EXERCISES

DYNAMICAL MATHEMATICS

St. Kotsios

2.

$$t\dot{x} = x(1-t) \quad , \quad (t_0, x_0) = (1, 1/e)$$

1. Solve the equations: $x\dot{x} = t \quad , \quad (t_0, x_0) = (\sqrt{2}, 1)$

Solve the differential equations:

(a)
$$(x^{2} + x)y' = 2y + 1$$
 (b) $y' = 2\sqrt{y} \ln x$, $y(e) = 1$
(c) $y' - \frac{3y}{x} = x$ (e) $\frac{ds}{dt} = \frac{s}{t} - \frac{t}{s}$
(c) $x^{2}y' = y^{2} + xy$

3. Solve the differential equations:

(a) $y'x^3 = 2y$ (b) $y' = 2\sqrt{y} \ln x$, y(e) = 1(c) $(1+x^2)y' = 1+y^2$ (e) $t^2 \frac{ds}{dt} = 2ts-3$, s(-1) = 1(c) $x^2y' = y^2 + xy$

4. Solve the differential equations:

 $(a) \quad y'+y=x-e^x$

$$(b) \quad y' + \frac{1}{x}y = x^2$$

- 5. Solve the differential equations:
 - (a) $2xy'+y^2-1=0$
 - (b) $y' + y^2 e^x = 0$, y(0) = 1
- 6. Solve the differential equations:

(a)
$$xy' - y + x^3y^2 = 0$$

$$(b) \quad y'-2ye^x = 2\sqrt{ye^x}$$

7. Solve the differential equations:

(a)
$$y^{(4)}(t) + y''(t) = 4$$

(b) $y''(t) + y'(t) + 3y(t) = 2t\sin(3t)$, $y(1) = 0$, $y'(1) = 1$

8. Solve the differential equations:

(a)
$$y'' + y' - 2y = 6x^2$$
, (b) $y'' + 2y' + y = (x-1)e^x$
(c) $y''' - y' = 1$, (d) $\frac{d^2s}{dt^2} + 2\frac{ds}{dt} + 2s = 2t^3 - 2$

9. Solve the differential equations:

(a)
$$y''+y'-2y = e^x$$
, (b) $y''+2y'+y = x$

(c)
$$y'''-y'=5$$
, (d) $\frac{d^2x}{dt^2}+k^2x=2k\sin kt$

- 10. Solve the differential equations:
- (a) $y'' = y' + (y')^2$ (b) $xy' + y \ln\left(\frac{y}{x}\right) = 0$ (c) $yy'' - 2(y')^2 = 0$
- 11. Let X(t) denotes the national product, K(t) the capital stock, L(t) the labor. Suppose that for any positive time instant: $X = AK^{1-a}L^a$, $\dot{K} = sX$, $L = L_0e^{\lambda t}$, $K(0) = K_0$. Find an expression for K(t).
- 12. Solve the differential equations:
 - (a) $y'' = y' + (y')^2$ (b) $xy' + y \ln\left(\frac{y}{x}\right) = 0$
- 13. Solve the equations: $ty^{k+}(1-t)y = e^{2t}$, $tx^{k-} = 4x + 2e^t\sqrt{x}$, x > 0
- 14. In a macroeconomic model we have:

$$\begin{split} Y(t) = C(t) + I(t) \quad , \quad I(t) = k\dot{C}(t) \quad , \quad C(t) = aY(t) + b \\ \text{Compute the limit} : \lim_{t \to \infty} \frac{Y(t)}{I(t)} \end{split}$$

- 15. Solve completely the equation: x'' + 4x = 4t + 1, $x(\pi/2) = 0, x'(\pi/2) = 0$.
- 16. An economic model due to T. Haavelmo leads to the differential equation: $p''(t) = \gamma(a - \alpha)p(t) + k$. Solve the equation. Is it possible to choose the constants so that the equation is stable?

17. Solve the system:
$$x' = -2x + 5y$$

 $y' = -2x + 4y$

$$x'+3x + y = 0$$

18. Solve the system: $y'-x + y = 0$
 $x(0) = 1, y(0) = 1$

19. Solve the system:

$$\frac{dx}{dt} + y = 0$$
$$\frac{dx}{dt} - \frac{dy}{dt} = 3x + y$$

- 20. Transform the equation y'' y' 2y = 0 to a system of differential equations and solve it.
- 21. Transform the equation y''-5y'+6y=0 to a system of differential equations and solve it.
- 22. Transform the equation y''-2y'+3y=0 to a system of differential equations and solve it.
- 23. We suppose that the price of a good is a function over time: p(t). We also have the next demand and supply functions:

$$\begin{split} D(t) &= \alpha - \beta \, p(t) + m p'(t) + n p''(t) & (\alpha, \beta > 0) \\ S(t) &= -\gamma + \delta \, p(t) & (\gamma, \delta > 0) \\ \text{If the market follows the rule: } \frac{dp}{dt} &= j(D-S) \quad , \quad (j > 0). \text{ Find the price path} \\ \text{and its equilibrium point, if any. Find the condition which ensures an oscillating price path. Would we had an oscillated price path if $n > 0$?$$

24. Find the extrema of the integrals:

(a)
$$\int_{0}^{2} [2ye^{t} + y^{2} + (y^{t})^{2}]dt$$
 subject to $y(0) = 2$ and $y(2) = 2e^{2} + e^{-2}$
(b) $\int_{1}^{2} [x + tx^{t} - (x^{t})^{2}]dt$ subject to $x(1) = 3$ and $x(2) = 4$

25. Find the extremals, if any, of the integrals:

(a)
$$\int_{0}^{1} [ty+2(y')^{2}]dt$$
, $y(0) = 1$, $y(1) = 2$
(b) $\int_{0}^{1} tyy'dt$, $y(0) = 0$, $y(1) = 1$
(c) $\int_{0}^{2} (y^{2}+t^{2}y')dt$, $y(0) = 0$, $y(2) = 2$

26. Find the extremals, if any, of the integrals:

(a)
$$\int_{0}^{2} [ty + (y')^{2}] dt$$
, $y(0) = 1$, $y(2) = 0$
(b) $\int_{0}^{a} (y'^{2} + 2yy' - 16y^{2}) dt$, $y(0) = 0$, $y(a) = 0$
(c) $\int_{1}^{2} \frac{x^{3}}{y'^{2}} dx$, $y(1) = 1$, $y(2) = 4$

- 27. By transforming it to a linear system in standard form, solve the system: x''+y'=2x'+y'=1
- 28. A monopolist believes that the number of units x(t) he can sell depends on the price p(t) with respect to the relation: $x(t) = a_0 p(t) + b_0 + c_0 p'(t)$. His cost of producing at rate x is: $C(x) = b_1 x + c_1$. Given the initial price $p(0) = p_0$ and required final price $p(T) = p_1$ find the price policy to maximize profits over the time path $0 \le t \le T$.
- 29. A monopolist believes that the number of units x(t) he can sell depends on the price p(t) with respect to the relation: x(t) = 2p(t) + 3p'(t). His cost of producing at rate x is: $C(x) = (1/4)x^2 + (1/2)x + c_1$. Given the initial price p(0) = 10 and required final price p(2) = 20 find the price policy to maximize profits over the time path $0 \le t \le 2$.

30. Solve the system:
$$\frac{x' = y + x}{y' = x - y}$$

- 31. Solve the system: $\frac{x'' = 2x' + 5y}{y' = -x' 2y}$ by bringing it to a canonical form.
- 32. Consider a country, which we shall call Home, which is open to a global free market in bonds. We refer to the rest of the world as Foreign and treat it as having a common currency. Let r be the interest rate in Home and r^* the interest rate in the Foreign. Let the price levels at Home and in Foreign be P and P^* let their natural logarithms be p and p^* . Let M be the stock of money in Home. The next relations hold:

$$\frac{dq}{dt} = r - r^* \quad , \quad \frac{dp}{dt} = \sigma(q + p^* - p) \quad , \quad \frac{M}{P} = ae^{-\beta r}$$

Form a system of differential equations with unknowns the quantities p(t), q(t). Solve the system and find conditions which guarantee that the system will be stable. Explain "economically" your results.

A principal P is compounded continuously with interest rate r.

- (i) What is the rate of change of *P*?
- (ii) Solve for P at time t, i.e., P(t), given $P(0) = P_0$.

(iii) If $P_0 = \pounds 2,000$ and r = 7.5% annually, what is *P* after 5 years?

a. (Hint:

We know that an initial deposit, P_0 , compounded continuously at a rate of r per cent per period will grow to

$$P(t) = P_0 e^{rt}$$

Now assume that in addition to the interest received, rP, there is a constant rate of deposit, d. Thus

$$\frac{dP}{dt} = rP + d$$

)

34.

A simple model for a national economy is given by

$$I' = I - \alpha C$$

$$C' = \beta (I - C - G),$$

where

I denotes the national income,

C denotes the rate of consumer spending, and

G denotes the rate of government expenditure.

The model is restricted to $I, C, G \ge 0$, and the constants α, β satisfy $\alpha > 1, \beta \ge 1$.

Suppose that the government expenditure is related to the national income according to $G = G_0 + kI$, where G_0 and k are positive constants.

Let k = 0, and let (I_0, C_0) denote the equilibrium point. Introduce the new variables $I_1 = I - I_0$ and $C_1 = C - C_0$.

Find analytic expressions for I_1 , C_1 .

35. Draw the phase portrait of the differential equations:

(i)
$$y' = e^{3-y} - 1$$

(ii) $y' = (3+2y)(y-2)(1-3y)$

36. Draw the phase portrait of the differential equations:

(i)
$$y' = \ln(y^2 - 1)$$

(ii) $y' = \frac{(2 - y)(3y + 1)}{(y + 2)}$

37. Draw the phase portrait of the differential equations:

(i)
$$y' = (y-1)\sin y$$
, $y \in [-2\pi, 2\pi]$
(ii) $y' = y^3 + y^2 - y - 1$

38. We have the differential equation: $y' = f(ay^2 + by)$, where f is a differentiable function with f(0) = 0. Find the conditions which guarantee that the set $(0, +\infty)$ is a region of attraction for an appropriate equilibrium point.

- 39. Let p(t) be a price flow. We consider that p'(t) is a function of the excess demand D(p) S(p), D(p) the demand function and S(p) the supply one. In other words, p'(t) = H[D(p(t)) S(p(t))]. We assume that H is strictly increasing and H(0) = 0. Let p^e be the equilibrium point, show that it is asymptotically stable.
- 40. We have the differential equation: $y' = \alpha y^2 + \beta y + \gamma$. Find conditions, if any, which guarantee the asymptotic stability of the equilibrium points.
- 41. By transforming the next equations to a system of differential equations show that:
 (i) x"+ ax'+ bx = 0 is stable if and only if a > 0 and b > 0.
 (ii) the equilibrium point of the equation x"+ κx = λ, κ ≠ 0 is always unstable.
- 42. Draw the phase portrait of the following system: $\frac{x' = y(1-x)}{y' = -x(1-y)}$

43. Draw the phase portrait of the following system: $\begin{aligned} x' &= -x + y^2 \\ y' &= -y(x+1) \end{aligned}$

44. Draw the phase portrait of the following system: $\begin{aligned} x' &= -2y^3 \\ y' &= x \end{aligned}$

- 45. Draw the phase portrait of the following system: $\begin{aligned} x' &= y \\ y' &= -x + 5y \end{aligned}$
- 46. Draw the phase portrait of the following system: $\frac{x' = x(6 2y)}{y' = y(2x 4)}$
- 47. Draw the phase portrait of the following systems:

$$x' = -2x - 5y, y' = 2x + 2y$$

 $x' = x + 3y, y' = -6x - 5y$

- 48. Draw the phase portrait of the following system: $\begin{aligned} x' &= 2xy 2y^2 \\ y' &= x y^2 + 2 \end{aligned}$
- 49. A prey-predatory system may be modelled by:

$$\mathbf{x}_{1} = x_{1}(1 - x_{1} - ax_{2}) \quad , \quad \mathbf{x}_{2} = bx_{2}(x_{1} - x_{2})$$

Where the variables x_1 and x_2 denote the prey and predator populations respectively, a and b are positive constants. Find all the equilibrium points and determine their type. Construct the phase portrait in the first quadrant when a=1, b=0.5 and discuss the qualitative behavior of the system.

50. A prey-predatory system may be modelled by: x' = (a-by)x, y' = (cx-d)y-h, a,b > 0

Where, x represents the number of hares and y the amount of foxes into an isolated forest. Construct the phase portrait in the first quadrant when a=0.4, b=0.01, c=0.003, d=0.3, h=10. What do you think it says about the forest?

51. Draw the phase portrait of the following systems:

a. $x' = -x + 2x^3 + y$, y' = -x - y

b.
$$x' = 2x - xy, \quad y' = 2x^2 - y$$

c.
$$x' = y, \quad y' = -x + \frac{1}{16}x^5 - y$$

52. Examine, for the various values of μ , the phase portrait of the system:

- $x' = \mu x + y$ $y' = 2x + (\mu 1)y$
- 53. We have the next IS-LM model

$$e = a + c(1-t)y - hr + jy$$

$$m^{d} = ky - ur$$

$$g = A(e - y)$$

$$g = \beta(m^{d} - m_{0})$$

$$a > 0, 0 < c < 1, 0 < t < 1, h > 0, j > 0$$

$$k > 0, u > 0, A > 0, \beta > 0$$

Where the quantities are as in the lesson. Explain what j is. Study the phase portrait and deduce, through it, some conclusions.

54. Draw the phase portrait of the following differential equations:

$$y' = (y-1)(y+2)(y-3)e^{y}$$

$$y' = e^{y} \cos y$$

$$y' = \frac{y(y-1)}{y^{2}+1}$$

55. Study the dynamics of the following growth population differential equation for the various values of the parameters,

$$y' = ry^a \left(1 - \frac{y}{K}\right), \quad a \ge 1$$

- 56. We assume that the production Y depends on the capital K and the labor L. That is, Y=f (K, L), where f is a given continuous and first degree homogeneous function. We also assume that the capital accumulation follows the rule: $\vec{K} = \theta Y$, $\theta > 0$ and the labor grows at rate ρ : $\vec{L} = \rho L$. Form a differential equation indicating the evolution of the quantity: $\kappa = \frac{K}{L}$. Find conditions that guarantee that the equilibrium point of the above equation is asymptotical stable.
- 57. Draw the phase portrait of the following linear system: $\begin{aligned} x' &= y \\ y' &= -x + 5y \end{aligned}$
- 58. Draw the phase portrait of the following <u>nonlinear</u> system: $\begin{aligned} x' &= x(6-2y) \\ y' &= y(2x-4) \end{aligned}$
- 59. Draw the phase portrait of the following <u>nonlinear</u> system: $\begin{aligned} x' &= 2xy 2y^2 \\ y' &= x y^2 + 2 \end{aligned}$
- 60. Draw the phase portrait of the following system:

$$\begin{aligned} x_1' &= 5x_1 - x_1^2 - x_1x_2\\ x_2' &= -2x_2 + x_1x_2. \end{aligned}$$

61. For each of the following systems, show that the system has no limit cycles: (i) $\dot{x}_1 = 1 - x_1 x_2^2$, $\dot{x}_2 = x_1$ (ii) $\dot{x}_1 = x_1 x_2$, $\dot{x}_2 = x_2$

Fishery production function	(1)	H = eES
Net (of harvest) growth of fish stock	(2)	$\frac{\mathrm{dS}}{\mathrm{dt}} = \mathrm{G}(\mathrm{S}) = \mathrm{g}\left(1 - \frac{\mathrm{S}}{\mathrm{S}_{\mathrm{MAX}}}\right) \mathrm{S} - \mathrm{H}$
Fishery profit	(3)	NB = B - C = PeES - wE
Open access entry rule	(4)	$\frac{\mathrm{dE}}{\mathrm{dt}} = \delta \cdot (\mathrm{NB})$

62. The relations of an open access fishery model are:

Where H defines the fishery harvest, S the stock, E the effort, NB the profit and e,P,g,δ,w parameters. Using the above equations form a system of two differential equations with unknowns the quantities S and E. Substitute to the above system the values:

$$g = 0.15$$

$$S_{MAX} = 1$$

$$e = 0.015$$

$$P = 200$$

$$\delta = 0.4$$

$$w = 0.6$$

And draw the phase portrait. Give economic explanation.

64. Consider a competitive market composed of two commodities with prices p_1 and p_2 respectively. If D_i and S_i , i = 1, 2, denote the demand and supply function for each commodity, then define $E_i = D_i - S_i$ as the excess demand functions. The dynamics of the system are described as prices changing in proportion to their excess demand, formally: $\frac{dp_i}{dt} = k_i E_i$. If $E_1 = 3 - 6p_1 + 3p_2$, $E_2 = 16 + 4p_1 - 8p_2$, $k_1 = 2, k_2 = 3$ draw the phase portrait of the system. Give an economical interpretation of your mathematical results.

65. The growth rate of any economical function y(t), is defined as follows: $r_y = \frac{\frac{dy}{dt}}{\frac{dt}{y}}$. We define the part f

We define the next functions of time (flows):

Q: The output level. M_d : the money demand

 M_{s} : the money supply p: The price level.

Y: The national product.

ρ: the rate of inflation, i.e. $ρ = r_p$

 μ : the money demand-supply ratio, i.e. $\mu = \frac{M_d}{M_s}$.

If
$$Y = pQ$$
, $M_d = aY$, $a > 0$, and $\frac{d\rho}{dt} = h\left(\frac{M_S - M_d}{M_d}\right)$, $h > 0$, then:
Show that: $\frac{d\rho}{dt} = h(1-\mu)$
 $\frac{d\mu}{dt} = (\rho + r_Q - r_{M_s})\mu$

Draw the phase portrait of the above system. Give an economical explanation of your results.

66. In a duopoly model we have:

$$p(t) = 20 - 5Q(t)$$

$$Q(t) = q_1(t) + q_2(t)$$

$$TC_1(t) = 4q_1^2(t)$$

$$TC_2(t) = 4q_2^2(t)$$

We assume that the rates of change of the outputs of the Firms, are proportional to the differences between their desired levels and the actual levels. That is:

Firm 1
$$\frac{dq_1(t)}{dt} = k_1(x_1(t) - q_1(t))$$
 $k_1 > 0$
Firm 2 $\frac{dq_2(t)}{dt} = k_2(x_2(t) - q_2(t))$ $k_2 > 0$

The desired level of output $(x_1(t), x_2(t))$ for each firm, is the output level that maximises profits under the assumption that the other firm does not alter its output level. If $k_1 = k_2 = 0.2$, contruct the phase diagram of the system. Give economical explanation.

67. Solve by optimal control the problem:

$$\max \int_{1}^{5} (ux - u^{2} - x^{2})dt$$

68. s.t. $x' = x + u$, $x(1) = 2$, $x(5) = free$

69. Solve by optimal control:

$$\max \int_{0}^{2} (2x - u^{2} - 3u) dt$$

s.t.
$$x' = x + u$$
$$x(0) = 5$$

and the control constraint $u(t) \in [0, 2]$

70. By using the Hamilton-Jacobi-Bellman equation solve the problem:

$$m \iota v \quad \int_{0}^{T} (c_1 u^2 + c_2 x) dt$$

s.t. $x' = u, \quad x(0) = 0, \quad x(T) = B$

(Hint: try a solution of the form: $J(t,x) = a + bxt + \frac{hx^2}{t} + kt^3$)

71. We get the model:
$$\max_{0} \int_{0}^{T} U(C(t))e^{-\rho t} dt$$

s.t. $W'(t) = rW(t) - C(t), \quad W(0) = W_{0}$

- 72. where W(t)=Wealth, C(t)=Consumption rate, U(C)=Utility of Consumption, T= Terminal Time, W_0 =Initial Wealth, ρ = Discount Rate, r=Interest Rate. By using optimal control write down the necessary conditions for solving the problem.
 - 73. Solve by optimal control:

$$\max_{u} \int_{0}^{1} 5x dx$$

s.t. $x' = x + u$
 $x(0) = 2, x(1)$ free
 $u(t) \in [0,3]$

74. Solve by optimal control: $\frac{1}{2}$

$$\max_{u} \int_{0}^{1} 5x dx$$

s.t. $x' = 2x - u$
 $x(0) = 2, x(1)$ free
 $u(t) \in [0,3]$

(a) By applying the maximum principle, find c(t) to maximize:

V =
$$\int_{0}^{T} \ln(c(t))dt$$

S. $s.t. \quad s'(t) = -c(t)$
 $s(0) = s_{o}, \quad s(T) = s_{T} \quad with \quad s_{o} > s_{T}$

75

(b) By applying the maximum principle, find c(t) to maximize:

$$V = \int_{0}^{T} e^{-t} \ln(c(t))dt$$

76. s.t. s'(t) = -c(t)
s(0) = s_0, s(T) = s_T with s_0 > s_T

Compare the two results.

77. Solve the problem:

$$\max_{u} \int_{0}^{1} u^{2} dt$$

$$s.t. \quad x' = -u$$

$$x(0) = 1, \quad x(1) \ge 1$$

78. Solve the optimal control problem:

$$\min_{u} \int_{0}^{1} dt$$

s.t. $x_{1}' = 2x_{2}$
 $x_{2}' = x_{1} - u$
 $x_{1}(0) = 0, \quad x_{2}(0) = 6$
 $x_{1}(1) = 1, \quad x_{2}(1) = 2$
 $|u(t)| \le 1$

79. Solve by optimal control:

$$\max \int_{0}^{2} (2x - u^{2} - 3u)dt$$

s.t.
$$x' = x + u$$
$$x(0) = 5$$

80. A water reservoir is leaking and its water height x(t) is governed by

x'(t) = -0.1x(t) + u(t) with x(0) = 10, where the control function u(t) denotes the net inflow at time t and $0 \le u(t) \le 3$. Find the optimal control which maximizes the quantity

$$\int_{0}^{100} (x-5u)dt \, .$$

81. Use optimal control to find the shortest distance between the point A and the point B.

82. Solve the problem:

$$\max_{u} \int_{0}^{1} u^{2} dt$$

$$s.t. \quad x' = -u$$

$$x(0) = 1, \quad x(1) = 0$$

83. Solve the optimal control problem:

$$\min_{u} \int_{0}^{1} dt$$

s.t. $x_{1}' = x_{2}$
 $x_{2}' = x_{1} + u$
 $x_{1}(0) = 0, \quad x_{2}(0) = 6$
 $|u(t)| \le 1$

84. Consider the optimal growth problem:

$$\max_{C} \int_{0}^{+\infty} 2e^{-0.02t} \sqrt{C} dt$$

s.t. $K' = K^{1/4} - 0.06K - C$
 $K(0) = 2$

Study it by using phase-space analysis.

85. Determine the control u(t) which minimizes $\int_{t_o}^{t_1} x^2 dx$, with x' = -ax + bu, a and b positive constants, x_0 given, and $|u(t)| \le 1$, by employing (a) the maximum principle (b) dynamic programming.

86. Let $I = \int_{0}^{1} (3x^2 + u^2) dt$ be a cost function over the period [0,1] to be minimized. We

suppose that x' = x + u, x(0) = 1. Write Bellman's equation associated with the above functional. Assuming that the solution to Bellman's equation in part is quadratic in x: $J(x,t) = x^2 J(1,t)$, find a solution to Bellman's equation.

87. Let $I = \int_{0}^{1} (3x^2 + u^2) dt$ be a cost function over the period [0,1] to be minimized. We suppose that x' = x + u, x(0) = 1. Write Bellman's equation associated with the above functional. Assuming that the solution to Bellman's equation in part is quadratic in x: $J(x,t) = x^2 J(1,t)$, find a solution to Bellman's equation.