EXERCISES

DYNAMICAL MATHEMATICS

St. Kotsios

Solve the differential equations:
2.
(a) $\left(x^{2}+x\right) y^{\prime}=2 y+1$
(b) $\quad y^{\prime}=2 \sqrt{y} \ln x \quad, \quad y(e)=1$
(c) $y^{\prime}-\frac{3 y}{x}=x$
(e) $\frac{d s}{d t}=\frac{s}{t}-\frac{t}{s}$
(c) $x^{2} y^{\prime}=y^{2}+x y$
3. Solve the differential equations:
(a) $y^{\prime} x^{3}=2 y$
(b) $y^{\prime}=2 \sqrt{y} \ln x \quad, \quad y(e)=1$
(c) $\left(1+x^{2}\right) y^{\prime}=1+y^{2}$
(e) $\quad t^{2} \frac{d s}{d t}=2 t s-3, \quad s(-1)=1$
(c) $x^{2} y^{\prime}=y^{2}+x y$
4. Solve the differential equations:
(a) $y^{\prime}+y=x-e^{x}$
(b) $y^{\prime}+\frac{1}{x} y=x^{2}$
5. Solve the differential equations:
(a) $2 x y^{\prime}+y^{2}-1=0$
(b) $y^{\prime}+y^{2} e^{x}=0, y(0)=1$
6. Solve the differential equations:
(a) $x y^{\prime}-y+x^{3} y^{2}=0$
(b) $y^{\prime}-2 y e^{x}=2 \sqrt{y e^{x}}$
7. Solve the differential equations:
(a) $\quad y^{(4)}(t)+y^{\prime \prime}(t)=4$
(b) $y^{\prime \prime}(t)+y^{\prime}(t)+3 y(t)=2 t \sin (3 t) \quad, \quad y(1)=0 \quad, \quad y^{\prime}(1)=1$
8. Solve the differential equations:
(a) $y^{\prime \prime}+y^{\prime}-2 y=6 x^{2}$
(b) $y^{\prime \prime}+2 y^{\prime}+y=(x-1) e^{x}$
(c) $y^{\prime \prime \prime}-y^{\prime}=1$,
(d) $\frac{d^{2} s}{d t^{2}}+2 \frac{d s}{d t}+2 s=2 t^{3}-2$
9. Solve the differential equations:
(a) $y^{\prime \prime}+y^{\prime}-2 y=e^{x}$, (b) $y^{\prime \prime}+2 y^{\prime}+y=x$
(c) $y^{\prime \prime \prime}-y^{\prime}=5$,
(d) $\frac{d^{2} x}{d t^{2}}+k^{2} x=2 k \sin k t$
10. Solve the differential equations:
(a) $y^{\prime \prime}=y^{\prime}+\left(y^{\prime}\right)^{2}$
(b) $x y^{\prime}+y \ln \left(\frac{y}{x}\right)=0$
(c) $y y^{\prime \prime}-2\left(y^{\prime}\right)^{2}=0$
11. Let $X(t)$ denotes the national product, $K(t)$ the capital stock, $L(t)$ the labor. Suppose that for any positive time instant:

$$
X=A K^{1-a} L^{a} \quad, \quad \dot{K}=s X \quad, \quad L=L_{0} e^{\lambda t} \quad, \quad K(0)=K_{0} \quad .
$$

Find an expression for $K(t)$.
12. Solve the differential equations:
(a) $y^{\prime \prime}=y^{\prime}+\left(y^{\prime}\right)^{2}$
(b) $x y^{\prime}+y \ln \left(\frac{y}{x}\right)=0$
13. Solve the equations: $t \&+(1-t) y=e^{2 t}, \quad x=4 x+2 e^{t} \sqrt{x} \quad, \quad x>0$
14. In a macroeconomic model we have:

$$
Y(t)=C(t)+I(t) \quad, \quad I(t)=k \dot{C}(t) \quad, \quad C(t)=a Y(t)+b
$$

Compute the limit : $\lim _{t \rightarrow \infty} \frac{Y(t)}{I(t)}$
15. Solve completely the equation: $x^{\prime \prime}+4 x=4 t+1, x(\pi / 2)=0, x^{\prime}(\pi / 2)=0$.
16. An economic model due to T. Haavelmo leads to the differential equation: $p^{\prime \prime}(t)=\gamma(a-\alpha) p(t)+k$. Solve the equation. Is it possible to choose the constants so that the equation is stable?
17. Solve the system: $\quad \begin{aligned} x^{\prime} & =-2 x+5 y \\ y^{\prime} & =-2 x+4 y \\ x^{\prime}+3 x & +y=0\end{aligned}$
18. Solve the system: $y^{\prime}-x+y=0$

$$
x(0)=1, y(0)=1
$$

19. Solve the system: $\frac{d x}{d t}+y=0$

$$
\frac{d x}{d t}-\frac{d y}{d t}=3 x+y
$$

20. Transform the equation $y^{\prime \prime}-y^{\prime}-2 y=0$ to a system of differential equations and solve it.
21. Transform the equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$ to a system of differential equations and solve it.
22. Transform the equation $y^{\prime \prime}-2 y^{\prime}+3 y=0$ to a system of differential equations and solve it.
23. We suppose that the price of a good is a function over time: $p(t)$. We also have the next demand and supply functions:
$D(t)=\alpha-\beta p(t)+m p^{\prime}(t)+n p^{\prime \prime}(t) \quad(\alpha, \beta>0)$
$S(t)=-\gamma+\delta p(t) \quad(\gamma, \delta>0)$
If the market follows the rule: $\frac{d p}{d t}=j(D-S), \quad(j>0)$. Find the price path and its equilibrium point, if any. Find the condition which ensures an oscillating price path. Would we had an oscillated price path if $n>0$?
24. Find the extrema of the integrals:
(a) $\int_{0}^{2}\left[2 y e^{t}+y^{2}+\left(y^{\prime}\right)^{2}\right] d t$ subject to $y(0)=2$ and $y(2)=2 e^{2}+e^{-2}$
(b) $\int_{1}^{2}\left[x+t x^{\prime}-\left(x^{\prime}\right)^{2}\right] d t$ subject to $x(1)=3$ and $x(2)=4$
25. Find the extremals, if any, of the integrals:
(a) $\int_{0}^{1}\left[t y+2\left(y^{\prime}\right)^{2}\right] d t, \quad y(0)=1, \quad y(1)=2$
(b) $\int_{0}^{1} t y y^{\prime} d t, \quad y(0)=0, \quad y(1)=1$
(c) $\int_{0}^{2}\left(y^{2}+t^{2} y^{\prime}\right) d t, \quad y(0)=0, \quad y(2)=2$
26. Find the extremals, if any, of the integrals:
(a) $\int_{0}^{2}\left[t y+\left(y^{\prime}\right)^{2}\right] d t, \quad y(0)=1, \quad y(2)=0$
(b) $\int_{0}^{a}\left(y^{\prime 2}+2 y y^{\prime}-16 y^{2}\right) d t, \quad y(0)=0, \quad y(a)=0$
(c) $\int_{1}^{2} \frac{x^{3}}{y^{\prime 2}} d x, \quad y(1)=1, \quad y(2)=4$
27. By transforming it to a linear system in standard form, solve the system:

$$
\begin{aligned}
& x^{\prime \prime}+y^{\prime}=2 \\
& x^{\prime}+y^{\prime}=1
\end{aligned}
$$

28. A monopolist believes that the number of units $x(t)$ he can sell depends on the price $p(t)$ with respect to the relation: $x(t)=a_{0} p(t)+b_{0}+c_{0} p^{\prime}(t)$. His cost of producing at rate x is: $C(x)=b_{1} x+c_{1}$. Given the initial price $p(0)=p_{0}$ and required final price $p(T)=p_{1}$ find the price policy to maximize profits over the time path $0 \leq t \leq T$.
29. A monopolist believes that the number of units $x(t)$ he can sell depends on the price $p(t)$ with respect to the relation: $x(t)=2 p(t)+3 p^{\prime}(t)$. His cost of producing at rate x is: $C(x)=(1 / 4) x^{2}+(1 / 2) x+c_{1}$. Given the initial price $p(0)=10$ and required final price $p(2)=20$ find the price policy to maximize profits over the time path $0 \leq t \leq 2$.
30. Solve the system: $\begin{aligned} & x^{\prime}=y+x \\ & y^{\prime}=x-y\end{aligned}$.
31. Solve the system: $\begin{aligned} & x^{\prime \prime}=2 x^{\prime}+5 y \\ & y^{\prime}=-x^{\prime}-2 y\end{aligned}$ by bringing it to a canonical form.
32. Consider a country, which we shall call Home, which is open to a global free market in bonds. We refer to the rest of the world as Foreign and treat it as having a common currency. Let r be the interest rate in Home and r^{*} the interest rate in the Foreign. Let the price levels at Home and in Foreign be P and P^{*} let their natural logarithms be p and p^{*}. Let M be the stock of money in Home. The next relations hold:
$\frac{d q}{d t}=r-r^{*} \quad, \quad \frac{d p}{d t}=\sigma\left(q+p^{*}-p\right) \quad, \quad \frac{M}{P}=a e^{-\beta r}$
Form a system of differential equations with unknowns the quantities $p(t), q(t)$.
Solve the system and find conditions which guarantee that the system will be stable. Explain "economically" your results.

A principal P is compounded continuously with interest rate r.
(i) What is the rate of change of P ?
(ii) Solve for P at time t, i.e., $P(t)$, given $P(0)=P_{0}$.
33. (iii) If $P_{0}=£ 2,000$ and $r=7.5 \%$ annually, what is P after 5 years?
a. (Hint:

We know that an initial deposit, P_{0}, compounded continuously at a rate of r per cent per period will grow to

$$
P(t)=P_{0} e^{r t}
$$

Now assume that in addition to the interest received, $r P$, there is a constant rate of deposit, d. Thus

$$
\frac{d P}{d t}=r P+d
$$

)
34.

A simple model for a national economy is given by

$$
\begin{aligned}
I^{\prime} & =I-\alpha C \\
C^{\prime} & =\beta(I-C-G)
\end{aligned}
$$

where

I	denotes the national income,
C	denotes the rate of consumer spending, and
G	denotes the rate of government expenditure.

The model is restricted to $I, C, G \geq 0$, and the constants α, β satisfy $\alpha>1, \beta \geq 1$.

Suppose that the government expenditure is related to the national income according to $G=G_{0}+k I$, where G_{0} and k are positive constants.
Let $k=0$, and let $\left(I_{0}, C_{0}\right)$ denote the equilibrium point. Introduce the new variables $I_{1}=I-I_{0}$ and $C_{1}=C-C_{0}$.

Find analytic expressions for I_{1}, C_{1}.
35. Draw the phase portrait of the differential equations:

$$
\begin{aligned}
& \text { (i) } y^{\prime}=e^{3-y}-1 \\
& \text { (ii) } y^{\prime}=(3+2 y)(y-2)(1-3 y)
\end{aligned}
$$

36. Draw the phase portrait of the differential equations:
(i) $y^{\prime}=\ln \left(y^{2}-1\right)$
(ii) $y^{\prime}=\frac{(2-y)(3 y+1)}{(y+2)}$
37. Draw the phase portrait of the differential equations:
(i) $y^{\prime}=(y-1) \sin y \quad, \quad y \in[-2 \pi, 2 \pi]$
(ii) $y^{\prime}=y^{3}+y^{2}-y-1$
38. We have the differential equation: $y^{\prime}=f\left(a y^{2}+b y\right)$, where f is a differentiable function with $f(0)=0$. Find the conditions which guarantee that the set $(0,+\infty)$ is a region of attraction for an appropriate equilibrium point.
39. Let $p(t)$ be a price flow. We consider that $p^{\prime}(t)$ is a function of the excess demand $D(p)-S(p), \mathrm{D}(\mathrm{p})$ the demand function and $\mathrm{S}(\mathrm{p})$ the supply one. In other words, $p^{\prime}(t)=H[D(p(t))-S(p(t))]$. We assume that H is strictly increasing and $H(0)=0$. Let p^{e} be the equilibrium point, show that it is asymptotically stable.
40. We have the differential equation: $y^{\prime}=\alpha y^{2}+\beta y+\gamma$. Find conditions, if any, which guarantee the asymptotic stability of the equilibrium points.
41. By transforming the next equations to a system of differential equations show that:
(i) $x^{\prime \prime}+a x^{\prime}+b x=0$ is stable if and only if $a>0$ and $b>0$.
(ii) the equilibrium point of the equation $x^{\prime \prime}+\kappa x=\lambda, \quad \kappa \neq 0$ is always unstable.
42. Draw the phase portrait of the following system: $\begin{aligned} & x^{\prime}=y(1-x) \\ & y^{\prime}=-x(1-y)\end{aligned}$
43. Draw the phase portrait of the following system: $\begin{aligned} & x^{\prime}=-x+y^{2} \\ & y^{\prime}=-y(x+1)\end{aligned}$

$$
y^{\prime}=x
$$

45. Draw the phase portrait of the following system:

$$
x^{\prime}=y
$$

$$
y^{\prime}=-x+5 y
$$

46. Draw the phase portrait of the following system: $\begin{aligned} & x^{\prime}=x(6-2 y) \\ & y^{\prime}=y(2 x-4)\end{aligned}$
47. Draw the phase portrait of the following systems:

$$
\begin{aligned}
& x^{\prime}=-2 x-5 y, \quad y^{\prime}=2 x+2 y \\
& x^{\prime}=x+3 y, \quad y^{\prime}=-6 x-5 y
\end{aligned}
$$

48. Draw the phase portrait of the following system:

$$
\begin{aligned}
& x^{\prime}=2 x y-2 y^{2} \\
& y^{\prime}=x-y^{2}+2
\end{aligned}
$$

49. A prey-predatory system may be modelled by:

$$
\&=x_{1}\left(1-x_{1}-a x_{2}\right) \quad, \quad \not \&=b x_{2}\left(x_{1}-x_{2}\right)
$$

Where the variables x_{1} and x_{2} denote the prey and predator populations respectively, a and b are positive constants. Find all the equilibrium points and determine their type. Construct the phase portrait in the first quadrant when $a=1, b=0.5$ and discuss the qualitative behavior of the system.
50. A prey-predatory system may be modelled by:

$$
x^{\prime}=(a-b y) x \quad, \quad y^{\prime}=(c x-d) y-h \quad, a, b>0
$$

Where, x represents the number of hares and y the amount of foxes into an isolated forest. Construct the phase portrait in the first quadrant when $a=0.4, b=0.01, c=0.003, d=0.3$, $h=10$. What do you think it says about the forest?
51. Draw the phase portrait of the following systems:
a.

$$
x^{\prime}=-x+2 x^{3}+y, \quad y^{\prime}=-x-y
$$

b.

$$
x^{\prime}=2 x-x y, \quad y^{\prime}=2 x^{2}-y
$$

c.

$$
x^{\prime}=y, \quad y^{\prime}=-x+\frac{1}{16} x^{5}-y
$$

52. Examine, for the various values of μ, the phase portrait of the system:
$x^{\prime}=\mu x+y$
$y^{\prime}=2 x+(\mu-1) y$
53. We have the next IS-LM model

$$
\begin{aligned}
& e=a+c(1-t) y-h r+j y \\
& m^{d}=k y-u r \\
& \&=A(e-y) \\
& \&=\beta\left(m^{d}-m_{0}\right) \\
& a>0,0<c<1,0<t<1, h>0, j>0 \\
& k>0, u>0, A>0, \beta>0
\end{aligned}
$$

Where the quantities are as in the lesson. Explain what j is. Study the phase portrait and deduce, through it, some conclusions.
54. Draw the phase portrait of the following differential equations:

$$
\begin{aligned}
& y^{\prime}=(y-1)(y+2)(y-3) e^{y} \\
& y^{\prime}=e^{y} \cos y \\
& y^{\prime}=\frac{y(y-1)}{y^{2}+1}
\end{aligned}
$$

55. Study the dynamics of the following growth population differential equation for the various values of the parameters,

$$
y^{\prime}=r y^{a}\left(1-\frac{y}{K}\right), \quad a \geq 1
$$

56. We assume that the production Y depends on the capital K and the labor L. That is, $Y=f(K, L)$, where f is a given continuous and first degree homogeneous function. We also assume that the capital accumulation follows the rule: $\dot{K}=\theta Y, \theta>0$ and the labor grows at rate $\rho: \dot{L}=\rho L$. Form a differential equation indicating the evolution of the quantity: $\kappa=\frac{K}{L}$. Find conditions that guarantee that the equilibrium point of the above equation is asymptotical stable.
57. Draw the phase portrait of the following linear system:

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=-x+5 y
\end{aligned}
$$

58. Draw the phase portrait of the following nonlinear system: $\begin{aligned} & x^{\prime}=x(6-2 y) \\ & y^{\prime}=y(2 x-4)\end{aligned}$
59. Draw the phase portrait of the following nonlinear system: $\begin{aligned} & x^{\prime}=2 x y-2 y^{2} \\ & y^{\prime}=x-y^{2}+2\end{aligned}$
60. Draw the phase portrait of the following system:

$$
\begin{aligned}
& x_{1}^{\prime}=5 x_{1}-x_{1}^{2}-x_{1} x_{2} \\
& x_{2}^{\prime}=-2 x_{2}+x_{1} x_{2}
\end{aligned}
$$

61. For each of the following systems, show that the system has no limit cycles:
(i) $\dot{x}_{1}=1-x_{1} x_{2}{ }^{2} \quad, \quad \dot{x}_{2}=x_{1}$
(ii) $\dot{x}_{1}=x_{1} x_{2} \quad, \quad \dot{x}_{2}=x_{2}$
62. The relations of an open access fishery model are:

Fishery production function	(1) $\mathrm{H}=\mathrm{eES}$
Net (of harvest) growth of fish stock	(2) $\quad \frac{\mathrm{dS}}{\mathrm{dt}}=\mathrm{G}(\mathrm{S})=\mathrm{g}\left(1-\frac{\mathrm{S}}{\mathrm{S}_{\mathrm{MAX}}}\right) \mathrm{S}-\mathrm{H}$
Fishery profit	(3) $\mathrm{NB}=\mathrm{B}-\mathrm{C}=\mathrm{PeES}-\mathrm{wE}$
Open access entry rule	(4) $\frac{\mathrm{dE}}{\mathrm{dt}}=\delta \cdot(\mathrm{NB})$

Where H defines the fishery harvest, S the stock, E the effort, NB the profit and e, P, g, δ, w parameters. Using the above equations form a system of two differential equations with unknowns the quantities S and E. Substitute to the above system the values:

$$
\begin{gathered}
g=0.15 \\
S_{M A X}=1 \\
e=0.015 \\
P=200 \\
\delta=0.4 \\
w=0.6
\end{gathered}
$$

And draw the phase portrait. Give economic explanation.
64. Consider a competitive market composed of two commodities with prices p_{1} and p_{2} respectively. If D_{i} and $S_{i}, i=1,2$, denote the demand and supply function for each commodity, then define $E_{i}=D_{i}-S_{i}$ as the excess demand functions. The dynamics of the system are described as prices changing in proportion to their excess demand, formally: $\frac{d p_{i}}{d t}=k_{i} E_{i}$. If $E_{1}=3-6 p_{1}+3 p_{2}, E_{2}=16+4 p_{1}-8 p_{2}$, $k_{1}=2, k_{2}=3$ draw the phase portrait of the system. Give an economical interpretation of your mathematical results.
65. The growth rate of any economical function $y(t)$, is defined as follows: $r_{y}=\frac{\frac{d y}{d t}}{y}$. We define the next functions of time (flows):
Q: The output level. $\quad M_{d}$: the money demand
p : The price level. $\quad M_{s}$: the money supply
Y : The national product.
ρ : the rate of inflation, i.e. $\rho=r_{p}$
μ : the money demand-supply ratio, i.e. $\mu=\frac{M_{d}}{M_{s}}$.
If $Y=p Q, M_{d}=a Y, \quad a>0$, and $\frac{d \rho}{d t}=h\left(\frac{M_{S}-M_{d}}{M_{d}}\right), \quad h>0$, then:

$$
\frac{d \rho}{d t}=h(1-\mu)
$$

$\frac{d \mu}{d t}=\left(\rho+r_{Q}-r_{M_{s}}\right) \mu$

Draw the phase portrait of the above system. Give an economical explanation of your results.
66. In a duopoly model we have:

$$
\begin{aligned}
& p(t)=20-5 Q(t) \\
& Q(t)=q_{1}(t)+q_{2}(t) \\
& T C_{1}(t)=4 q_{1}^{2}(t) \\
& T C_{2}(t)=4 q_{2}^{2}(t)
\end{aligned}
$$

We assume that the rates of change of the outputs of the Firms, are proportional to the differences between their desired levels and the actual levels. That is:
$\begin{array}{lll}\text { Firm 1 } & \frac{d q_{1}(t)}{d t}=k_{1}\left(x_{1}(t)-q_{1}(t)\right) & k_{1}>0 \\ \text { Firm 2 } & \frac{d q_{2}(t)}{d t}=k_{2}\left(x_{2}(t)-q_{2}(t)\right) & k_{2}>0\end{array}$
The desired level of output $\left(x_{1}(t), x_{2}(t)\right)$ for each firm, is the output level that maximises profits under the assumption that the other firm does not alter its output level. If $k_{1}=k_{2}=0.2$, contruct the phase diagram of the system. Give economical explanation.
67. Solve by optimal control the problem:

$$
\begin{aligned}
& \max
\end{aligned} \int_{1}^{5}\left(u x-u^{2}-x^{2}\right) d t .
$$

69. . Solve by optimal control:

$$
\begin{array}{lc}
\max & \int_{0}^{2}\left(2 x-u^{2}-3 u\right) d t \\
\text { s.t. } & x^{\prime}=x+u \\
& x(0)=5
\end{array}
$$

and the control constraint $u(t) \in[0,2]$
70. By using the Hamilton-Jacobi-Bellman equation solve the problem:
$\operatorname{m} \imath v \int_{0}^{\mathrm{T}}\left(c_{1} u^{2}+c_{2} x\right) d t$
s.t. $\quad x^{\prime}=u, \quad x(0)=0, \quad x(T)=B$
(Hint: try a solution of the form: $J(t, x)=a+b x t+\frac{h x^{2}}{t}+k t^{3}$)
71. We get the model:

$$
\begin{array}{ll}
\max & \int_{0}^{T} U(C(t)) e^{-\rho t} d t \\
\text { s.t. } & W^{\prime}(t)=r W(t)-C(t), \quad W(0)=W_{0}
\end{array}
$$

72. where $\mathrm{W}(\mathrm{t})=$ Wealth, $\mathrm{C}(\mathrm{t})=$ Consumption rate, $\mathrm{U}(\mathrm{C})=$ Utility of Consumption, $\mathrm{T}=$ Terminal Time, $W_{0}=$ Initial Wealth, $\rho=$ Discount Rate, $r=$ Interest Rate. By using optimal control write down the necessary conditions for solving the problem.
73. Solve by optimal control:

$$
\begin{array}{lll}
\max _{u} & \int_{0}^{1} 5 x d x \\
\text { s.t. } & x^{\prime}=x+u \\
& x(0)=2, \quad x(1) & \text { free } \\
& u(t) \in[0,3] &
\end{array}
$$

74. Solve by optimal control:
$\max _{u} \int_{0}^{1} 5 x d x$
s.t. $\quad x^{\prime}=2 x-u$

$$
\begin{aligned}
& x(0)=2, \quad x(1) \quad \text { free } \\
& u(t) \in[0,3]
\end{aligned}
$$

(a) By applying the maximum principle, find $c(t)$ to maximize:

$$
V=\int_{0}^{T} \ln (c(t)) d t
$$

75.

$$
\begin{aligned}
& \text { s.t. } \quad s^{\prime}(t)=-c(t) \\
& s(0)=s_{O}, \quad s(T)=s_{T} \quad \text { with } \quad s_{O}>s_{T}
\end{aligned}
$$

(b) By applying the maximum principle, find $c(t)$ to maximize:

$$
V=\int_{0}^{T} e^{-t} \ln (c(t)) d t
$$

76. s.t. $s^{\prime}(t)=-c(t)$

$$
s(0)=s_{O}, \quad s(T)=s_{T} \quad \text { with } \quad s_{O}>s_{T}
$$

Compare the two results.

$$
\begin{array}{ll}
\max _{u} & \int_{0}^{1} u^{2} d t \\
\text { s.t. } & x^{\prime}=-u \\
& x(0)=1, \quad x(1) \geq 1
\end{array}
$$

77. Solve the problem:
78. Solve the optimal control problem:

$$
\begin{array}{ll}
\min _{u} & \int_{0}^{1} d t \\
\text { s.t. } & x_{1}^{\prime}=2 x_{2} \\
& x_{2}{ }^{\prime}=x_{1}-u \\
& x_{1}(0)=0, \quad x_{2}(0)=6 \\
& x_{1}(1)=1, \quad x_{2}(1)=2 \\
& |u(t)| \leq 1
\end{array}
$$

79. Solve by optimal control:

$$
\begin{array}{lc}
\max & \int_{0}^{2}\left(2 x-u^{2}-3 u\right) d t \\
\text { s.t. } & x^{\prime}=x+u \\
& x(0)=5
\end{array}
$$

80. A water reservoir is leaking and its water height $x(t)$ is governed by $x^{\prime}(t)=-0.1 x(t)+u(t)$ with $x(0)=10$, where the control function $u(t)$ denotes the net inflow at time t and $0 \leq u(t) \leq 3$. Find the optimal control which maximizes the quantity

$$
\int_{0}^{100}(x-5 u) d t
$$

81. Use optimal control to find the shortest distance between the point A and the point B.

$$
\max _{u} \int_{0}^{1} u^{2} d t
$$

82. Solve the problem:

$$
\begin{array}{ll}
\text { s.t. } & x^{\prime}=-u \\
& x(0)=1, \quad x(1)=0
\end{array}
$$

83. Solve the optimal control problem:

$$
\begin{array}{ll}
\min _{u} & \int_{0}^{t_{1}} d t \\
\text { s.t. } & x_{1}{ }^{\prime}=x_{2} \\
& x_{2}{ }^{\prime}=x_{1}+u \\
& x_{1}(0)=0, \quad x_{2}(0)=6 \\
& |u(t)| \leq 1
\end{array}
$$

84. Consider the optimal growth problem:

$$
\begin{aligned}
\max _{C} & \int_{0}^{+\infty} 2 e^{-0.02 t} \sqrt{C} d t \\
\text { s.t. } & K^{\prime}=K^{1 / 4}-0.06 K-C \\
& K(0)=2
\end{aligned}
$$

Study it by using phase-space analysis.
85. Determine the control $u(t)$ which minimizes $\int_{t_{o}}^{t_{1}} x^{2} d x$, with $x^{\prime}=-a x+b u$, a and b positive constants, x_{0} given, and $|u(t)| \leq 1$, by employing (a) the maximum principle (b) dynamic programming.
86. Let $I=\int_{0}^{1}\left(3 x^{2}+u^{2}\right) d t$ be a cost function over the period [0,1] to be minimized. We suppose that $x^{\prime}=x+u, x(0)=1$. Write Bellman's equation associated with the above functional. Assuming that the solution to Bellman's equation in part is quadratic in $\mathrm{x}: J(x, t)=x^{2} J(1, t)$, find a solution to Bellman's equation.
87. Let $I=\int_{0}^{1}\left(3 x^{2}+u^{2}\right) d t$ be a cost function over the period [0,1] to be minimized. We suppose that $x^{\prime}=x+u, x(0)=1$. Write Bellman's equation associated with the above functional. Assuming that the solution to Bellman's equation in part is quadratic in $\mathrm{x}: J(x, t)=x^{2} J(1, t)$, find a solution to Bellman's equation.

