Computable General Equilibrium (CGE) Models: A Short Course

Hodjat Ghadimi
Regional Research Institute
WWMWV.RRI. WMYU.EDU

Spring 2007

Sessjon Twor specl flcation

Session 2: Specijication

\lrcorner A taxonomy of models
\lrcorner Components of a simple CGE
\lrcorner Mathematical model statement

Review: CGE Keywords

\lrcorner Multisectoral
\lrcorner Nonlinear

- Economy-wide
\lrcorner Autonomous decision making
- Walrasian competitive equilibrium

Structure of a CGE model

Circular Flow of Income

A taxonomy of models

Models and Policy Analysis

Policy makers intend to change the way the economy operates, rather than just understand it
\lrcorner Policy analysis: explain the links between instruments and targets

- Model-building: the process of abstraction and generalization required to provide structure to our empirical observation

Economic Models

\lrcorner Analytic models

- Stylized numerical models

Applied models

Complex Real World

Conceptual Model (Stylized facts)

Stylized Model

Applied Model

Apply theoretical framework \& statistical methods to filter out inessential details

Focus on important assumptions \&causal mechanisms

Attach numbers to the variables \& relate them to economic performance

Include more details, more specific

Complex Real World

> Conceptual Model (Stylized facts)

Stylized Model

Applied Model

Description of reality

Strategic Policy Analysis

Detailed Policy Analysis

Analytic models

Cast economic relationships into a form susceptible to mathematical analysis
\lrcorner Explore the implications of various sets of postulates

- Delliberately simplified to focus on important assumptions and causal mechanisms
- Empirical realism not an important criterion

Stylized numerical models

\lrcorner Attach numbers to the variables and relate them to economic statistics

- Larger, more complex \& more realistic
\lrcorner Used to analyze problems too difficult to solve analytically
Empirical, able to explore the size of various effects
Give up simplicity to gain in applicability \& generality

Applied models

\lrcorner I nclude broader range of stylized facts
\lrcorner More specific and narrow in application
\lrcorner Include more institutional details
\lrcorner Additional details may obscure the major causal mechanisms without adding any empirically significant effects

- CGE models fall into both stylized and applied categories
I In addition CGE models:
- Have strong links with basic economic theory

Work by simulating the interaction of various actors as specififed in neoclassical generalequilibrium theory

- Derive "behavior" based on optimization as specified in micro-theory
- Are fully "closed" in that the supply and demand sides of all markets are specified

Components of a simple CGE

See a SAM structure

Mathematical model statement

- 123 Model
- Graphical Analysis
\lrcorner Equations of an applied model

1-2-3 Model

Capture mechanisms by which external shocks and domestic policies ripple through the economy
\lrcorner Many problems (and solutions) are related to links between external sectors and domestic economy
Based on: Devarajan-Go-Lewis-RonbinsonSinko (1997)

1-2-3 ModeJ

1 country, 2 activities, 3 commodities
$\perp 2$ activities, producing D and E.
E not consumed domestically.
\lrcorner Additional commodity, M, consumed domestically but not produced.

1-2-3 Model

\lrcorner Very simplistic stylized model, but:

- Mechanisms are transparent
- Can be solved graphically, analytically, or with Excel
- Behavior is similar to that of more complex models

1-2-3 Model

\lrcorner Aggregate GDP (X) is fixed.

- Full employment model.
-Trade balance set exogenously.
- World prices of M and E are fixed.
- Total absorption (Q) is endogenous.

Basic 1-2-3 CGE Model

$$
\begin{aligned}
& \text { Flows } \\
& \text { 1. } \bar{X}=G\left(E, D^{S} ; \Omega\right) \\
& \text { 2. } Q^{S}=F\left(M, D^{D} ; \sigma\right) \\
& \text { 3. } Q^{D}=\frac{Y}{P^{q}} \\
& \text { 4. } \frac{E}{D^{S}}=g_{2}\left(P^{e}, P^{d}\right) \\
& \text { 5. } \frac{M}{D^{D}}=f_{2}\left(P^{m}, P^{d}\right) \\
& \text { 6. } Y=P^{x} \square \bar{X}+R \square B
\end{aligned}
$$

Prices

7. $P^{m}=R \square p w^{m}$
8. $P^{e}=R \square p w^{e}$
9. $P^{x}=g_{1}\left(P^{e}, P^{d}\right)$
10. $P^{q}=f_{1}\left(P^{m}, P^{d}\right)$
11. $R \equiv 1$

Equilibrium Conditions
12. $D^{D}-D^{S}=0$
13. $Q^{D}-Q^{S}=0$
14. $p w^{m} \square M-p w^{e} \square E=B$

Basic 1-2-3 CGE Model

$$
\begin{aligned}
& \text { Identities } \\
& \text { 15. } P^{x} \sqcap X \equiv P^{e} \sqsubset E+P^{d} D^{s} \\
& \text { 16. } P^{q} \sqcap Q^{s} \equiv P^{m} \sqcap M+P^{d} \sqcap D^{D} \\
& \text { 17. } Y \equiv P^{q} \square Q^{D}
\end{aligned}
$$

Basic 1-2-3 CGE Model

Endogenous Variables

E: Export good
M: I mport good
Ds: Supply of domestic good
DP: Demand for domestic good
Qs: Supply of composite good
QP: Demand for composite good
Y: Total income
pe: Domestic price of export good
Pm: Domestic price of import good
pd: Domestic price of domestic good
px: Price of aggregate output
pa: Price of composite good
R: Exchange rate

Exogenous Variables

pwe: world price of export good
pwim: world price of import good
B: Balance of trade
$\sigma:$ I mport substitution elasticity
Q: Export transformation elasticity

SAM for 1-2-3 Model

	Activities	Commod	Hshld	World
Activities		$P^{d} \square D^{D}$		$P^{e} \square E$
Commodities			$P^{q} \square Q^{D}$	
Households	$P^{x} \square \bar{X}$			$R \square B$
World		$P^{m} \square M$		
Total	$P^{d} \square D^{S}+P^{e} \square E$	$P^{q} \square Q^{S}$	Y	

Mathenatical model statement

$$
E / D=k\left(P_{E} / P_{D}\right)^{\Omega}
$$

$\mathrm{P}_{\mathrm{E}}=$ R•pwe

D

Mathenatical model statement

$$
\begin{gathered}
M / D=K^{\prime}\left(P_{D} / P_{M}\right)^{\sigma} \\
P_{M}=R \cdot p w m
\end{gathered}
$$

1-2-3 Programming Model

Maximize $Q=F(M, D ; \sigma)$
with respect to: M, E, D^{D}, D^{S}
subject to:

Shadow Prices

$$
\begin{array}{lcl}
\text { 1. } G\left(E, D^{S} ; \Omega\right) \leq \bar{X} & \text { technology } & \lambda^{x}=P^{x} / P^{q} \\
\text { 2. } p w^{m} \cdot M \leq p w^{e} \cdot E+\bar{B} & \text { balance of trade } & \lambda^{b}=R / P^{q} \\
\text { 3. } D^{D} \leq D^{s} & \text { domestic market } & \lambda^{d}=P^{d} / P^{q}
\end{array}
$$

Mathenatical model statement

Martannercal noodel statenaent

1-2-3 CGE Model with Consumption, Government, and Investment

Shantayanan Devarajan
Delfín S. Go
J effirey D. Lewis

Sherman Robinson
Pekka Sinko

1-2-3 CGE Model

Real Flows

$$
\begin{aligned}
& \text { 1. } \bar{X}=G\left(E, D^{S} ; \Omega\right) \\
& \text { 2. } Q^{S}=F\left(M, D^{D} ; \sigma\right) \\
& \text { 3. } Q^{D}=C+Z+G \\
& \text { 4. } \frac{E}{D^{S}}=g_{2}\left(P^{e}, P^{d}\right) \\
& \text { 5. } \frac{M}{D^{D}}=f_{2}\left(P^{m}, P^{d}\right)
\end{aligned}
$$

1-2-3 CGE ModeJ

$$
\text { 6. } \begin{aligned}
T & =t^{m} \sqcap R \square p w^{m} \square M \\
& +t^{q} \square P^{q} Q^{D} \\
& +t^{y} \square Y \\
& +t^{e} \sqcap P^{e} \square E \\
\text { 7. } Y & =P^{x} \square X+t r \square P^{q}+r e \llbracket R \\
\text { 8. } S & =\bar{s} \square+R \square \bar{B}+S^{g} \\
\text { 9. } C & \square P^{t}=\left(1-\bar{s}-t^{y}\right) Y
\end{aligned}
$$

1-2-3 CGE Model

Prices

$$
\begin{aligned}
& \text { 10. } P^{m}=\left(1+t^{m}\right) \backslash R \square p w^{m} \\
& \text { 11. } P^{e} \sqsubset\left(1+t^{e}\right)=R \square p w^{e} \\
& \text { 12. } P^{t}=\left(1+t^{q}\right) \backslash P^{q}
\end{aligned}
$$

$$
\text { 13. } P^{x}=g_{1}\left(P^{e}, P^{d}\right)
$$

$$
\text { 14. } P^{q}=f_{1}\left(P^{m}, P^{d}\right)
$$

15. $R \equiv 1$

1-2-3 CGE Model

$$
\begin{aligned}
& \text { Equilibrium Conditions } \\
& \text { 16. } D^{D}-D^{S}=0 \\
& \text { 17. } Q^{D}-Q^{S}=0 \\
& \text { 18. } p w^{m} \square M-p w^{e} \square E-f t-r e=B \\
& \text { 19. } P^{t} \square Z-S=0 \\
& \text { 20. } T-P^{q} \sqcap \bar{G}-\operatorname{tr} \square P^{q}+f t \square R-S^{g}=0
\end{aligned}
$$

1-2-3 CGE ModeJ

Identities
 $$
\text { 21. } P^{x} \square X \equiv P^{e} \square E+P^{d} \square D^{S}
$$
 $$
\text { 22. } P^{q}\left[Q ^ { S } \equiv P ^ { m } \left[M+P^{d} \square D^{D}\right.\right.
$$

Mathenarical noodel statennent

Endogenous Variables

E: Export good
M: Import good
$\mathrm{D}^{\text {S }}$: Supply of domestic good
D^{D} : Demand for domestic good
Q^{S} : Supply of composite good
$Q^{\text {D }}$: Demand for composite good
P^{e} : Domestic price of export good
P^{m} : Domestic price of import good
P^{d} : Domestic price of domestic good
P^{x} : Price of aggregate output
P^{q} : Price of composite good
P^{t} : Sale price of composite good
R: Exchange rate
T: Tax revenue
$S^{\text {g. }}$ Government savings
Y: Total income
C: Aggregate consumption
S: Aggregate savings
Z: Aggregate real investment

Exogenous Variables

$p w^{\mathrm{e}}$: world price of export good
pw^{m} : world price of import good
t^{m} : Tariff rate
t^{x} : Export tax rate
t^{q} : Sales tax rate
t^{y} : Direct tax rate
tr: Government transfers (real)
ft : Foreign transfers to government
re: Foreign remittances to private sector
s: Average savings rate
X: Aggregate output (GDP)
G: Real government demand
B: Balance of trade
σ : Import substitution elasticity
Ω : Export transformation elasticity

IRAN CGE

Structure of a CGE nodel

Signals: prices in a market economy

