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Abstract

This paper develops a framework for measuring and decomposing TFP changes, within
the parametric approach, by using directly the estimated parameters of a profit function.
Two alternative relationships are derived for measuring and decomposing TFP changes via
a profit function based on two alternative definitions of the rate of technical change, i.e.,
input- and output-based. Initially a long-run equilibrium framework is assumed and then the
analysis is extended to the case of temporary equilibrium. The latter framework is applied
to US agriculture by estimating a translog profit function and analyzing TFP changes during
the period 1948–1994.
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1. Introduction

Accurate measures of Total Factor Productivity (TFP) and reliable decomposition of its
sources can be obtained within the parametric approach only if the appropriate structural and
behavioral assumptions are correctly specified (Callan, 1991). Structural assumptions refer
to returns to scale, technical change, productive efficiency, and capacity utilization, whereas
behavioral assumptions refer to the objective function of the firm(s), market structure, and
the importance of various regulations. Most efforts to improve the theoretical framework
of TFP measurement and attribution, using the parametric approach, have been based on
duality and particularly, on cost function.1 Denny et al. (1981) considered the role of
technical change and returns to scale in TFP changes for competitive, monopolistic and
regulated firms. Morrison (1986), Berndt and Fuss (1986), and Nadiri and Prucha (1990)
incorporated in addition the impact of capacity utilization in the case of competitive firms and
Morrison (1992) extended it to monopolistic firms. Bauer (1990) considered the impact
of productive efficiency on TFP changes for competitive and monopolistic firms, while
Granderson (1997) extended it to case of regulated firms.

Instead of a cost function, a profit function may also be used for parametrically measuring
and decomposing TFP changes, on the basis of a different behavioral assumption. If firms
are profit maximizing, then it may be more appropriate to use the dual profit function rather
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than the cost function to represent the firm’s or industry’s production decisions (Ray and
Segerson, 1991). This is more likely in the case of highly competitive industries, such
as services and small manufacturing, in which firms are price takers in input and output
markets and there are no production regulations.2 Use of the profit function allows both
output and input levels to be determined endogenously and to adjust accordingly to changes
in prices and technology. This feature overcomes a serious limitation of the cost function
which assumes that output levels are not affected by factor price changes and thus, the
indirect effect of these changes (via output levels) on factor demand is ignored (Lopez,
1982).3 All the above are obtained at the cost of a stronger behavioral assumption, however
profit maximization always implies cost minimization while the opposite is not necessarily
true.

There have been several previous attempts in developing a framework for measuring
and decomposing TFP growth by using a profit function, but with limited success. Levy
(1981), Ray and Segerson (1991) and Fox (1996) focused only on the measurement of the
rate of technical change via a profit function (i.e., the rate of profit augmentation). Other
studies relied on information obtained from an estimated profit function but then used either
index numbers (i.e., Jayneet al., 1994; Coelli, 1996), or a primal approach (i.e., Luh and
Stefanou, 1991, 1993; Lynde and Richmond, 1993; Fousekis and Papakonstantinou, 1997)
for measuring and decomposing TFP changes. Specifically, in their approach the estimated
profit function is used only to compute shadow values of quasi-fixed inputs, which are then
utilized in Divisia index and in a production function based decomposition of TFP growth,
respectively. Bernstein (1994) did the first attempt to develop a framework for measuring
and decomposing TFP growth within a profit function using dual concepts, but presented
only one side of the problem. In particular, he relied only on the input-based measure of the
rate of technical change, while as explained in the next section an output-based measure of
technical change may also be defined within a profit function framework.

The main objective of this paper is to develop a framework for measuring and decompos-
ing TFP changes, within the parametric approach, by using directly the estimated parameters
of a profit function. Due to the endogeneity of both inputs and outputs in a profit function
framework, two measures of the rate of technical change (i.e., input- and output-based) can
be defined and consequently, two alternative relationships are developed for decomposing
TFP changes. For the latter, we provide a slightly different, but easier to interpret, rela-
tionship than that developed by Bernstein (1994). It is also shown that the two alternative
decomposition relationships provide similar information about the sources of TFP changes,
but different quantitative results in the presence of non-constant returns to scale.

The rest of this paper proceeds as follows. Dual measures of the degree of returns to
scale and of the rate of technical change within a profit function framework are developed
in the next section. In the third section, we briefly examine (for purposes of completeness
only) the case of TFP decomposition within a long-run profit function framework and next
we provide a rigorous treatment of the case of temporary equilibrium by using a restricted
profit function, which is more relevant to empirical applications. An empirical application
of this framework is presented in the fourth section by estimating a translog profit function
for US agriculture using data of the period 1948–1994. Concluding remarks follow in the
last section.
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2. Dual Measures of Returns to Scale and of the Rate of Technical Change

The accuracy of the measurement and decomposition of TFP growth in a profit function
depends on the definition of the rate of technical change used; that is, whether outputs
or inputs are held constant. These alternative measures of the rate of technical change
are related to each other according to the degree of returns to scale. In order to develop
a decomposition of TFP growth using a profit function, a clear presentation of the mea-
sures of returns to scale and of the rate of technical change is necessary from the out-
set.

In the case of multi-output technologies, returns to scale are defined in the context of a
transformation function,F(q, x; t) = 0, as:

ρ = −
n∑

i=1

Fxi xi
/ m∑

j=1

Fqj qj ,

whereFxi = ∂F/∂xi , Fqj = ∂F/∂qj , andx andq refer to input and output quantities,
respectively (Caveset al., 1981). This definition requires all inputs to be variable and first-
order conditions to be satisfied, in order output increases to take place long the expansion
path. Using the first-order conditions and Hotelling’s lemma, a dual measure of the degree
of returns to scale is given as:

ρ =
(
−∑n

i=1 Si∑m
j=1 Rj

)
=
(∑n

i=1wi xi
/
π∑m

j=1 pj qj
/
π

)
= TC

TR
= 1−

(
m∑

j=1

∂ lnπ

∂ ln pj

)−1

, (1)

where Si = wi xi /π, Rj = pj qj /π, π = π(p, w; t) is a well-defined long-run profit
function,w and p refer to input and output prices respectively,TC is total cost, andTR
is total revenue. This measure, proposed by Caveset al. (1982), is valid when producers
maximize profits, are in long-run equilibrium and operate in perfectly competitive input
and output markets.

In short-run equilibrium, the degree of (short-run) returns to scale,ρz, is defined with
respect to both variable and quasi-fixed inputs, without assuming that quasi-fixed inputs
are at their long-run equilibrium levels. That is, the degree of short-run returns to scale is
evaluated at the subequilibrium point represented by the existing (observed) quantities of
outputs, quasi-fixed and variable inputs. Then, the degree of short-run returns to scale is
related to capacity utilization (Morrison Paul, 1999).4 Following Nadiri and Prucha (1990)
and Bernstein (1994), the primal measure of the degree of short-run returns to scale is given
us:

ρz = −
(

n∑
i=1

Fxi x
s
i +

h∑
k=1

Fzk zk

)/ m∑
j=1

Fqj q
s
j , (2)

where the transformation function is defined asF(qs, xs; z, t) = 0, Fzk = ∂F/∂zk, andz
refers to quasi-fixed inputs. By using the first-order conditions, Hotelling lemma and the
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derivative property,Mk = ∂ lnπs/∂ ln zk, a dual measure of returns to scale may be defined
as:

ρz =
(
−∑n

i=1 Ss
i +

∑h
k=1 Mk∑m

j=1 Rs
j

)
= C∗

TRs = 1−
(

m∑
j=1

∂ lnπs

∂ ln pj

)−1

+
∑h

k=1
∂ lnπs

∂ ln zk∑m
j=1

∂ lnπs

∂ ln pj

, (3)

where Ss
i = wi xs

i /π
s, Rs

j = pj qs
j /π

s, πs = πs(p, w; z, t) is a well-defined short-run

profit function,TRs is a short-run revenue,C∗ = ∑n
i=1wi xs

i +
∑h

k=1(∂π
s/∂zk)zk is total

shadow cost and∂πs/∂zk = vk(p, w; z, t) is the shadow value of thekth quasi-fixed input.5

Bernstein (1994) used the first equality in (3), whereas the second equality may be viewed
as a generalization of the Caveset al. (1982) definition of returns to scale under short-run
equilibrium.

In the context of a profit function, the rate of technical change can be computed as
an output-based or as an input-based measure (Caveset al., 1981, 1982). Theoutput-
based measure of the rate of technical changepresents the rate of output expansion that
may be achieved with technical progress without changing input use and it is defined
as:

π
p
t = (∂F/∂t)/

m∑
j=1

Fqj qj ,

where∂F/∂t represents the shift of the transformation function over time. This measure
was proposed by Hulten (1978) and used by Caveset al. (1981), Antle and Capalbo (1988),
Nadiri and Prucha (1990) and Luh and Stefanou (1991, 1993), among others. In the single-
product case,∂F/∂q = 1 and thus,π p

t = (∂F/∂t)/q = ∂ ln F/∂t , which is the well-known
(primal) measure of technical change proposed by Solow (1957).

The input-based measure of the rate of technical change, on the other hand, is defined
as the potential saving in input use that becomes feasible with technical progress and still
produces the same amount of output as before:6

π
p′
t = (∂F/∂t)/

n∑
i=1

Fxi xi .

In the case of temporary equilibrium and the existence of quasi-fixed inputs, this measure
is given as follows:

π
sp′
t = (∂F/∂t)/

(
n∑

i=1

Fxi x
s
i +

h∑
k=1

Fzk zk

)
,

and represents a short-run measure of the rate of technical change. Nadiri and Prucha (1990)
and Bernstein (1994) used this measure.

The relationship between the primal measures of the rate of technical change defined
above and the rate of profit augmentation,πt , is derived by using the first-order conditions,
Hotelling’s lemma, and either (1) or (3). First consider the output-based measure of the
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rate of technical change,π p
t , in the case of long-run equilibrium:

π
p
i =

(
∂π

∂t

)(
1

TR

)
=
(
∂ lnπ

∂t

)( π
TR

)
= πt

(
TR− TC

TR

)

= πt

(
m∑

j=1

Rj

)−1

= πt (1− ρ), (4)

whereπt measures the changes in profits that are due to technical change by holding all
input and output prices constant. Notice that Ray and Segerson (1991) also derived the first
equality in (4). In this case,πt reflects the profit gains that would result from technological
progress if firms respond optimally (i.e., adjust their output and input levels appropriately)
and a larger amount of output is produced by the same amount of inputs. In the presence
of decreasing returns to scale,πt overstates the primal rate of technical change.

In the case of temporary equilibrium, (4) should be replaced by

π
sp
t =

(
∂ lnπs

∂t

)(
πs

TRs

)
= πs

t

(
TRs − C∗

TRs

)
= πs

t

(
m∑

j=1

Rs
j

)−1

= πs
t

(
1− ρz+

(∑h
k=1 Mk∑m
j=1 Rs

j

))
(5)

which has a similar interpretation. Ray and Segerson (1991) also derived the first equality
in (5). It should be noted than in the presence of short-run constant returns to scale, the
primal rate of technical change is equal to the rate of profit augmentation weighted by the
ratio of shadow to revenue (short-run profit) share.

Similarly, in the case of the input-based measure of the rate of technical change,π
p′
t , and

long-run equilibrium:

π
p′
t =

(
∂π

∂t

)(
1

TC

)
=
(
∂ lnπ

∂t

)( π
TC

)
= π

(
TR− TC

TC

)

= πt

(
−

n∑
i=1

Si

)−1

= πt (ρ
−1− 1) (6)

whereπt reflects the profit gains that result from a reduction in the quantity of inputs
required for producing an equal amount of output as before. Thus,, it reflects the reduction
in input requirements indirectly through cost reduction captured by the effect of input prices
(Levy, 1981). From (6) it is clear thatπt overstates (understates) the primal rate of technical
change when returns to scale are greater (less) than 0.5. Moreover,πt = π p′

t whenρ = 0.5.
Thus,π p′

t is inconsistent, when compared toπ p
t , in reflecting changes in the rate of profit

augmentation, depending on the degree of (long-run) decreasing returns to scale. In the



36 KARAGIANNIS AND MERGOS

case of short-run equilibrium, (6) analogue is:

π
sp′
t =

(
∂ lnπs

∂t

)(
πs

TCs

)
= πs

t

(
−

n∑
i=1

Ss
i +

h∑
k=1

Mk

)−1

= πs
t

(
ρ−1

z − 1+
( ∑h

k=1 Mk∑n
i=1 Ss

i +
∑h

k=1 Mk

))
(7)

Bernstein (1994) also derived the second equality in (7).
Equations (4) and (6) may be viewed as extensions of the work of Ohta (1974) and

Caveset al. (1981), in relating primal and dual measures of the rate of technical change,
in the case of long-run profit function. Moreover, by combining (5) and (7) it can be
shown thatπsp

t = ρzπ
sp′
t (Nadiri and Prucha, 1990), which relates the primal input- and

output-based measures of technical change under short-run equilibrium. This is analogous
to the relationshipπ p

t = ρπ
p′
t , derived by Caveset al. (1981) for the case of long-run

equilibrium.

3. Decomposition of TFP Growth Using a Profit Function

The decomposition of TFP growth in a profit function framework can be accomplished
following two alternative approaches relying on the definitions of the rate of technical
change presented in the previous section. In either case, a corresponding adjustment should
be made with respect to the terms measuring the effect of returns to scale on TFP growth. For
completeness purposes only, we briefly examine first the case of a long-run profit function
and then we proceed in much more detail with the case of temporary equilibrium.

Unrestricted (long-run) profit function

Totally differentiating the long-run profit function,π = π(p, w; t), with respect tot ,
dividing both sides byπ , and using Hotelling’s lemma, results in:

d lnπ

dt
=

m∑
j=1

( pj qj

π

)
ṗj −

n∑
i=1

(wi xi

π

)
ẇi + ∂ lnπ

∂t
, (8)

where ṗj = d ln pj /dt andẇi = dlnwi /dt. Similarly, by taking the total differential of
the profit definition,π = ∑m

j=1 pj qj −
∑n

i=1wi xi , with respect tot , dividing through by
π and rearranging terms, yields:

d lnπ

dt
=

m∑
j=1

( pj qj

π

)
ṗj +

m∑
j=1

( pj qj

π

)
q̇j −

n∑
i=1

(wi xi

π

)
ẇi −

n∑
i=1

(wi xi

π

)
ẋi , (9)

whereq̇j = d ln qj /dt and ẋi = dlnxi /dt. By equating (8) and (9), dividing through by
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−∑n
i=1 Si = TC/π , and using (1) and (6), the conventional Divisia index of TFP changes

under condition of long-run equilibrium,

TḞP= Q̇− Ẋ =
m∑

j=1

( pj qj

TR

)
q̇j −

n∑
i=1

(wi xi

TC

)
ẋi , (10)

may be written as:

TḞP= πt (ρ
−1− 1)+ (1− ρ−1)Q̇ = π p′

t + (1− ρ−1)Q̇. (11)

Equation (11) provides a measure and a decomposition frame for TFP growth that is obtained
from an input-based definition of technical change. Alternatively, by equating (8) and (9),
dividing through by

∑m
j=1 Rj = TR/π , and using (1) and (6), equation (10) may be written

as:

TḞP= πt (1− ρ)+ (ρ − 1)Ẋ = π p
t + (ρ − 1)Ẋ. (12)

Equation (12) is a measure and decomposition frame of TFP growth with an output-based
definition of technical change.

The first term in both (11) and (12) presents the effect of technical change on TFP growth.
For a well-defined profit function, this effect vanishes only when the rate of technical
change, or equivalently the rate of profit augmentation, is equal to zero. Otherwise, it is
expected to be positive for progressive technical change. The second term in (11) and (12)
gives the effect of returns to scale, which is negative under decreasing returns to scale.
Moreover, from (11) and (12) it follows that the rate of profit augmentation,πt , is a biased
and incorrect measure of the TFP growth. Nevertheless, this measure, although biased and
incorrect, has been used (Levy, 1981; Fox, 1996) in the past to capture TFP change.

Restricted (short-run) profit function

To incorporate in addition the impact of quasi-fixed inputs’ capacity utilization on TFP
growth, temporary (short-run) equilibrium should be assumed and consequently, a restricted
profit function is used.7 As emphasized by Berndt and Fuss (1986), Morrison (1986) and
Hulten (1986), in order to derive accurate measures of TFP in a temporary equilibrium
framework, quasi-fixed inputs should be evaluated at their shadow rather than their rental
prices. Following Nadiri and Prucha (1990), marginal productivity of the quasi-fixed inputs,
instead of their unit cost, are evaluated at shadow prices. Although we do so by using a dual
function, i.e., the short-run profit function, rather than the production function, as Nadiri
and Prucha (1990) did.

To proceed totally differentiate the short-run profit function,πs = πs(p, w; z, t), with
respect tot yields:

dπs

dt
=

m∑
j=1

(
∂πs

∂pj

)(
dpj

dt

)
+

n∑
i=1

(
∂πs

∂wi

)(
dwi

dt

)
+

h∑
k=1

(
∂πs

∂zk

)(
dzk

dt

)
+ ∂π

s

∂t
. (13)
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Dividing both sides of (13) byπs, using Hotelling’s lemma andMk = ∂ lnπs/∂ ln zk, and
after rearranging terms results in:

d lnπs

dt
=

m∑
j=1

(
pj qs

j

πs

)
ṗj −

n∑
i=1

(
wi xs

i

πs

)
ẇi +

h∑
k=1

Mkżk + ∂ lnπs

∂t
. (14)

Sinceπs =∑m
j=1 pj qs

j −
∑n

i=1wi xs
i (Diewert, 1973), its total differential with respect to

t yields:

d lnπs

dt
=

m∑
j=1

(
pj qs

j

πs

)
ṗj +

m∑
j=1

(
pj qs

j

πs

)
q̇s

j −
n∑

i=1

(
wi xs

i

πs

)
ẇi −

n∑
i=1

(
wi xs

i

πs

)
ẋs

i . (15)

By equating (14) and (15), the following relationship may be obtained:

∂ lnπs

∂t
=

m∑
j=1

(
pj qs

j

πs

)
q̇s

j −
n∑

i=1

(
wi xs

i

πs

)
ẋs

i −
h∑

k=1

Mkżk. (16)

Then, divide (16) by−∑n
i=1 Ss

i +
∑h

k=1 Mk = C∗/πs to obtain:(
∂ lnπs

∂t

)(
πs

C∗

)
=

m∑
j=1

(
pj qs

j

C∗

)
q̇s

j −
n∑

i=1

(
wi xs

i

C∗

)
ẋs

i −
h∑

k=1

(vkzk

C∗
)

żk. (17)

Using (3) and (7), and rearranging terms, (17) may also be written as:

Q̇ =
m∑

j=1

(
pj qs

j

TRs

)
q̇s

j = πsp′
t + (ρ−1

z − 1)Q̇+
n∑

i=1

(
wi xs

i

C∗

)
ẋs

i +
h∑

k=1

(vkzk

C∗
)

żk (18)

Equation (18) shows that the growth of aggregate output is attributed to technical change
(first term), to short-run scale economies (second term), and to input growth (the last two
terms) consisting of the growth of both variable and quasi-fixed inputs, with the latter
evaluated at shadow prices. Substituting (18) into the conventional Divisia index of TFP
growth,

TḞP′ = Q̇− Ẋ′ =
m∑

j=1

(
pj qs

j

TRs

)
q̇s

j −
n∑

i=1

(
wi xs

i

TC′

)
ẋs

i −
h∑

k=1

(rkzk

TC′
)

żk, (19)

whereTC′ =∑n
i=1wi xs

i +
∑h

k−1 rkzk, r refers to the rental price of quasi-fixed inputs and
żk = d ln zk/dt, and noticing thatTC′ − C∗ =∑h

k=1(rk − vk)zk, yields:

TḞP= πsp′
t + (1− ρ−1

z )Q̇+
h∑

i=1

[
(rk − vk)zk

TCs

] (
Ẋ′ − żk

)
(20)

The first term in (20 refers to the technical change effect and it is expected to be positive
under progressive technological change. The second term refers to the scale effect and it is
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positive (negative) under short-run increasing (decreasing) returns to scale as long as output
increases andvice versa. This term vanishes under short-run constant returns to scale. The
last term refers to the temporary equilibrium effect and it is positive (negative) when rental
prices are greater (less) than shadow prices, quasi-fixed inputs are over- (under-) utilized
and variable inputs use increase. The last term vanishes when shadow and rental prices are
equal; in such a case, (20) reduces to (12).

Equation (20) presents a measure and decomposition of TFP that corresponds to the
input-based measure of technical change and is similar but apparently not the same as
that developed by Bernstein (1994). The main difference is with the measurement of the
temporary equilibrium effect, which is evaluated in terms of shadow cost in (20) and in terms
of profits in Bernstein (1994). The former has, however, a clearer and simpler interpretation
in a temporary equilibrium framework.

Using an output-based definition of technical change, an alternative frame of TFP mea-
surement and decomposition may be derived by dividing (16) by

∑m
j=1 Rs

j = TRs/πs:(
∂ lnπs

∂t

)(
πs

TRs

)
=

m∑
j=1

(
pj qs

j

TRs

)
q̇s

j −
n∑

i=1

(
wi xs

i

TRs

)
ẋs

i −
h∑

k=1

(vkzk

TRs

)
żk. (21)

Using (3) and (5), and rearranging terms, (21) may also be written as:

Q̇ = π
sp
t + (ρz− 1)

(
n∑

i=1

(
wi xs

i

C∗

)
ẋs

i +
h∑

k=1

(vkzk

C∗
)

żk

)

+
n∑

i=1

(
wi xs

i

C∗

)
ẋs

i +
h∑

k=1

(vkzk

C∗
)

żk. (22)

Equation (22) shows that the growth of aggregate output is attributed to technical change
(first term), to scale economies (second term), and to input growth (the sum of the last two
terms). Then, by substituting (22) into (19) and noticing thatTC′ −C∗ =∑h

k=1(rk−vk)zk,
yields:

TḞP′ = π
sp
t + (ρz− 1)

(
n∑

i=1

(
wi xs

i

C∗

)
ẋs

i +
h∑

k=1

(vkzk

C∗
)

żk

)

+ ρz

h∑
k=1

[
(rk − vk)zk

TCs

] (
Ẋ′ − żk

)
. (23)

Equation (23) provides an alternative framework for decomposing TFP growth within a
profit function framework using an output-based definition of technical change. The first
term in (23) refers to the effect of technical change into TFP growth, which is expected to
be positive under progressive technological change. This corresponds to the output-based
measure of the rate of technical change. The second term presents the scale effect since
the input-side measure of short-run economies of scale is defined upon both variable and
quasi-fixed inputs. In the case of optimal adjustment of quasi-fixed inputs, these terms
may add up to a factor similar to the second term in (12). Under short-run decreasing
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(increasing) returns to scale, the second term is negative (positive) as long as input use
increases, andvice versa. This term vanishes under short-run constant returns to scale.
The third term refers to the temporary equilibrium effect associated with the variable and
quasi-fixed inputs, respectively. It is positive (negative) when rental prices are greater (less)
than shadow prices, quasi-fixed inputs are over- (under-) utilized and variable inputs use
increase. The last term vanishes when shadow and rental prices are equal; in this case, (23)
reduces to (12).

Equation (23) provides similar qualitative information with (20), as TFP growth is at-
tributed to technical change, short-run returns to scale, and adjustment of quasi-fixed inputs
to long-run equilibrium levels. Nevertheless, quantitative measures of TFP change and
composition obtained through (20) and (23) will in general be different. It can be shown
however that the two alternative forms of TFP decomposition, as derived from (20) and
(23), coincide when the technology exhibits short-run constant returns to scale. Given
π

sp
t = ρzπ

sp′
t it is clear that under short-run constant returns to scale the input- and the

output-based measures of the rate of technical change are equal to each other. The scale
effect vanishes both (31) and (35) whenρz = 1. Finally,ρz = 1 implies that the third term
in (20) and (23) are equal to each other.

Under short-run non-constant returns to scale, (20) and (23) will provide different re-
sults of TFP measurement and decomposition. Givenπ

sp
t = ρzπ

sp′
t it is clear that the

first term in (20) is less (greater) than the corresponding terms in (23) under short-run
decreasing (increasing) returns to scale. The same is essentially true by comparing the
third term in (20) and (23). Moreover, the second term in (20) is less (greater) than the

second term in (23) asρz < (>)1 andQ̇ − ρz

(∑n
i=1

(
wi xs

i
C∗

)
ẋs

i +
∑h

k=1

(
vkzk
c∗
)

żk

)
< 0.

However, the opposite is true if output growth is faster than the weighted growth of vari-
able and quasi-fixed inputs, with the degree of short-run returns to scale used as a weight.
In the former case, TFP growth measured through (20) is less (greater) than that mea-
sured through (23) when short-run returns to scale are decreasing (increasing). In the
latter case, however, an unambiguous comparison for TFP growth cannota priori be ob-
tained.

Even though both alternatives provide accurate and theoretically consistent measures of
TFP changes within a profit function framework, they may result in quite different policy
implications regarding the sources of productivity growth.8 In the absence of short-run
constant returns to scale, it is clear from (20) and (23) that the relative magnitude of
the factors explaining TFP would be different. These deviations tend to increase as we
move further away from short-run constant returns to scale. Hence, under certain cir-
cumstances, it is possible that the two alternative measures may assign different relative
importance to factors such as technical progress, scale economies and capacity utiliza-
tion for enhancing TFP. However, as Chavas and Cox (1994, p. 371) have already noted
the choice between input- and output-based productivity indices remains an unresolved
issue.

Nevertheless, there is a direct correspondence between (23) and the decomposition de-
veloped in previous studies (e.g., Luh and Stefanou, 1991, 1993; Lynde and Richmond,
1993; Fousekis and Papakonstantinou, 1997) using a primal approach and assuming profit
maximization. In both cases, the effects of technical change, scale economies, and tem-
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porary equilibrium are measured in a conceptually analogous way; i.e., are output-based
oriented measures. This can be seen from (5) for the effect of technical change and from (2)
and (3) for the effect of scale economies. These relationships establish the aforementioned
primal-dual correspondence. In contrast, there is no such correspondence between (20)
and the primal formulation of TFP decomposition as the effects of technical change, scale
economies and temporary equilibrium are measured in an input-contracting rather than an
output-expanding manner.

4. Empirical Model and Results

The empirical implementation of this theoretical framework for the measurement and de-
composition of TFP growth within a profit function is provided for US agriculture during
the period 1948–1994. The empirical model is based on a translog restricted profit function,
with two outputs (crops and livestock), two variable inputs (total labor and intermediate
inputs), and a quasi-fixed input (an aggregate of land, structures, durable equipment, and
animal capital). Data and a detailed description of variables used are given in Ballet al.
(1997).

Empirical model

It is assumed that the production technology of US agriculture can be represented by a
translog restricted profit function, which consists a second-order Taylor series approxima-
tion of the true underlying technology around a point coinciding with the base year (i.e.,
1987) of the sample. The translog restricted profit function is given as:

lnπs = α0+
n∑

i=1

αi lnwi + 1

2

n∑
i=1

l∑
f=1

αi f lnwi lnw f +
m∑

j=1

βj ln pj

+ 1

2

m∑
j=1

s∑
g=1

βjg ln pj ln pg +
n∑

i=1

m∑
j=1

γi j lnwi ln pj + β3 ln z+ 1

2
β4(ln z)2

+
n∑

i=1

γi lnwi ln z+
m∑

j=1

δj lnpj ln z+ β5t + 1

2
β6t2+

n∑
i=1

εi lnwi t

+
m∑

j=1

ϑj ln pj t + β7 ln zt (24)

It is well known that translog is a flexible functional form which does not impose anya
priori restrictions on the structure of production. Using Hotelling’s lemma, the following
relationships for output, input and shadow profit shares may be obtained:

Rs
j = βj +

s∑
g=1

βjg ln pg +
n∑

i=1

γi j lnwi + δj ln z+ ϑj t (25)
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Ss
i = αi +

l∑
f=1

αi f lnw f +
m∑

j=1

γi j ln pj + γi ln z+ εi t (26)

Mk = β5+ β6 ln z+
n∑

i=1

γi lnwi +
m∑

j=1

δj ln pj + β7t (27)

The monotonicity condition on the profit function requires that it is non-decreasing (non-
increasing) in prices for all outputs (inputs) and non-decreasing in the stock of the quasi-fixed
input. At the point of approximation, these imply that the output and shadow (input) profit
shares are positive (negative). A sufficient conditions for this is thatβj ≥ 0 for all j ,
β5 ≥ 0, andαi ≤ 0 for all i , respectively. Symmetry with respect to output and input prices
implies thatβjg = βg j , αi f = α f i andγi j = γj i . In addition, linear homogeneity of (24)
with respect to output and input prices requires that

∑n
i=1 αi +

∑m
j=1 βj = 1,

∑n
i=1 γi +∑m

j=1 δj = 0,
∑n

i=1 εi +
∑m

j=1 ϑj = 0, and
∑m

j=1 βjg+
∑m

j=1 γi j =
∑n

i=1 αi f +
∑n

i=1 γi j =
0. Similar to symmetry and linear homogeneity parameter restrictions are obtained through
the adding-up property of (25) and (26). Finally, for convexity of (24) with respect to
prices, the Hessian matrix of second order derivatives needs to be positive semi-definite.
That is, all principal minors have non-negative determinants. On the other hand, concavity
with respect to the quasi-fixed input requires the associated Hessian to be negative semi-
definite.

The system of (24), (25) and (26) is estimated with iterative SUR to account for contempo-
raneous correlation of error terms, with the exclusion of the intermediate inputs’ profit share
equation to avoid singularity of the estimated variance-covariance matrix, due to adding-up
property. Moreover, to ensure the underlying optimization process (i.e., profit maximiza-
tion), across equation restrictions are imposed in the parameters appearing in more than one
of the estimated equations. Due to the presence of autocorrelation, the procedure described
in Judgeet al. (1981) is used to correct for autocorrelation in each equation separately.9

Then, the transformed system is estimated using iterative SUR.

Empirical results

The estimated parameters of the translog restricted profit function for US agriculture are
presented in Table 1. The restrictions for linear homogeneity and symmetry of profit
function in prices (at given fixed factor levels) were imposeda priori. The fitted restricted
profit function satisfied all theoretical properties. It satisfied the monotonicity property at
all data points as the fitted output profit shares are found to be positive and the variable
input profit shares negative, while the shadow profit share of capital is found to be positive.
Moreover, at the point of approximation, the estimated translog profit function is found
to be convex function of prices as the diagonal elements of the corresponding Hessian
matrix are of the correct sign and all determinants of its principal minors are positive.10

Finally, the estimated profit function is found to be concave with respect to the quasi-fixed
factor.11

Measures of the rate of profit augmentation, short-run returns to scale, and capacity utiliza-
tion are reported in Table 2. For the translog profit function, the rate of profit augmentation
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Table 1.Estimated parameters of translog restricted profit function, US agri-
culture, 1948–1994.

Parameter Estimated Standard Parameter Estimated Standard
Value Error Value Error

α0 −0.050 0.004 α22 −0.547 0.046
β1 1.343 0.026 β3 0.094 0.058
β2 1.664 0.032 β4 −1.479 0.284
α1 −1.451 0.040 γ1 −0.738 0.222
α2 −0.557 0.017 γ2 −0.104 0.305
β11 0.732 0.045 δ1 −0.428 0.333
β12 −1.401 0.064 δ2 1.270 0.184
γ11 0.239 0.063 β5 0.062 0.010
γ12 0.430 0.047 β6 −0.001 0.001
β22 0.833 0.061 ϑ1 −0.037 0.002
γ21 0.251 0.050 ϑ2 −0.019 0.003
γ22 0.316 0.052 ε1 −0.008 0.005
α11 −0.291 0.088 ε2 0.065 0.005
α12 −0.199 0.026 β7 −0.048 0.011

is given as

πs
t = β5+ β6t +

n∑
i=1

εi lnwi +
m∑

j=1

ϑj ln pj + β7 ln z. (28)

The rate of profit augmentation in US agriculture increased with an annual average rate of
7.81% during the period 1948–1994.12 However, it decreased over time from 9.01% in the
1950s to 8.83% in the 1960s and to 7.22% in the period 1970–1982, and further to 6.34%
in the period 1983–1994.

With regard to scale, it is found that US agriculture exhibited decreasing short-run returns
to scale, averaging 0.87 during the period 1948–1994 (see Table 2). The degree of short-
run returns to scale also diminished over time. Short-run returns to scale were found to
be almost constant during the 1950s and the 1960s, but decreased thereafter. The range of
short-run returns to scale is estimated to be 0.81 during the period 1970–1982, falling to
0.69 during 1983–1994. On the other hand, US agriculture was characterized by capacity

Table 2. Measures ofπt , short-run re-
turns to scale, and capacity utilization US
agriculture, 1948–1994.

πt ρz
(rk−vk)zk

TCs

1950–1959 9.01 1.03 −0.13
1960–1969 8.83 0.98 0.08
1970–1982 7.22 0.81 0.35
1983–1994 6.34 0.69 0.53
1950–1982 8.32 0.92 0.13
1948–1994 7.81 0.87 0.22
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Table 3.Decomposition of TFP growth, US agriculture, 1948–1994.

Effect of Scale Temporary TFP
Technical Effect Equilibrium Growth
Change Effect

Input-based Measure
1950–1959 1.98 0.08 0.44 2.49
1960–1969 2.20 −0.03 −0.30 1.86
1970–1982 2.57 −0.56 −1.62 0.37
1983–1994 3.08 −0.77 0.95 3.23
1950–1982 2.29 −0.21 −0.63 1.43
1948–1994 2.46 −0.35 −0.20 1.91

Output-based Measure
1950–1959 2.04 −0.10 0.46 2.40
1960–1969 2.17 0.07 −0.29 1.94
1970–1982 2.07 0.66 −1.17 1.56
1983–1994 2.13 −0.60 0.66 2.18
1950–1982 2.10 0.26 −0.44 1.92
1948–1994 2.11 0.03 −0.14 1.99

over-utilization during the 1950s, with capital under-utilized thereafter. More importantly,
the degree of capacity under-utilization increased over time (see Table 2).

The results of measurement and decomposition of TFP growth in US agriculture are
reported on Table 3, for input- and output-based measures of technical change, using (20)
and (23), respectively. In addition, the TFP indices based on two alternative measures are
presented on Table 4. On average, the estimated annual rate of TFP growth was 1.91% with
the input-based measure of technical change and 1.99% with the output-based measure of
technical change (see last column of Table 3). This difference is mainly due to the magnitude
of the scale effect, which is measured differently in the two forms of TFP decomposition.
Interestingly enough, it is not true that TFP growth rate measured through (20) is always
greater than that measured through (23), as one would expect.13 In fact, the opposite is
found to be true for the period 1960 to 1982.

The two alternative measures provide rather similar estimates of TFP growth in the 1950s
and the 1960s, but quite different ones for the period 1970–1994. For example, the estimated
average annual growth rate of TFP based on (20) is almost four times smaller than that based
on (23) for the period 1970–1982, while it is one and a half times greater for the period
1983–1994 (see Table 3). These differences are due to the scale effect in the former case
and to the effect of technical change in the latter. Compared with previous estimates (see
Table 5), the output-based estimates seem more reasonable and closer to other results.

The effect of technical change, given in the first column, is on average greater when
it is computed with an input-based rather than an output-based measure of the rate of
technical change, because of decreasing returns to scale in the short-run. This is true
for all sub-periods under consideration except the 1950s when US agriculture exhibited
slightly increasing short-run returns to scale. However, the differences tend to increase
over time because the degree of short-run returns to scale decreased. For both forms
of decomposing TFP, the technical change effect is positive, indicating that US agri-
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Table 4.TFP indices for US agriculture using a
parametric profit function approach.

Year Input-based Measure Output-based
Measure

1948 0.631 0.623
1949 0.636 0.631
1950 0.652 0.647
1951 0.673 0.664
1952 0.690 0.681
1953 0.710 0.699
1954 0.725 0.714
1955 0.734 0.724
1956 0.750 0.739
1957 0.766 0.754
1958 0.781 0.768
1959 0.794 0.781
1960 0.807 0.794
1961 0.820 1.807
1962 0.833 0.820
1963 0.846 0.833
1964 0.859 0.846
1965 0.873 0.860
1966 0.885 0.872
1967 0.895 0.884
1968 0.902 0.892
1969 0.911 0.902
1970 0.917 0.910
1971 0.931 0.924
1972 0.947 0.938
1973 0.964 0.952
1974 0.989 0.964
1975 0.999 0.976
1976 1.007 0.989
1977 1.000 1.000
1978 1.029 1.015
1979 1.031 1.028
1980 1.034 1.036
1981 0.973 1.033
1982 0.942 1.029
1983 1.009 1.047
1984 0.956 1.047
1985 0.989 1.068
1986 1.024 1.083
1987 1.031 1.095
1988 1.106 1.112
1989 1.115 1.125
1990 1.134 1.137
1991 1.157 1.150
1992 1.149 1.165
1993 1.205 1.176
1994 1.186 1.192
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Table 5.Comparison of TFP growth rate (%) measures for US agriculture, (average annual).

Study 1950–59 1960–69 1970–82 1983–94 1950–82 1948–94

Accounting Approach

Theil-Tornqvist Index
USDA (I)1 2.02 1.42

(II)2 1.47
Ball (1985) 2.59 1.65
Capalbo (1988a) 1.37 1.16 2.26 1.56
Jorgenson & Gollop (1992) 1.583

Lambert (1998) 1.12

Fisher Index
Ball et al (1997) 1.87 2.22 1.97 2.57 2.02 1.94
Lambert (1998) 1.17

Non-parametric Approach4

Cox & Chavas (1990) 2.48 1.84 2.49 1.795

Chavas & Cox (1992) (I)6 2.71 1.55 2.82 2.39
(II)7 1.86 1.79 2.38 2.05

Chavas & Cox (1994) (I)8 1.82 1.47 1.74 1.69
(II)9 2.13 1.69 1.96 1.94

Lambert (1998) (I)8 1.2210

(II)9 1.6710

Parametric Approach

Production Function
Capalbo (1988b) 1.5011

Luh & Stefanou (1991) 1.26 1.22 1.90 1.50
Luh & Stefanou (1993) 1.18 0.93 1.71 1.31

Cost Function
Capalbo (1988a) 1.27

Profit Function
Present Study (I)8 2.49 1.86 0.37 3.23 1.43 1.91

(II)9 2.40 1.94 1.56 2.18 1.92 1.99

Notes:1 Reported in Ball (1985)
2 Reported in Trueblood and Ruttan (1995)
3 Refers to the period 1948–1985 and it is reported in Trueblood and Ruttan (1995)
4 Calculated by the authors from published TFP indices in Cox and Chavas (1990) and

Chavas and Cox (1992, 1994)
5 Refers to the period 1950–1983
6 Based on 30-year lag specification of R&D
7 Based on 15-year lag specification of R&D
8 Input-based measure
9 Output-based measure

10 These are the outer bound estimates
11 Refers to the period 1948–1982
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culture exhibited progressive technical change. Also, in both cases, the largest portion
of TFP growth is attributed to technical change. Nevertheless, the input-based mea-
sure indicates a continuous increase in the rate of technical change, while the output-
based measure shows a slowdown in the rate of technical change during the period 1970–
1982.

Significant differences arise with respect to the scale effect, which is given in the second
column of Table 3. Using the input-based measure of the rate of technical change, based
on (20), the scale effect is, on average, negative while with the output-based measure of
the rate of technical change, using (23), it is on average positive, albeit very small. These
differences are due to different definitions of the scale effect in the two forms of decompo-
sition. Nevertheless, in both (20) and (23), the magnitude of the scale effect is smaller and
relatively less significant compared to the technical change effect.

The magnitude and the sign of the temporary equilibrium effect is rather similar in the
two measures (see Table 3). The capacity utilization of the quasi-fixed input (capital)
had a generally negative contribution to TFP growth in US agriculture. Given that the
weighted sum of variable and quasi-fixed inputs decreased over time, the sign of the tem-
porary equilibrium effect indicates that, on average, the rental price of capital was greater
than its shadow price, implying that capital was under-utilized during the period 1948–
1994.

A comparison of the results reported in Table 3 with those of previous studies concerning
measurement of TFP growth in US agriculture is given in Table 5.14 The results of the
present study show interesting differences from he results of earlier studies using other
measurement and decomposition methods. The result of the present study conform broadly
with those of Ballet al. (1997), who used a Fisher TFP index and found strong TFP growth
rates in the 1950s and 1960s and a decline in TFP growth in the 1970s. Our results,
however, are sharply different than those of Capalbo (1988), who utilized a Theil-Tornqvist
TFP index, and Luh and Stefanou (1991, 1993), who used a primal approach. Luh and
Stefanou (1991, 1993) found much lower TFP growth rates in the 1950s and 1960s and an
acceleration of TFP growth in the 1970s.

A more direct comparison can be carried with Chavas and Cox (1994), who reported
primal input- and output-based measures of TFP growth in US agriculture during the period
1950–1982, using non-parametric techniques and assuming long-run equilibrium. Our
estimate of the average annual TFP during the same period is slightly lower (see Table 5).
This is explained by the fact that the contribution of the temporary equilibrium effect is
negative. In both cases, however, the output-based measure is greater than the input-based
measure, indicating decreasing returns to scale.

5. Concluding Remarks

This paper develops a theoretical framework for measurement and decomposition of TFP
growth using a profit function framework. Within the proposed framework, estimates of
TFP growth and identification of its sources are obtained by using directly the estimated
parameters of a profit function. The proposed framework offers two alternative estimates
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of TFP growth based on the output- and the input-based measures of the rate of technical
change. It encompasses previous developments proposed by Bernstein (1994), who used a
measure of TFP growth that is similar, but apparently not the same, with the one developed
in the presence of the input-based measure of the rate of technical change. The paper
also shows clearly the relation of the two alternative measures of the rate of technical
change and makes them directly comparable, deriving both forms of TFP measurement and
decomposition using he same methodology.

A quantitative illustration of the results is presented by estimating a translog restricted
profit function for US agriculture using published data for the period 1948–1994. The
results of TFP measurement and decomposition based on two alternative measures of the
rate of technical change are very interesting. Although the average TFP growth rates for the
entire period are very similar (1.91% and 1.99% in the cases of the input- and the output-
based measures of the rate of technical changes), the rates for various sub-periods are quite
different. For example, for the period 1970–1982 not only is the average TFP growth rate
different (0.37% and 1.56% in the cases of the input- and the output-based measures of
the rate of technical changes), but there are also other differences, such as in the sign of
the scale effect. It seems that the difference is mainly due to the scale effect, while the
effect of technical change differs less and the temporary equilibrium effect is similar in
both cases.
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Notes

1. However, there have been some studies following a primal approach for decomposing TFP changes, such as
Berndt and Fuss (1986), Bauer (1990), and Lovell (1996).

2. Agriculture is also a highly competitive industry and farmers’ objective is best described by profit maximization
as long as there are no production quotas. For the U.S. agriculture in particular, profit maximization is a
commonly employed behavioral assumption; see Weaver (1983), Shumway (1983), Antle (1984), Ball (1988),
Huffman and Evenson (1989), Luh and Stefanou (1991, 1993), among others.

3. There are advantages of using a profit function in estimating multiproduct technologies for price-taking firms
because inconsistencies in the econometric estimation due to simultaneous equation problems are avoided, as
no endogenous variables (output or input levels) are used as explanatory variables (Lopez, 1982).

4. In particular, if observed output falls to the left of the minimum point of the long-run average cost curve,
increasing short-run returns to scale may be associated with either under- or over-utilization, while decreasing
short-run returns to scale imply over-utilization. In contrast, if observed output falls to the right of the minimum
point of the long-run average cost curve, increasing short-run returns to scale imply under-utilization, while
decreasing short-run returns to scale may be associated with either under- or over-utilization.
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5. In the case of profit function, it is not as straightforward as in the case of cost function (see Morrison,
1986) to derive a relationship between short- and long-run returns to scale. The long-run profit maximiza-
tion problem with all inputs variable need not result in the same optimal output bundle as the one derived
from the short-run problem, where some of the inputs are restricted to be quasi-fixed. Nevertheless, one can
find the optimal long-run stock of quasi-fixed inputs through the derivative propertyMk = ∂ lnπs/∂ ln zk

and then substitute it into short-run output supply and factor demand functions to derive their long-run
counterparts. Sometimes this becomes quite complicated as for example in the case of translog profit
function, where a numerical solution is required to derive the optimal (long-run) level of quasi-fixed in-
puts. By using (1) and (3),ρ = ρz + (

∑
∂ lnπ/∂ ln pj )

−1 − (
∑

∂ lnπs(p, w, z(p, w))/∂ ln pj )
−1 +∑

Mk(p, w, z(p, w))/
∑

Rj (p, w, z(p, w)) = ρz +
∑

Mk(p, w, z(p, w))/
∑

Rj (p, w, z(p, w)). We
would like to thank C. Morrison and one reviewer for raising this point.

6. Graphically and in terms of a production function, the output-based measure of the rate of technical change is
measured vertically. Thus, it shows the rate of output increase, due to a shift in production surface, by using
the same amount of inputs as before. In contrast, the input-based measure of the rate of technical change is
measured horizontally and indicates the amount of potential input saving for producing the same amount of
output as before, but operating at the new production function.

7. The following analysis is developed in the absence of adjustment cost, but it can be extended into a fully
dynamic framework.

8. The distinction between input- and output-based decomposition of TFP growth in a profit framework is also
important in the presence of productive inefficiency. For a theoretically consistent decomposition of TFP
change in such a case, the former should be associated with an input-based measure of technical inefficiency
and the latter with an output-based measure. For a derivation of input- and output-based measure of productive
(technical and allocative) inefficiency within a primal and a profit function see Kumbhakar (1996).

9. The profit function (36) and the profit share equation of livestock were corrected for third-order autocorrelation
by using a Cochrani-Orcutt procedure, while the profit share equation of labor was corrected for first-order
autocorrelation.

10. This is equivalent to positive semi-definiteness of the modified Hessian (Antle and Capalbo, 1988). The
determinants of the principal minors of the modified Hessian areH1 = 1.193, H2 = 1.617, H3 = 1.237 and
H4 = 0.332 and its eigenvalues 0.0005, 0.1918, 0.7222, and 5.8014.

11. At the point of approximation, the determinants of the principal minors of the Hessian matrix corresponding
to quasi-fixed factor are found to be 0.094 and−1.479.

12. Diewert’s (1976) quadratic approximation lemma is used to convert the continuous time model developed in
the second and third section to discrete variables calculations used in the fourth section.

13. In absolute terms however the input-based TFP index is greater than the output-based index during the period
1948–1980, while the opposite is true for the rest of the period under consideration (see Table 4).

14. A comparison of the explanatory power of different approaches used to measure TFP in US agriculture is not
always possible because in the studies using the primal approach to decompose the growth in TFP (e.g., Luh
and Stefanou, 1991, 1993) the rate of technical change is calculated as a residual. A comparison may however
be possible with Capalbo (1988a) parametric cost function approach regarding the period 1950–1982. In the
case of cost function, the unexplained residual is 18.6%, while in the case of profit function is 8.3% and 23.1%
for the output- and the input-based measures of TFP growth, during the same period.
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