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Chapter 4 
The empirical testing of the profits-based approach 

 
Introduction 
The fourth and final chapter of this project refers to the empirical testing of certain 
aspects of the profit-based approach. A full test of all aspects of the theory requires a 
good deal of development and application of empirical techniques that needs more 
than a dissertation. This will become evident from the present chapter although it is 
confined to the empirical estimation of the profit-based approach on stocks. The 
reason is that additional econometric techniques are required to assess certain parts 
of the theory even on stocks alone.  
The exposition begins by replicating and extending to the present time the empirical 
tests of the theory conducted by Anwar Shaikh (1997, 2016). This is done in section 
4a. Shaikh (1997, 2016) estimated stock prices and stock returns against the 
incremental rate of profit. Specifically, he estimated the S&P 500 rate of return from 
the Shiller data base and calculated the incremental rate of profit from the BEA tables. 
All estimations are described and explained in section 4a and in Appendix 4.1. The 
National Income and Product Accounts (NIPE) of the U.S. Bureau of Economic Analysis 
(BEA) data on profitability goes back to 1947 and for this reason this is the starting 
year for the calculations. As it will become evident in section 4a the results are 
supportive of the profit-based approach. 
Nevertheless, the time series of both and S&P 500 rate of return and the incremental 
rate of profit are not stationary. This raises estimation issues. Specifically, it was 
impossible for Shaikh to estimate the model parameters and draw statistical inference 
on them. For this reason, he restricted himself in drawing inference coming from the 
simulation of the warranted against the actual S&P 500 prices presented below in 
Figure 4.3 (Shaikh 2016) and the calculation of the R2 from detrended data as 
presented in Figure 4.2 (Shaikh 1997). Although, the results are strongly supportive. 
no specific inference could be drawn on the influence of the incremental rate of profit 
on actual prices and returns of the S&P 500.   
In order to address these issues, I have modified the empirical model. This is 
elaborated in section 4b. Specifically, I have used the rate of growth of the Earnings Per 
Share (EPS) of the companies comprising the S&P 500 (the data is recorded in the 
Shiller data base) as a proxy for the incremental rate of profit.1 I argue that the change 
in the EPS of these companies (between the previous and the current year) is a good 
proxy of changes in the profitability of the ‘regulating capital’ (see section 3a for the 
definitions). Assuming further that investment is a linear function of the last period 

 
1 The EPS is calculated from net corporate earnings divided by the number of shares 

(excluding from the denominator the number of shares comprising corporate buybacks). It is 
the key measure of corporate profitability for bankers and fund managers as indicated by 
George Soros (1994) and elaborated in section 3.6.     



corporate profit, the rate of growth of the EPS becomes an approximation of the 
incremental rate of profit (𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡).2 This permits us to regress the S&P 500 detrended 
logarithmic values against the logarithm of the EPS for a period going back to 1900. 
Following Shiller (1989b: 78-82), and Shaikh (1997: 398), Ι detrended the data using 
the 30-year moving average. The results are impressive and enable us to draw 
statistical inference for the model parameters.   
Yet, the most important contribution of this chapter has to do with the estimation of 
the dynamics of the correlation between the incremental rate of profit and the rate of 
return of the S&P 500. Shaikh (1997) correctly pointed out that the two variables are 
not linearly related and for this reason, the Pearson statistic takes a small value. 
Nevertheless, the incremental rate of profit and the stock market rate of return have 
roughly the same mean and standard deviation. This implies among other issues that 
for the profit-based approach there is no unexplained volatility of stock returns since 
stock market volatility reflects the variability of the underlying corporate 
fundamentals. In section 4c.6 this finding is elaborated further. I will apply a non-
parametric statistic named ‘Mutual Information’ (MI). It measures the reduction of the 
uncertainty about stock returns from knowing the corporate fundamentals. It is a non-
linear correlation statistic originally applied by Shannon (1948) that has been 
incorporated and developed in the context of Transfer Entropy (TE). The application 
will reveal important patterns on the dynamics of the relation between stock market 
returns and corporate fundamentals especially in the transition from normal times to 
market crash.  As it has been argued analytically in Chapter 3, for the profit-based 
approach financial turmoil is the trigger rather than the cause of economic crises. The 
idea is that corporate fundamentals deteriorate before the stock market crashes and 
not the other way around. Using data going back to 1880 I will show empirically that 
this is the case, and that ‘phase transition’ in the stock exchange reflects a pattern 
explained in Soros’ ‘reflexivity theory’ elaborated in the previous chapter.  
Although, the profit-based approach has not been tested extensively even for stocks, 
in all of the few empirical tests the findings are highly supportive. This will become 
evident from the presentation of Shaikh’s (1997, 2016) estimations, as well as my 
contribution that follows. Overall, empirical testing provides a strong initiative for 
further elaboration on the analytical and empirical findings of this project.  
 

 
2 The idea is kind of simple as outlined in the equations that follow. I start from the definition 

of the incremental rate of profit and arrive at the approximation.  A full explanation is provided 
in section 4b.  

 

𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡 =
𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1
𝐼𝐼𝑡𝑡−1

 𝑖𝑖𝑖𝑖 𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1 ≈ 𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝑡𝑡−1 = 𝜌𝜌 ∙ 𝑃𝑃𝑡𝑡−1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌 > 0 → 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡

=
𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1

𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1
 

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝐼𝐼𝑡𝑡−1 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎, 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡
= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅    

 
 



4a. The main assumptions of the profit-based approach on stocks - 
Summary and Empirical Handling  

The main assumption of the profit-based approach when it comes to stock pricing is 
that stock market returns tend to become equal to the returns in the corporate sector. 
This is not something new, since mainstream theory also assumes equalization of risk-
adjusted rates of return (Chapter 2). However, in the profit-based approach, the 
equalization of returns takes place around the volatile incremental and not the 
constant or slowly varying average rate of return (profit) of mainstream theory. The 
application of the incremental rate of profit is based on the Classical/Marxian theory 
of competition. In this context, equalization takes place between the incremental profit 
rates of the regulating capitals of each industry (Chapter 3 Section 3a). Given that in 
competitive economies corporations are expected to constantly bring to the market 
new products and apply new techniques, the incremental rate of profit is expected to 
be a highly volatile measure. Its volatility is enhanced further from the structure of 
expectations (Chapter 3 section 3f). We saw that in the ‘reflexivity theory’, 
expectations affect prices which, in turn, affect fundamentals that reflect upon prices, 
and so on. This means that stock price investments are inherently short term, since 
persistent variations in the incremental rate of profit bring forward new positions of 
risky arbitrage, or ‘turbulent arbitrage’, as Shaikh (1997) calls it. In other words, 
equalization is a dynamic and evolving process around an equilibrium path.  
For this reason, when it comes to empirical testing the reasonable thing to do is to 
directly associate the incremental rate of profit with stock prices and returns. Although 
the assumption is that the incremental rate of profit of regulating capitals tends to 
become equalized, following Shaikh 1997, we will begin by calculating the time series 
of the average incremental rate of profit. the latter is the independent variable in our 
calculations. The dependent variable is the rate of return of the S&P 500 as presented 
in the publicly available database of the Nobel prize laureate Robert Shiller that can be 
found online (Shiller 1).  The time series are pictured in the chart that follows: 

 
Source: author’s calculations 
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Figure 4.1 extends previous calculations of the time series of the (adjusted) 
incremental rate of profit (blue line) to the real total return (including the dividend 
yield) of the S&P 500 as recorded in the Shiller database. The incremental rate of profit 
is the ratio of the yearly change in real corporate profits (including depreciation) 
divided by real investment. Data sources (BEA tables), deflators, and formulas applied 
in the calculations are detailed in Appendix 4.1. The calculation covers the period from 
1948-2019. It is an extension of previous calculations of the same series in Shaikh 
(1997) covering the period from 1948 – 1992 and in Shaikh (2016: 470-471) for the 
period 1948-2011.  
In all three calculations, the time series retains the same properties. They have almost 
the same mean, standard deviation, and coefficient of variation. The prices of these 
descriptive statistics are detailed in table 4.1 that follows: 
 
 

Table 4.1 

 IROP Total Return S&P500 
Average 7.77% 8.46% 
Standard deviation 11.90% 16.11% 
Coefficient of Variation 1.53 1.90 
 
Although both the time series and the descriptive statistics indicate that the two 
variables are strongly associated the 𝑅𝑅2 between the two is only 10% (the Pearson 
correlation coefficient is 0.31). The reason is that the correlation between them is non-
linear. Nevertheless, the data summarized in table 4.1 prove that for the profit-based 
approach there is no ‘unexplained volatility’ in stock market prices. You will recall that 
this whole project began (Chapter 1 section 1b) by presenting Shiller's (1989 a, b) 
work on the matter. The latter had shown that the variability of stock prices cannot be 
justified by the variations of dividends discounted by a constant, or almost constant, 
required rate of return that underlies the efficient market hypothesis. Here, using the 
incremental rate of profit as the required rate of return, it is shown that the volatility 
you get in the stock market is the one you should expect. It results from the rough 
return equalization process between the stock market and the corporate sector.     
There are, however, additional elaborations in the initial empirical evaluations of the 
profit-based approach for stocks that are worth mentioning. The initial reaction of 
Shaikh to the empirical findings outlined above was a calculation of an equation like 
3.45. Nevertheless, to apply the traditional correlation statistics, the data needs to be 
detrended to avoid spurious correlation. Following Shiller (1989b), this was done by 
dividing stock market prices by the 30-year moving average of the earnings per share. 
Shaikh followed this practice to make his results comparable to those of Shiller. 
Specifically, in his (1989b: 78-82) book Shiller compares the detrended by the 30year 
moving EPS average S&P 500 prices to the DCF model prices calculated with a constant 
discount factor. From this comparison Shiller concluded that there exists excess, i.e., 
unexplained, volatility of actual stock prices as compared to DCF prices. By following 



the exact same practice and changing only Shiller’s constant discount factor with the 
incremental rate of profit Shaikh claims that any difference in the results of two models 
is due to different discount factors applied. The results of Shaikh s’ (1997) estimation 
extended to 2020 is summarized in Figure 4.2  

 

 

Figure 4.2 compares the warranted price (blue line) calculated from equation 3.45 
(𝑃𝑃𝑟𝑟𝑟𝑟𝑤𝑤 = 𝑃𝑃𝑃𝑃𝑡𝑡−1 ∙ [1 + (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡)]) with the detrended actual net price of the S&P 
500 (brown line). The required rate of return is the incremental rate of profit 
calculated above from which I have deducted the dividend yield 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 . The actual real 
price of the S&P 500 is taken from the Shiller database divided by the 30-year moving 
average of the earnings per share. The 𝑅𝑅2 between the two variables is 0.8. The strong 
correlation holds also for subperiods. Specifically, Shaikh (1997) performing the same 
calculation found an 𝑅𝑅2  of 0.875 for the period 1948-1993.  These results are 
extremely strong compared to calculations of DCF models where the 𝑅𝑅2 is never 
greater than 0.09 (Shiller 1989: 81-82, Barsky and De Long 1993). Moreover, the 
difference in the 𝑅𝑅2 can be attributed to the application of the incremental rate of profit 
instead of the Shiller constant discount factor. 

Finally, a third elaboration is presented in Shaikh (2016). It is based on the 
methodology applied by Shiller in his book Irrational Exuberance published in 2000 
(Shiller 2009) and the databases he updates and makes available online ever since 
(Shiller 1). The difference with the previous model is that, in this case, the data is not 
detrended. This time Shaikh (2016) wanted to show that the warranted price 
calculated from the profit-based approach is the ‘gravity center’ of the actual price. 
Therefore, any deviations cannot be attributed to irrationality, as claimed by the 
behaviorists.  As you may recall, in Chapter 2 (section 2d.4) the behaviorist approach 
was considered in the context of the alternatives offered by orthodox theorists to the 
empirical failure of mainstream asset pricing models. It suggests that mainstream 
models fail because agents are ‘irrational’. The latter leads to positive or negative 
extremes in financial asset prices. However, the benchmark of rationality for this 
theory is the ‘efficient market hypothesis’ (EMH). Shiller presented this notion 
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empirically using a version of the martingale model (Samuelson 1964), presented in 
section 2f.2, against the real actual price of the S&P 500. Specifically, he calculated an 
average interest rate for the period from 1871-1999 (7.6%) and used it as the constant 
discount factor. Then he discounted dividends and arrived at ‘Present Value of Real 
Dividend Prices’. The latter appears in his database (Shiller 2) updated until 2009.  

Shaikh performed a simulation of the equation 4.1 (appearing herein below). It is 
similar in concept to equation 3.45 with the difference that, in the former, warranted 
prices are calculated based on previous warranted prices 𝑃𝑃𝑟𝑟𝑟𝑟−1𝑤𝑤and not actual prices 
𝑃𝑃𝑃𝑃𝑡𝑡−1. However, in order to perform the iteration an initial price must be estimated 
based on an acceptable criterion. Shaikh reproduced the calculation constructing an 
initial price that equalizes the warranted and actual price averages for the period 
1948-1995. On this ground, he constructed a simulation of the profit-based approach 
warranted prices using equation 4.1. 

4.1 𝑃𝑃𝑟𝑟𝑟𝑟𝑤𝑤 = 𝑃𝑃𝑟𝑟𝑟𝑟−1𝑤𝑤 ∙ [1 + rror𝑡𝑡] − 𝐷𝐷𝐷𝐷𝑣𝑣𝑡𝑡   

𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ≈ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡 

The difference between the two calculations is the required rate of return. In equation 
4.1 it is the highly volatile incremental rate of profit  𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡 pictured in Figure 4.1 
whereas the Shiller-EMH prices are calculated basis a constant rate of 7.6%. The 
results are summarized in Figure 4.3 below. The only thing I have added is that the 
profit-based approach warranted price calculation is extended to 2020.  
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Figure 4.3 is indicative in many respects. The blue line which pictures the real price of 
the S&P 500 is the benchmark for the warranted price calculated from the profit-based 
approach (brown line) and the Efficient Market Hypothesis (grey line). For Shiller, the 
differences in actual prices from the grey line are indications of irrationality. The same 
is true of the volatility of actual prices compared to the smooth EMH prices. For the 
profit-based approach bubbles or underpricing can appear as indicated by Soros’ 
reflexivity theory presented in Chapter 3 (section 3f). However, as Soros’ reflexivity 
theory indicates, fundamentals rule in the end. This is confirmed in the simulation 
pictured above and it holds both in normal times as well as during financial and 
economic crises. The chart pictures the boom of the 1950s and the 1960s where actual 
prices exceed fundamental prices, the opposite happens during the times of the great 
stagflation (1970-1981) when actual prices underscore warranted prices. This pattern 
persists in the first years of the neoliberal era. However, following 1985 actual prices 
overshoot the underlying fundamentals reaching a climax in the dot com bubble 
(around 2000). The correction that follows was steep but short. Actual prices 
gravitated around fundamental prices and collapsed shortly after the collapse in the 
underlying fundamentals that preceded the 2007 crisis. A finding that supports the 
analytical approach of section 3d of Chapter 3 which argues that a financial crisis is 
only a trigger of major depressions. The irony is that Shiller’s EMH estimated prices 
lose any association to the actual prices in the years of neoliberalism when the idea of 
‘self-regulated markets’ was at its peak.      

Nevertheless, the most striking part of the simulation is that when extended to 2019 it 
does not picture a bubble as most of us would expect (at least I did). Of course, we 
should keep in mind that the time interval for the calculation of the initial price was 
picked arbitrarily. For a different initial price, we would end with a different warranted 
price. For this type of calculation, an ‘unobserved component model’ identifying the 
relation between stock market returns and the incremental rate of profit is required. 
Here I will present a different (non-parametric) statistic to identify this relation. 
Although we cannot derive a warranted price by applying this method, it will prove a 
step forward for the empirical evaluation of the profit-based approach. But before we 
move to this, we can draw interesting statistical inference by applying traditional 
econometric methods to the detrended stock returns and EPS data. This will be 
presented in the next section.  
 
4b. Linear Regression - Statistical Inference for Detrended Prices – Using 

EPS Data 
One of the missing points in the empirical analysis of the profit-based approach for 
stocks is the absence of any direct statistical inference for the explanatory variables. 
However, the correlation between detrended data and corporate fundamentals 
pictured in Figure 4.2 is a good starting point for an econometric model from which 
we can draw statistical inference.  
The first step for this is to approximate the Incremental Rate of Profit with the rate of 
growth of the Earnings Per Share (EPS). This will provide access to data going back to 



1871 and perform econometric calculations with time series from 1900 to 2019 even 
when we detrend the data using the 30year moving average.3  This will permit us to 
take advantage of the properties of large samples. Moreover, this handling of the data 
does not contradict the profit-based approach. George Soros (1994), who’s reflexivity 
theory is an integral part of the profit-based approach, uses the EPS as the key 
fundamental in his stock valuations and investment decisions.  
The EPS growth, when associated with the companies of the S&P 500, can be 
considered as a closer proxy of the incremental rate of profit of regulating capitals, 
rather than the average incremental rate of profit we have used so far. If one simply 
looks at the companies that comprised the index through the years, he will realize that 
most corporations that reshaped and created markets for more than a century were at 
their peak in the S&P 500 index. For example, companies like Apple, Microsoft, Dupont, 
and General Mills are currently members of the index. To put it differently, the 500 
corporations with the greatest market capitalization (this is the basic criterion for the 
construction of the S&P 500 since 19884) in the NY stock exchanges and maybe in the 
world are probably (although not necessarily) regulating capitals.    

As far as the numerator of the incremental rate of profit formula 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 = 𝑃𝑃𝑡𝑡−𝑃𝑃𝑡𝑡−1
𝐼𝐼𝑡𝑡−1

 is 

concerned, substituting profit differentials with the change in earnings per share 
𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 is a good proxy for the change in profitability. The EPS is the ratio of 
net corporate profits to the number of shares adjusted for any share buyback.5 Things 
are more complicated for the denominator, since we cannot directly construct time 
series of investment for the S&P 500 companies from their balance sheets. 
Nevertheless, we can find an approximation for this measure by making certain 
restrictive, but plausible, assumptions. I elaborate on this by using equation 3.14 as 
follows: 

4.2  
𝐾𝐾𝑡𝑡 − 𝐾𝐾𝑡𝑡−1
𝐾𝐾𝑡𝑡−1

= 𝑠𝑠𝑡𝑡 ∙ �𝑟𝑟1𝑡𝑡 − 𝑖𝑖𝑡𝑡� 

𝐾𝐾𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑡𝑡 = 𝑟𝑟. 𝑜𝑜. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑟𝑟1𝑡𝑡 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟. 𝑜𝑜.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑡𝑡
= 𝑟𝑟. 𝑜𝑜. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡   

𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑡𝑡 = 𝛿𝛿 ∙ 𝑟𝑟1𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿 > 0, 𝐼𝐼𝑡𝑡 = 𝐾𝐾𝑡𝑡 − 𝐾𝐾𝑡𝑡−1𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑡𝑡 = 𝑠𝑠 
→ 𝐼𝐼𝑡𝑡 = 𝑠𝑠 ∙ (1 − 𝛿𝛿) ∙ 𝑟𝑟1𝑡𝑡 ∙ 𝐾𝐾𝑡𝑡−1  

 
3 I keep this assumption so that the calculation will be comparable to Shiller (1989b) and 

Shaikh (1997). 
4 The composition criteria of the S&P 500 are not uniform throughout its history. To start 

with it did not always include 500 stocks. Originally it tracked only 233 stocks. In 1957 when it 
included 425 industrial, 50 utilities and 15 railway stocks it represented 90% of the total 
capitalization of the stock exchange. It is surprising that Financial companies were first 
included in the index in 1970. However, the objective throughout its history was to create a 
gauge for the market if not for the economy. The impact of the index is so great that some 
mainstream economists wonder if there exists an S&P 500 index effect on the prices of the stock 
that comprises the index (Kasch and Sarkar 2012).    

5 For example, if a company has net profits of one million euros and one million shares, its 
earnings per share will be 1 euro. If it buys back 200,000 shares its EPS will increase to 1.25 
euros (1,000,000/800,000).  



𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑟𝑟𝑡𝑡 =
𝑃𝑃𝑡𝑡
𝐾𝐾𝑡𝑡−1

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑟𝑟1 =
1

1 + 𝑧𝑧
∙ 𝑟𝑟 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 3.15 𝑤𝑤𝑤𝑤 𝑔𝑔𝑔𝑔𝑔𝑔 

→ 𝑰𝑰𝒕𝒕 = 𝝆𝝆 ∙ 𝑷𝑷𝒕𝒕 𝒂𝒂𝒂𝒂𝒂𝒂 𝝆𝝆 =
𝒔𝒔 ∙ (𝟏𝟏 − 𝜹𝜹)
𝟏𝟏 + 𝒛𝒛

 

 
Equation 4.2 tells us that if the interest rate follows the regulating rate of profit 𝑟𝑟1𝑡𝑡 (the 
loan/ reserve ratio is constant) and that the ratio of the regulating to the average gross 
rate of profit is constant then investment  𝐼𝐼𝑡𝑡 is a linear function of gross profitability. If 
we apply this to our modification of the incremental rate of profit it will read as follows: 
 

4.3 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡 ≈
𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1
𝐼𝐼𝑡𝑡−1

= 𝜃𝜃 ∙
𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1

𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1
, 𝜃𝜃 =

1
𝜌𝜌

> 0 

 
Equation 4.3 tells us that the incremental rate of profit is a linear function of the rate 
of growth of the earnings per share (EPS). Where earnings per share is the gross 
measure that includes dividends. 
When it comes down to drawing inferences for the variables, we need to linearize these 
relations by using logarithms. In this regard we turn to log growth and linearize the 
following relation: 
 

4.4 𝑙𝑙𝑙𝑙
𝑃𝑃𝑃𝑃𝑡𝑡
𝑃𝑃𝑃𝑃𝑡𝑡−1

= 𝜃𝜃 ∙ 𝑙𝑙𝑙𝑙
𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡
𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1

→ ln𝑃𝑃𝑃𝑃𝑡𝑡 − ln𝑃𝑃𝑃𝑃𝑡𝑡−1 = 𝜃𝜃 ∙ ln𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 −𝜃𝜃 ∙ ln𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 → 

ln𝑃𝑃𝑃𝑃𝑡𝑡 = ln𝑃𝑃𝑟𝑟𝑡𝑡−1 + 𝜃𝜃 ∙ log𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡 − 𝜃𝜃 ∙ log𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1  
𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑡𝑡 = 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆&𝑃𝑃 500 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 

 
Equation 4.4 can be easily transformed into an econometric model where we can 
estimate 𝜃𝜃 using Ordinary Least Squares (OLS) provided that the two variables 
log𝑃𝑃𝑟𝑟𝑡𝑡, log𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡 are stationary. This is achieved by dividing the time series of the S&P 
500 and the EPS by their 30year moving average. The detrended variables are pictured 
in the following chart: 
 



 
 
 
 
 
The chart pictures the natural logarithms of the detrended data. In the latter, all the 
important economic events of the past 120 years can be identified. The great 
depression of 1929, the great stagflation of the 1970s, the dot.com bubble, the Asian 
crisis, and the first depression of the new century (2007). Throughout a century the 
variations of the S&P 500 follow the variations in real earnings per share (EPS). This 
is confirmed from the regression of the following econometric model:   
 

4.5 log𝑃𝑃𝑟𝑟𝑡𝑡 = 𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛 + log𝑃𝑃𝑟𝑟𝑡𝑡−1 + 𝜃𝜃 ∙ log𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡 − 𝜃𝜃 ∙ log𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1 + 𝜀𝜀𝑡𝑡   
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝜀𝜀𝑡𝑡 = 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 
The results are summarized in the Table 4.2 that follows. 
 

Table 4.2 
  

N  1418       

Mean of Y  .0.579661034       
        

Equation  Y = .0.003047 + .0.1269 X - .0.1238 X-1 + .0.9923 Y-1         

R²  .0.989       

R² adjusted  .0.989       

RMSE  .0.042171321       
        

Parameter  Estimate 95% CI SE t p-value VIF 
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Figure 4.4. Detrended Data

ln S&P ln EPS



Constant .0.003047 -.0.001108 to 
.0.007201 2.1179E-03 1.44 .0.1505 - 

X .0.1269 .0.07236 to .0.1815 .0.027810 4.56 <.0.0001 94.39 
X-1 -.0.1238 -.0.1783 to -.0.06929 .0.027786 -4.46 <.0.0001 94.20 
Y-1 .0.9923 .0.9853 to .0.9993 3.5684E-03 278.07 <.0.0001 1.59 

 

The impressive thing about this estimation is not the 0.989 R2. It is that all parameters 
come at their expected values. Specifically, the constant Const is almost equal to zero 
and statistically insignificant. The parameter of the price in the previous period is 
positive, significant, and more importantly almost equal to unity (1) as expected. 
Similarly, the parameter θ is almost equal for log𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡 , log𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1 , statistically 
significant, and with the appropriate sign for both. All this holds for a model that has 
been tested for a period over a century during which three major capitalist crises, two 
world wars, and major financial bubble episodes took place. However, during all these 
times stock market fluctuations followed closely the variations of the earnings per 
share. In this context, it is difficult to attribute stock price volatility to externalities or 
persistent irrationality in investment behavior. In other words, the volatile 
fundamentals rule. 
Nevertheless, this is achieved through significant manipulation in the data, through 
which the nonlinear relation between stock market returns and the incremental rate 
of profit is linearized. Therefore, the question of estimating and drawing inference 
from the original data remains. If we want to evaluate empirically the overall 
relationship between the incremental rate of profit and the stock market return, we 
need to apply the appropriate non-parametric statistics because of nonlinearity. This 
is attempted in the next section.  
 
4c. Non-parametric statistics-The case of transfer entropy 
The empirical evaluation of the profit-based approach for stocks is limited because 
both the stock market (S&P 500) returns, and the Incremental Rate of Profit time series 
are not stationary. For this reason, direct statistical inference can be drawn from 
models like equation 4.5 or by applying cointegration techniques (the latter are not 
implemented here). As indicated in the previous paragraph in the case of regression 
models the data is smoothened, and the relations are linearized using logarithms. 
Drawing inference by comparing the original data remains an important matter for the 



profit-based approach. The non-parametric techniques applied here is a step forward 
for the analysis.  
I argue that the non-parametric statistic ‘transfer entropy’ is appropriate. The reasons 
have to do with the properties and the insights that underlie the statistic. Specifically, 
the application of the ‘transfer entropy’ theory does not require that the investigated 
time series must follow any specific probability distribution. Every probability 
distribution can apply. Moreover, certain statistics measure the (asymmetric) transfer 
of information between two sets of time-series data. In other words, ‘transfer entropy’ 
is appropriate for non-linear processes. It is indicative that when estimating causality, 
between stationary time series the applied statistic reduces to the Granger causality 
as we will elaborate below. However, when the time series are non-stationary Granger 
and TE measure different things. In short, this technique is appropriate to measure the 
extent the Incremental Rate of Profit affects the returns on the S&P 500 without 
requiring any manipulation of the data. For the calculations, we will use again the 
logarithmic rate of growth of the real EPS as the proxy of the incremental rate of profit. 
This way we will estimate the full Shiller database starting from the 19th century, and 
not a calculation starting from 1947.6   
 
 
 
 
4c.1. The Transfer Entropy (TE) 
Before we move to this a brief outline of the notions of ‘entropy’ and ‘transfer entropy’ 
is appropriate. The exposition will be mainly conceptual before considering 
computational issues. ‘Entropy’ as a term has been coined by Rudolf Clausius from the 
Greek word for transformation (τροπή).7 In modern science, it was associated with the 
second law of thermodynamics which states that the entropy of an isolated system 
does not diminish in time.8 On the contrary, entropy maximizes when the system 
reaches thermodynamic equilibrium. This is a notion of equilibrium close to the 
perception of classical political economy and the profit-based approach. A turbulent 
process where the system (in our case the stock exchange) persistently transforms to 
new states through the sequel of positions of risky arbitrage.  

 
6 Shaikh’s estimations of the incremental rate of profit begin in 1947 due to data availability. 
7 “I propose to call the magnitude S the entropy of the body, from the Greek word τροπή, 

transformation. I have intentionally formed the word entropy so as to be as similar as possible 
to the word energy; for the two magnitudes to be denoted by these words are so nearly allied 
in their physical meanings, that a certain similarity in designation appears to be desirable.” 
(Clausius 1867: 357). This is a translation from the original German in Clausius 1865: 46, where 
it appears as Entropie. 

8 The second law of thermodynamics establishes the concept of entropy as a physical 
property of a thermodynamic system. Entropy predicts the direction of spontaneous processes 
and determines whether they are irreversible or impossible. The second law may be formulated 
by the observation that the entropy of isolated systems left to spontaneous evolution cannot 
decrease, as they always arrive at a state of thermodynamic equilibrium, where the entropy is 
highest. If all processes in the system are reversible, the entropy is constant. 

https://en.wikipedia.org/wiki/Thermodynamic_equilibrium


The breakthrough in the calculation of entropy came from Claude Shannon (1948) a 
Bell Labs scientist, who developed concepts and formulas that can measure the 
microscopic disorder to the problem of random losses of information in 
telecommunication signals. This is the reason that the measurement of entropy took 
the name ‘information theory’. In practice, the whole exercise is an effort to connect 
microscopic interactions to macroscopically observable behavior.  
When it comes to random time series processes, in our case the rate of return of the 
stock exchange, and the incremental rate of profit, the concept of ‘mutual information’ 
is applied and extended. This means that the various algorithms attempt to calculate 
1) How much uncertainty about the state of the stock exchange (S&P 500) returns is 
resolved by knowing the state of the incremental rate of profit (and vice versa)? 2) How 
much information is shared between the incremental rate of profit and S&P 500 
returns? 3)How may we quantify the degree of statistical dependence between the two 
variables? In short, we attempt to calculate a non-linear correlation coefficient which, 
under additional assumptions, also specifies a causal relationship between the 
variables. The difference with the traditional measures is that the information is 
asymmetric it involves the impact of past values of the incremental rate of profit on 
the current rate of return of the stock exchange but also the impact of past values of 
the S&P 500 on its current price. This is a statistical notion remarkably close to the 
ideas of the reflexivity theory of Gorge Soros presented in Chapter 3 section 3f. The 
idea is that past values of the incremental rate of profit will eventually take over stock 
market returns, or that actual prices will gravitate around warranted prices like in the 
simulation presented in Figure 4.3 above.  
 
Having outlined certain important aspects underlying ‘transfer entropy’ we can move 
to a more formal definition of the concept. In this definition, I will use at some point 
the Granger causality test as the benchmark. For now, we need to keep in mind that in 
this perception of entropy it is not only the past prices of the incremental rate of profit 
that must be considered but also the ‘shared information’ between past and present 
stock prices and returns. For our investigation, this indicates that for ‘transfer entropy’ 
prices and returns can be path-dependent as assumed by ‘reflexivity theory’ (Chapter 
3 section 3f).  
 
In light of the above, we can define (the one-period lag) transfer entropy keeping our 
investigation as the example and emphasizing non-stationary time series processes. 
 

4.6 𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼→𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ≡ 𝐼𝐼(𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 ∶ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1 ⋮ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1) 𝑎𝑎𝑎𝑎𝑎𝑎  
 

 𝐼𝐼(𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡: 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1 ⋮ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1) = 𝐻𝐻(𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡: 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1) −𝐻𝐻(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡: 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1, 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1) 
   
Equation 4.6 is a conditional ‘mutual information function’ it tells us if  𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼→𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) =
0 (where T stands for ‘transfer entropy’ and  𝐼𝐼 = ‘information transfer’) then the 
incremental rate of profit 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 plays no part in the knowledge on the return of the 



S&P500 in the next period denoted by  𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡. The reason is that the measure is always 
nonnegative (see footnote 4). The operators 𝐻𝐻 are measures of uncertainty.9 In the 
linearized model summarized in equation 4.5 above (for detrended prices) the 
statistical significance of the parameters of the (detrended) earnings per share 
log𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡 , log𝐸𝐸𝐸𝐸𝑆𝑆𝑡𝑡−1) prove that linearized prices do not depend only on their past 
values. Here we will examine whether the same result holds for the actual data 
comparing returns and fundamentals. The time subscript appearing in equation 4.6 
indicates the non-stationary process. In the remaining of the chapter, the incremental 
rate of profit will be referred to also as the ‘source’ variable and the S&P 500 return as 
the ‘target’ variable.  
 
Of course, the one-period lag of the ‘source’ variable history in equation 4.6 is by no 
means the only time lag considered. To see how the concept works we need to consider 
the appropriate variable history. It has been suggested (Lizier et al. 2012) that for non-
stationary ‘target’ variables the history length should tend to infinity. This means that 
the information the past target prices provide about state transitions in the target goes 
back to the distant past. There is no such rule for the history of the source variable 
although everyone suggests that it is no harm to go back as possible for the source 
variable as well (Bossomaier et al. 2016: 71) 
Given the points on the optimum history of both source and target variables transfer 
entropy definitions can be generalized in various directions. The lag between the 
source and target variable is based on the idea that information is stored in the past 
values of the target variable (in our case the past rate of return of the S&P 500, or the 
last period price) whereas the impact of the last period source variable (in our case the 
incremental rate of profit, or the past value of the earnings per share) reflects how 
much information the source variable provides about state transitions in the target 
variable. The first matter that needs to be defined in this framework is how much 
information is transferred from the past value of the target variable in its next period 
price or the Active Information Storage (AIS) as it is called TE terminology. It is a 
rationale that reflects a good part of empirical discussions on the Efficient Market 
Hypothesis, the assumptions of behavioral finance, and the profit-based approach. Let 

 
9 For example, we can measure the average conditional uncertainty of the stock market 

returns on their last period price using the fundamental Shannon conditional entropy formula:   
 
𝐻𝐻(𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡: 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1) = −∑ 𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠𝑠𝑠𝑟𝑟−1) ∙ log2 𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠𝑠𝑠𝑟𝑟−1)𝑠𝑠𝑠𝑠𝑠𝑠   
 

Where 𝑝𝑝 is the average conditional probability of 𝑠𝑠𝑠𝑠𝑠𝑠. The equation calculates the probability 
of a certain set of stock returns to appear from a particular value in the previous period. 
Returning to formula 4.6 this presentation indicates that if the incremental has no impact on 
stock returns then: 
 

𝐻𝐻(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡: 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1, 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1) =  𝐻𝐻(𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡: 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1) 
 
Keep in mind that mutual information (MI) is non-negative only for the averaged forms of the 
Shannon formula, not for local forms as we will see below. In this case the minimum Shannon 
entropy is 0 and the maximum equal to the entropy of the target variable.      



us assume that we wish to evaluate stock prices if the efficient market hypothesis holds 
all information is passively stored (AIS=0) in the past price and any variations are due 
to random shocks. If behavioral finance assumptions are valid, then all information 
comes from the past price (active storage different from zero) and variations in the 
fundamentals play no part. Finally, for the profit-based approach, both changes in the 
fundamentals and the past prices play a decisive part. In the latter case, average 
Transfer Entropy is greater than zero.  
Additionally, there are categories of conditional TE relating to a common driver effect 
that determines both the source and the target variables. In this regard, transfer 
entropy is redefined. The degree of uncertainty about the current target variable 
resolved by the past state of the source variable, the target variable, and the common 
driver together is subtracted from the degree of uncertainty of the current target 
variable already resolved by its past state and the past state of the common driver. This 
way the direct impact of the source variable is identified. Similarly, in concept, TE can 
be extended to various multivariate processes like ‘global entropy’ (Barnett et al. 
2013). 
Returning to the one-period lag question we can conclude that it is not binding for the 
source variable. TE can be calculated for any lagged value of the source variable. A fixed 
period lag is binding only for the storage target variable. In other words, the calculation 
of the impact of the lagged value of the target variable can only have a specific period 
lag. It has been shown that this way the Wiener principle of causality is preserved 
(Wibral et al. 2012). The Wiener ‘principle of observational causality’ argues that a 
time series X is called causal to a second time series Y if knowledge about the past of X 
and Y together allows one to predict the future of Y better than knowledge about the 
past of Y alone. In our case, if the incremental rate of profit or the earnings per share 
can predict the rate of return or the price of the S&P 500 better than their past value 
alone this constitutes a causal relation. We will elaborate on this matter further in 
relation to the traditional Granger causality test later in this section (4c.3).  
For now, we need to consider an additional aspect of transfer entropy. So far, we have 
outlined how a calculation of the average TE can provide us with inference about the 
effect of a (source) variable on a target variable although their relationship is not 
(necessarily) linear. We have implied further that we have tools (not presented yet) to 
calculate this relation. Moreover, if such a relation exists it can imply a causal link 
between the source and the target variable. Nevertheless, averages hide the dynamical 
structure of the relation between the source and the target variable. On the contrary, 
the local perspective can reveal the dynamic structure. Applied to time-series data, 
local measures tell us about the dynamics of information in the system, since they vary 
with the specific observations in time. To be specific, a measured average of ‘mutual 
information’ and/or ‘transfer entropy’ does not tell us about how the symmetric or 
directed relationship between two variables fluctuates through time, how different 
specific source states may be more predictive of a target than other states, or how 
coupling strength may relate to changing underlying experimental conditions. On the 
contrary local measures can be revealing of these relations helping the resolutions of 



problems we have encountered already in the simulation originating from Shaikh 
(2016) and presented in section 4.1 (Figure 4.3). Local estimations is the part of TE 
theory we will apply in the present work.  
 
4c.2. Transfer Entropy (TE) Estimators and calculations  
I will present the transfer entropy estimators based on the assumption that both the 
incremental rate of profit and the rate of return of the stock exchange are discrete-time 
variables. As it will become evident shortly this means that we can estimate TE directly 
from the probability distribution functions of the source and the target variable. This 
is in accordance with the basic assumption of the profit-based approach (Shaikh 1997) 
where stock market returns must react to the underlying fundamentals. Moreover, the 
estimation does not rely on specific assumptions of the probability distribution of the 
variables. 
 
To understand how the process works we can consider the Shannon mutual 
information (MI) formula. It reads as follows: 
 

4.7 𝐼𝐼(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡)

= � � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡)
𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡∈𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡∈𝒔𝒔𝒔𝒔𝒔𝒔

∙ log2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡)

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡)
 

 
Where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡) is the joint mass probability function of the stock market 
returns 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡  and the incremental rate of profit 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡  and  𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  are the marginal 
probability density functions of the source and the target variable. MI tells us how much 
uncertainty about stock returns is reduced from knowing the incremental rate of profit.10 For 
example, if the two variables are independent then 𝐼𝐼(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡) = 0 proven as follows: 
 

𝐼𝐼𝐼𝐼 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 → 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡)
= 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡) 

 

→ log2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 , 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡)

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡) = log21 = 0 

 
Equation 4.7 can be calculated straight forward provided we know the probability 
functions. However, the calculation is not always so easy since it involves sample and 
other biases that can increase MI. The Kozachenko-Leonenko entropy estimator 
(Delattre and Fournier 2016) and its development in the KSG algorithm (Kraskov, 
Stögbauer and Grassberger 2004) enables the approximation of equation 4.7 without 
knowing the probability function. More importantly, these algorithms can estimate 

 
10 There is no rule about using a particular unit of measurement for the log values. In 

discrete variables it involves logarithms of base 2 and 10. I use logarithms with base 2 that are 
the most common in bibliography.   



also TE limiting any possible biases. However, in our estimation, we will be able to 
estimate probabilities directly (see section 4.3.6 below).  
 
As stated already while commenting equation 4.6 TE is a case of conditional MI 
presented in the following Shannon equation: 
 

4.8 𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼→𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ≡ 𝐼𝐼(𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 ∶ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1 ⋮ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡−1)  
 

 𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼→𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = � � � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑟𝑟−1,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−1, 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1, 𝑠𝑠𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡∈𝒔𝒔𝒔𝒔𝒔𝒔𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−𝑖𝑖∈𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−𝑢𝑢∈𝒔𝒔𝒔𝒔𝒓𝒓−𝟏𝟏

∙ log2 𝑍𝑍 
 

Z =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑟𝑟−1,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−1, 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1, 𝑠𝑠𝑠𝑠𝑠𝑠) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟−1(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−1)
𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑟𝑟1(𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−1) ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑠𝑠𝑠𝑠𝑟𝑟1(𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1, 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−1)

 

 
Like equation 4.7 equation 4.8 is difficult to estimate directly. Nevertheless, the 
algorithms mentioned in the previous paragraph, especially the KSG algorithm can 
provide reliable estimations. In fact, the algorithms are incorporated in open-source 
software applicable in MATLAB and R.  
Before we move to the actual calculation, we need to address the issues of causality, 
inference, and applications of transfer entropy in financial time series. This way we 
will have a more complete understanding of TE theory before applying the appropriate 
statistic in testing the profit-based approach.  
 
4c.3. Transfer Entropy and Causality a Comparison with Granger Causality 
Here I will not enter the discussion of whether the Granger causality test is a true 
statistical estimation of causal relations between two or more time series. I will take 
Granger causality for granted. The reason is that at the conceptual level Granger 
causality and Transfer Entropy appear to be almost identical. In short, Granger 
suggested that if the past values of a certain explanatory (source) variable explained 
the fluctuations of the dependent (target) variable above its past values then this 
means that a causal relationship exists between the explanatory variable and the 
dependent variable.  
Up to this point, it is hard to find a difference between the Granger test and the concept 
of TE. However, when moving to the calculation of causality under this concept 
Granger applied linear models and more importantly focused on predictability and not 
information transfer. Specifically, he suggested that causality can be estimated from 
the comparison of what he called the full and the reduced model. If we wanted to test 
our assumption of the relation between the incremental rate of profit and the stock 
market returns our Granger would look as follows: 
 
4.9 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 = 𝑎𝑎1 ∙ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−1 + 𝑎𝑎2 ∙ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−2 + ⋯𝑎𝑎𝑘𝑘 ∙ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−𝑘𝑘 + 𝛽𝛽1 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−1 + 𝛽𝛽2 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−2 + ⋯+ 𝛽𝛽𝑙𝑙

∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−𝑙𝑙 + 𝜖𝜖𝑡𝑡   
4.10 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 = 𝑎𝑎′1 ∙ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−1 + 𝑎𝑎′2 ∙ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−2 + ⋯+ 𝑎𝑎′𝑘𝑘 ∙ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−𝑘𝑘 + 𝜖𝜖𝑡𝑡′ 



 
Equation 4.9 is the full model and 4.10 the reduced model. Both are VAR models. The 
model parameters are the coefficient matrices 𝑎𝑎𝜄𝜄,𝛽𝛽𝑗𝑗,𝑎𝑎𝑖𝑖′ and the covariance matrices  
𝛴𝛴 ≡ 𝑐𝑐(𝜖𝜖𝑡𝑡), 𝛴𝛴′ ≡ 𝑐𝑐′(𝜖𝜖𝑡𝑡′). The elements 𝜖𝜖𝑡𝑡, 𝜖𝜖𝑡𝑡′ are the serially uncorrelated residuals of 
the estimation. Of course, the estimation of the relation between 
𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑡𝑡−𝑖𝑖  with such a model is not adequate. First, the relation is assumed 
linear, and second, the probability distribution of both variables is assumed stationary. 
This implies that both variables follow a Markov process something that has proven 
inadequate for the calculation of risk and volatility in financial asset time series as 
discussed in chapters 1 and 2.  
To put it differently, Granger tests were applied for linear models involving stationary 
variables. The calculation of causality was performed by applying two roughly 
equivalent approaches. The first had to do with the calculation of a statistic indicating 
causality on the grounds of better predictability of the full model compared to the 
reduced model. The second had to do with the calculation of the likelihood ratio. Let 
us begin with the first approach: 

4.11 𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼→𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑙𝑙𝑙𝑙𝑙𝑙
|𝛴𝛴′|
|𝛴𝛴|   

Equation 4.11 is the log ratio of the determinants of the covariance matrices defined 
above. It is presented here by applying the approach of Geweke (1982) on Granger 
causality for linear models and not the traditional approach applied by Sims (for 
example) in his (1972) paper. The statistic is based on the generalized rather than the 
total variance of the residuals11. The meaning of 4.11 is simple if the generalized 
variance of the full model |𝛴𝛴| is equal to the generalized variance of the reduced model 
|𝛴𝛴′|this means there is no causal relation between the variables. Moreover, the greater 
value of the statistic the stronger the causal relation. Geweke (1982: 306) gives a full 
account of the properties of the statistic pointing also that if the time series is Gaussian 
the maximum likelihood estimate of 𝐹𝐹 is easy to construct. 
The latter brings us to the second equivalent approach. If the time series is Gaussian, 
then the statistic 4.11 is the log-likelihood ratio with a null hypothesis: 
  

4.12 𝐻𝐻0: 𝛽𝛽1 = 𝛽𝛽2 = ⋯ = 𝛽𝛽𝑙𝑙 = 0 
 
4.12 shows a null hypothesis where the parameters of 𝛽𝛽𝑖𝑖 in equation 4.9 are 
simultaneously zero. The interesting part with the maximum likelihood approach, in 
this case, is that the  𝐹𝐹 statistic described in equation 4.11 is associated with an 
(asymptotic) χ2 distribution with degrees of freedom equal to the difference in the 
number of free parameters between the full and the reduced model. Therefore, 
causality can be formally estimated statistically in this context. 

 
11 The total variance is the sum of variances whereas generalized variance is, by definition, 

the determinants of the covariance matrices.   



Granger causality has certain additional properties. It can be extended from the time 
to the spectral/ frequency domain. This means that causal interactions can be 
decomposed by frequency. Moreover, the 4.11 statistic is invariant in the time and 
frequency domain if stationarity is strengthened through filtering. However, filtering 
leads to poor modeling. These issues will prove intuitive in understanding the relation 
between Granger causality and Transfer Entropy. 
To start Granger causality and transfer entropy are linearly related only in the case the 
underlying time series reflect a Gaussian joint process. The relation is the following: 

4.13 𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼→𝑠𝑠𝑠𝑠𝑠𝑠 =
1
2
∙ 𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼→𝑠𝑠𝑠𝑠𝑠𝑠 

 
The proof is provided in Bossomaier et al.  (2016: 86). 
 
In the same fashion if the underlying processes are Markov processes with a certain 
degree of ergodicity the Maximum likelihood transfer entropy estimator will converge 
towards the TE estimator defined in equation 4.8. The proof is provided in Bossomaier 
et al. (2016: 87).  
 
Nevertheless, the association between a non-linear Granger causality test with a 
parametric (Maximum Likelihood) TE statistic can hold only under these restrictive 
assumptions. If we move from the Markov ergodic world any association between 
Granger and TE theories is lost.  In short for non-Gaussian processes TE and Granger 
statistics (even if the latter incorporate certain non-linear relations) do not calculate 
the same thing. Transfer entropy calculates information flow whereas Ganger tests 
emphasize on predictability.  
 
4c.4. Transfer Entropy and Statistical Significance/ Inference  
Due to bias issues the statistical significance and confidence intervals of TE measures 
are calculated using sub-sample techniques. In practice, we set a null hypothesis and 
check whether it is true or false. Of course, this requires knowledge of what the 
probability distribution would look like if the null hypothesis 𝐻𝐻0 is true. One way is to 
use surrogate variables with the same statistical properties as the tested variables 
generated under the null hypothesis. For example, if we assume that the null 
hypothesis is that 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑠𝑠𝑠𝑠𝑠𝑠 are not associated then if the null hypothesis holds 
this means that the distribution of the null hypothesis will be that of 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 conditional 
on  𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−𝑢𝑢.  
 
In the case of known distributions of the underlying variables, the task is easier. For 
discrete Gaussian processes, for example, we know that 𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼→𝑠𝑠𝑠𝑠𝑠𝑠 has an asymptotic 
distribution (discussed in the previous section 𝑥𝑥2/2 ∙ 𝑁𝑁 ∙ log 2. The degrees of freedom 
are (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 − 1) ∙ (𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 1) ∙ 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠where M stands for cardinalities and that the two 
variables (𝑠𝑠𝑠𝑠𝑠𝑠, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) have the same history. In general, even for skewed distributions 
as 𝑁𝑁 → ∞ the 𝑥𝑥2 distribution described above holds asymptotically. These issues can 



prove complicating and this is one of the reasons we have applied the MI instead of the 
TE statistic. 
 
4c.5 Applications of Transfer Entropy in Financial Time Series Data 
I will conclude this brief outline with some applications of TE for financial time series. 
As we have seen already both analytically and to a certain extend empirically the 
profit-based approach combines both the ‘market sentiment and market 
fundamentals’ (Bossomaier et al. 2016: 127). This is precisely the understanding of the 
calculation of Transfer Entropy for stock market returns in Bossomaier et al. as quoted. 
Nevertheless, the authors of the cited book on transfer entropy are not familiar with 
any part of the profit-based approach argument. This is a strong indication of how 
adequate is TE theory for evaluating statistically the argument of the profit-based 
approach on stock returns.  
 
Despite this hint, most of the applications of TE in the financial market were interested 
in the direction of the causal arrow between different financial variables rather than 
the direct estimation of the information flows between fundamentals and stock prices 
and returns. Specifically, some investigations were focused on identifying whether 
information flows from stocks to indexes or the opposite. The idea was that if indexes 
were the crucial factor then the momentum overrides the fundamentals and if the 
causality is the other way around (form equities to indexes) fundamentals rule. This, 
besides other issues, indicates why it is important to estimate stock prices and returns 
directly from the fundamentals instead of trying to infer their influence through 
assumptions that are not directly tested. The latter will become evident when 
considering specific stock-index empirical models. 
 
The most known study is that of Kwon and Oh (2012) who worked with indexes and 
stocks from the Us, Europe, UK, and the Asia Pacific finding in all nine indexes 
considered a univocal flow of information from indexes to stocks rather than the other 
way around. In fact, in all cases, there was almost no indication of information transfer 
from stocks to indexes. This finding was considered as a verification of an investment 
behavior where traders try to anticipate what the other buyers and sellers believe. In 
this regard, they referred to Keynes’ quote from the General Theory (Keynes 1936, Ch. 
12: 156) on the newspaper beauty competition to emphasize the effort of traders to 
understand the market beliefs. In other words, the model implies an ‘inefficient 
market’ where the next movement can be predicted through ‘technical analysis’ 
although everybody knows this has not proven to be the case. Moreover, our findings 
on the association of the S&P 500 prices and returns with the Incremental Rate of 
Profit (Sections 4.1, 4.2) do not just justify the conclusion. The theoretical reasoning is 
so arbitrary that someone could even argue that the stock index is a proxy of the 
market portfolio and the findings are supportive of the capital asset pricing model 
where the market portfolio is the only source of undiversifiable risk. For our purposes, 
it must be clear that nonparametric models can lead to the inference, regarding the 



underlying theory only when the actual assumption is the one tested. Otherwise, the 
findings can be associated with practically any theory.  
 
A more interesting application of TE in financial markets can be found in the effort of 
looking into financial market fluctuations and crashes as a ‘phase transition’ like the 
ones studied in physical phenomena. In a (2006) paper Kiyono, Struzik, Yamamoto 
studied the Black Monday of the New York Stock Exchange. They found that the 
financial system behaves a lot like a physical system through a varying underlying 
parameter that proves the non-stationarity of financial data. To put it differently, an 
underlying factor parameter varies as the system approaches the critical point and this 
alters the probability distribution of prices. Subsequently, Wicks, Chapman, and Dendy 
(2007) have shown that ‘mutual information’ (MI) can be a tool for detecting order/ 
disorder transitions in various systems. Harré and Bossomaier (2009) applied this 
methodology for financial markets. However, again the argument was not one relating 
fundamentals with prices but different stocks of the S&P 100 from 1995-2008 and the 
MI between them.  
 
This discussion closes the rather lengthy, but I hope useful, introduction to Transfer 
Entropy. From what follows it will become evident that our application to transfer 
entropy is an original contribution since it attempts to infer on a theory and not simply 
to the properties of the time series. In other words, we pick the estimation technique 
basis the anticipated properties of the time series and not the opposite as it frequently 
happens in the empirical analysis.  
 
4c.6. Mutual Information Local Estimations for the S&P 500 and EPS Growth 1880-

2020  
I work on the Wicks, Chapman, and Dendy (2007) methodology. The difference is that 
I calculated the local MI measures comparing the log growth of the S&P 500 directly to 
the log growth of the Earnings per Share (EPS). To calculate probabilities, I defined 
four possible states. One where the EPS increases and so does the S&P 500, one where 
both decline, and two cases where they move in the opposite direction. The case where 
the S&P 500 increases whereas the EPS declines will lead to a bubble if it is persistent. 
The opposite ‘state’ (the index drops although EPS increases) if persistent it will lead 
to underpricing. The MI statistic was calculated by applying equation 4.7 for the log-
returns going back ten years. The table that follows is an example of the first 
calculation covering the period 1872-1881.  
 

Table 4.3 
 

Probability Table 1872-1881 
  S&P  
  Incr. Dec. 10 
     



EP
S Incr. 0.50 0.00 0.50 

Dec. 0.20 0.30 0.50 
  0.70 0.30  

H S&P H EPS I(S&P, EPS) H(S&P, EPS) MI (S&P, EPS)2 
-0.3602 -0.5 0.257287 -0.5  

-0.52109 -0.5 0 0  
0.881291 1 -0.16147 -0.46439  

  0.3 -0.52109  
MI  0.395816 1.485475 0.395815602 

       
Table 4.3 shows that during the decade the S&P 500 increased together with the EPS 
five years, they simultaneously decreased for 3 years and in the remaining 2 years of 
the decade, the index increased although EPS fell. The mutual information (MI) is 
almost 40% and explains about 45% of the entropy of the S&P 500 which is 0.88. I 
repeated this same calculation until the present dropping the first year of the 
calculation and including the next (1873-1882 and so on). The findings are 
summarized in Figure 4.5 that follows. 

 

 
  

It is evident that the Local MI statistic experiences severe fluctuations over the past 
140 years.         
However, these fluctuations are indicative of an interesting pattern. The value of the 
statistic experiences a strong decline in almost all phase transitions that took place 
during the past century and a half. The black arrow points to the year 1893 it is the 
year that marked the end of the ‘long crisis’ (1872-1893). Thereafter, the price of the 
statistic MI surges and tends to explain the total of the S&P 500 returns entropy for a 
short time. The time between 1882 (when MI begins to fall) and 1885 (when the 
statistic begins to recover) was a period of depression in the United States as recorded 
by the National Bureau of Economic Research (NBER). The period from 1879 to 1881 
was a period of prosperity (railroad growth). The latter explains MI prices of around 
.0.6 as it will become clear shortly. A similar reason (a recession involving a decline in 
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industrial activity of 16%) stands behind the decline of the (MI) statistic for the period 
(1906-1913) indicated by the yellow arrow. The statistic, as well as the market, 
recovered from 1913 to 1926 having a cumulative increase of 36% over the period. 
However, following 1926 it became clear that the S&P 500 was a bubble. The MI index 
becomes almost zero (red arrow) indicating an increasing market with deteriorating 
fundamentals. Following the crash of 1929-1932 the opposite happened, the market 
did not reflect the recovery of the corporate fundamentals. It was only after the end of 
the so-called ‘Roosevelt depression’ in 1938 that the (MI) recovered to drop in the first 
war years (1940-1041) and recover for good after 1943. However, the dependence of 
the stock market on the earnings per share calculated by the (MI) statistic did not reach 
the pre-war levels during the Golden fifties and sixties. It was stable for values between 
10 and 20%. Nevertheless, when corporate fundamentals began to deteriorate in the 
late 1960’s early 1970s’ the pattern persisted as indicated by the green arrow. Again 
the (MI) value dropped to zero and remained weak throughout the great ‘stagflation’. 
It was only after 1980 when the crisis ended that corporate fundamentals were 
reflected in the market. The neoliberal era did not change this strong and long-lasting 
pattern. Although corporate fundamentals did not deteriorate the (MI) statistic 
reacted to the burst dot–com bubble of 2000 as pointed by the brown arrow. However, 
because the bubble was not hiding a depression the market recovered quickly and 
remained in line with the fundamentals throughout the first decade of the new century. 
The latter is confirmed also by the simulation of Figure 4.3. We can see there that in 
2008 the stock market collapsed shortly after the collapse of the corporate 
fundamentals. Actually, after the millennium (MI) took high prices that were not 
witnessed since the second decade of the previous century. The reason is that the 
bubble did not burst together with the depression but 10 years earlier in the dot-com 
crisis.  
There is both an economic theory but also intuition coming from physics behind this 
pattern. In physical phenomena ‘a few particles’ are sufficient for ‘system 
transformation’ (Wicks, Chapman, and Dendy 2007, Kiyono, Struzik, and Yamamoto 
2006). In our context, this means that a few years of one-sided motion between the 
market and the fundamentals is sufficient to destabilize the market provided that the 
fundamentals keep deteriorating. As we saw in chapter 3 this is not simply a property 
of the (MI) statistic it is also indicative of a pattern in investment behavior. This is no 
other than the ‘reflexivity theory’ of George Soros. Financial capital controls stock 
market returns making positive expectations a self-fulfilling prophesy for some time. 
However, at some point, everybody realizes that the market is a bubble, and this leads 
to a sharp correction. If the market remains in line with the fundamentals like in 2008 
the correction is dramatic, but the market recovers soon.  
 
Conclusion 
The models of the profit-based approach are complementary to each other. Simulation 
models like Shaikh (2016) presented in Figure 4.3 indicates a strong and long-lasting 
correlation between warranted and actual prices. The regression presented in section 



4.2 gives clear inference that stock market returns depend on corporate fundamentals. 
Finally, the ‘Mutual Information’ model presented in paragraph 4.3.6 proves that this 
is not the result of manipulations in the data (detrending) but reflects long-lasting 
patterns. This means that the stock market volatility is perfectly rational since it 
reflects turbulent fundamentals but also path-dependent investment expectations. 
Overall, this research can open investigations both on the profit-based approach for 
stocks, but also other assets priced by the theory. In case these models are applied for 
professional use they must be evaluated together. If treated separately they can prove 
misleading.                       
       
  



Appendix 4.1 
 
Calculation of the modified incremental rate of profit in Shaikh (1997, 2016).  
The table that follows is an extract of the calculation of the incremental rate of profit. 
The nominal data come directly from the BEA tables as indicated in the description. 
This data is deflated by the Implicit Price Deflator to give real gross Investment (IRG 
corp.). This concludes step1. Step 2 calculates Gross corporate Profits (including 
depreciation) from BEA tables and deflates the nominal amount arriving at Real Gross 
Profit (using the Implicit Price Deflator). The amended incremental rate of profit for 
1948 is the Difference in Real Gross Profit divided by Real Gross Corporate investment 
in the previous period. 
 
Step1 Implicit Price Deflator Gross Investment     
 1947 1948 1949 1950 
FA T.6.7 line 2 17.30 19.50 17.80 19.50 
FA T.6.8 line 2 4.96 5.14 4.58 4.91 
(IGRcorp. index bea (t)/100)*IGCcorpbea(2005): Bills-2005$ 64.28 66.62 59.25 63.54 
Implicit Price Deflator, Gross Investment, pIG corp bea 26.92 29.27 30.04 30.69 
Step2     
BEA Table 6.4 line 2 Current - Cost Corporate Depreciation  9.80 11.50 12.40 13.30 
BEA Table 1.14 line 11 23.20 30.10 27.90 34.80 
Gross Corporate NIPA Profit (sum of excel lines 8+9) 33.00 41.60 40.30 48.10 
Real Gross Corporate Profit = line 10x100/ line 6 122.61 142.12 134.15 156.73 

     
Modified Incremental Rate of Profit   0.30 -0.12 0.38 

 formula (C11-B11)/B5   
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