{d R}{d p}<0$

and a price increase reduces sellers' revenue.

Revenue and Own-Price Elasticity of Demand

In summary:
Own-price inelastic demand; $-1<\varepsilon \leq 0$ price rise causes rise in sellers' revenue.
Own-price unit elastic demand; $\varepsilon=-1$ price rise causes no change in sellers' revenue.
Own-price elastic demand; $\varepsilon<-1$ price rise causes fall in sellers' revenue.

Marginal Revenue and OwnPrice Elasticity of Demand
\square A seller's marginal revenue is the rate at which revenue changes with the number of units sold by the seller.

$$
\operatorname{MR}(q)=\frac{d R(q)}{d q}
$$

Marginal Revenue and Own-

Price Elasticity of Demand

$\mathrm{p}(\mathrm{q})$ denotes the seller's inverse demand function; i.e. the price at which the seller can sell q units. Then

$$
R(q)=p(q) \times \mathbf{q}
$$

so

$$
\begin{aligned}
\operatorname{MR}(q) & =\frac{d R(q)}{d q}=\frac{d p(q)}{d q} q+p(q) \\
& =p(q)\left[1+\frac{q}{p(q)} \frac{d p(q)}{d q}\right] .
\end{aligned}
$$

Marginal Revenue and OwnPrice Elasticity of Demand
$\mathbf{M R}(\mathbf{q})=\mathbf{p}(\mathbf{q})[\mathbf{1}+\underset{\mathbf{p}(\mathbf{q})}{\mathbf{q}(\mathbf{d q})}]$.
and $\quad \varepsilon=\frac{d q}{d p} \times \frac{p}{q}$
so $\quad \operatorname{MR}(q)=p(q)\left[1+\frac{1}{\varepsilon}\right]$.

Marginal Revenue and OwnPrice Elasticity of Demand $\operatorname{MR}(\mathbf{q})=\mathbf{p}(\mathbf{q})\left[1+\frac{1}{\varepsilon}\right] \quad$ says that the rate at which a seller's revenue changes with the number of units it sells depends on the sensitivity of quantity demanded to price; i.e., upon the of the own-price elasticity of demand.

Marginal Revenue and OwnPrice Elasticity of Demand $M R(q)=p(q)\left[1+\frac{1}{\varepsilon}\right]$

If $\varepsilon=-\mathbf{1} \quad$ then $\operatorname{MR}(\mathbf{q})=\mathbf{0}$.
If $-1<\varepsilon \leq 0$ then $\operatorname{MR}(q)<0$.
If $\varepsilon<-1 \quad$ then $\operatorname{MR}(q)>0$.

Marginal Revenue and OwnPrice Elasticity of Demand If $\varepsilon=-1$ then $\operatorname{MR}(q)=0$. Selling one more unit does not change the seller's revenue.

If $-1<\varepsilon \leq 0$ then $\operatorname{MR}(q)<0$. Selling one more unit reduces the seller's revenue.

If $\varepsilon<-\mathbf{1}$ then $\operatorname{MR}(q)>0$. Selling one more unit raises the seller's revenue.

Marginal Revenue and OwnPrice Elasticity of Demand
An example with linear inverse demand.

$$
p(q)=a-b q .
$$

Then $\mathbf{R}(\mathbf{q})=\mathbf{p}(\mathbf{q}) \mathbf{q}=(\mathbf{a}-\mathbf{b q}) \mathbf{q}$
and $\operatorname{MR}(q)=\mathbf{a}-\mathbf{2 b q}$.

Marginal Revenue and OwnPrice Elasticity of Demand
p

