ПМЕ «Оเкоvонкќ Етıбти́ $\mu \eta »$

Microeconomic Theory - Producer Theory
Instructor: Andreas Papandreou
Problem Set 2- Key

1. A firm has a fixed cost F_{0} and marginal costs

$$
c=a+b q
$$

whereq is output.
(a) If the firm were a price-taker, what is the lowest price at which it would be prepared to produce a positive amount of output? If the competitive price were above this level, find the amount of output q^{*} that the firm would produce.

The Total Costs are

$$
F_{0}+a q+\frac{1}{2} b q^{2}
$$

And thus the average costs are

$$
\frac{F_{0}}{q}+a+\frac{1}{2} b q
$$

which minimum is $\overline{\bar{q}}=\sqrt{2 \frac{F_{0}}{b}}$ and for that output, the average costs are $\sqrt{2 b F_{0}}+a$ For a price above the level $\sqrt{2 b F_{0}}+a$ the first-order condition for maximum profits is given by

$$
p=a+b q
$$

from which we find

$$
q^{*}:=\frac{p-a}{b}
$$

(b) If the firm is actually a monopolist and the inverse demand function is

$$
p=A-\frac{1}{2} B q
$$

(where $A>a$ and $B>0$) find the expression for the firm's marginal revenue in terms of output. Illustrate the optimum in a diagram and show that the firm will produce

$$
q^{* *}:=\frac{A-a}{b+B}
$$

What is the price charged $p^{* *}$ and the marginal costc** at this output level? Compare $q^{* *}$ and q^{*}.

If the firm is a monopolist marginal revenue is

$$
\frac{\vartheta}{\vartheta q}\left[A q-\frac{1}{2} B q^{2}\right]=A-B q
$$

hence the FOC for the monopolist is

$$
A-B q=a+b q
$$

from which the solution $q^{* *}$ follows. Substituting for $q^{* *}$ we also

$$
c^{* *}=A-B q^{* *}=\frac{A b+B a}{B+b}
$$

$$
p^{* *}=A-\frac{1}{2} B q^{* *}=c^{* *}+\frac{1}{2} B \frac{A-a}{b+B}
$$

(c) The government decides to regulate the monopoly. The regulator has the power to control the price by setting a ceiling $p_{\text {max }}$. Plot the average and marginal revenue curves that would then face the monopolist. Use these to show:
a. If $p_{\text {max }}>p^{* *}$ the firm's output and price remain unchanged at $q^{* *}$ and $p^{* *}$
b. If $p_{\max }<c^{* *}$ the firm's output will fall below $q^{* *}$
c. Otherwise output will rise above $q^{* *}$.

Consider how the introduction of a price ceiling will affect average revenue. Clearly we now have,

$$
A R(q)=\left\{\begin{array}{c}
p_{\max } \text { if } q \leq q_{0} \\
A-\frac{1}{2} B q \text { if } q \geq q_{0}
\end{array}\right\}
$$

where $q_{0}:=2\left[A-p_{\max }\right] / B$ max $]$ average revenue is a continuous function of q but has a kink at q_{0}. Now we may derive the marginal revenue, that is

$$
\operatorname{MR}(q)=\left\{\begin{array}{c}
p_{\max } \text { if } q \leq q_{0} \\
A-B q \text { if } q \geq q_{0}
\end{array}\right\}
$$

2. A monopolist has the cost function

$$
C(q)=100+6 q+\frac{1}{2}[q]^{2}
$$

(a) If the demand function is given by

$$
q=24-\frac{1}{4} p
$$

calculate the output-price combination which maximises profits
Maximizing the simple monopolistís profits,

$$
\Pi_{0}=(94-4 q) q-\left(100+6 q+\frac{1}{2}[q]^{2}\right)
$$

which with respect to q yields optimum output of $q_{0}=10$. Hence $p_{0}=56$ and $\Pi_{0}=350$.
(b) Assume that it becomes possible to sell in a separate second market with demand determined by

$$
q=84-\frac{3}{4} p
$$

Calculate the prices which will be set in the two markets and the change in total output and profits from case (a).

The new problem is to choose q_{1}, q_{2} so as to maximise the function

$$
\Pi_{12}=\left(94-4 q_{1}\right) q_{1}+\left(112-\frac{4}{3} q_{2}\right) q_{2}-\left(100+6 q_{1}+6 q_{2}+\frac{1}{2}\left[q_{1}+q_{2}\right]^{2}\right)
$$

The FOC yield

$$
\begin{aligned}
9 q_{1}+q_{2} & =90 \\
q_{1}+\frac{11}{3} q_{2} & =106
\end{aligned}
$$

Thus we have $\begin{array}{cc}q_{1}=7 & p_{1}=68 \\ q_{2}=27 & p_{2}=76\end{array}$ and $\Pi_{12}=1646$
(c) Now suppose that the firm still has access to both markets, but is prevented from discriminating between them. What will be the result?

If we abandon discrimination, a uniform price \hat{p} must be charged. If $\hat{p}<112$, nothing is sold to either market. If $112>\hat{p}>96$ only market 2 is served. If $96>\hat{p}$ both markets are served and the demand curve is $\hat{q}=108-p$. Clearly this is the relevant region.
Maximising simple monopoly profits we find $\hat{q}=34, \hat{p}=74$ and $\widehat{\Pi}=1634$.
Hence the total output is identical to that under discrimination, $p_{1}<\hat{p}<p_{2}$ and $\Pi_{12}>$ Π. These results are quite general.
3. Suppose that a firm owns two plants, each producing the same good. Every plant j's average cost is given by

$$
A C_{j}\left(q_{j}\right)=a+\beta_{j} q_{j} \text { for } q_{j} \geq 0, \text { where } j=\{1,2\}
$$

where coefficient β_{j} may differ from plant to plant, i.e. if $\beta_{1}>\beta_{2}$ plant 2 is more efficient than plant 1 since its average costs increase less rapidly in output. Assume that you are asked to determine the cost-minimizing distribution of aggregate output $q=q_{1}+q_{2}$, among the two plants (i.e., for a given aggregate output q, how much q1 to produce in plant 1 and how much q2 to produce in plant 2.) For simplicity, consider that aggregate output q satisfies $q<\frac{a}{\max _{j}\left|\beta_{j}\right|^{\circ}}$. (You will be using this condition in part b.)
(a) If $\beta_{j}>0$ for every plant j, how should output be located among the two plants?

The cost-minimization problem in which we find the optimal combination of output q_{1} and q_{2} that minimizes the total cost of production across plants is

$$
\begin{gathered}
\min _{q_{1}, q_{2}} T C_{1}\left(q_{1}\right)+T C_{2}\left(q_{2}\right) \\
\text { s.t. } q_{1}+q_{2}=q
\end{gathered}
$$

or equivalently, the profit maximization problem in which firms choose the optimal combination of output q_{1} and q_{2} that maximizes the total profits across all plants is

$$
\begin{gathered}
\max _{q_{1}, q_{2}} \underbrace{p q_{1}-T C_{1}\left(q_{1}\right)}_{\pi_{1}}+\underbrace{p q_{2}-T C_{2}\left(q_{2}\right)}_{\pi_{2}} \\
\text { s.t. } q_{1}+q_{2}=q
\end{gathered}
$$

Given that $A C_{j}\left(q_{j}\right)=a+\beta_{j} q_{j}$, we derive that $T C_{j}\left(q_{j}\right)=\left(a+\beta_{j} q_{j}\right) q_{j}$. In this way the above PMP yields,

$$
\begin{gathered}
\max _{q_{1}, q_{2}} p q_{1}-\left(a+\beta_{1} q_{1}\right) q_{1}+p q_{2}-\left(a+\beta_{2} q_{2}\right) q_{2} \\
\text { s.t. } q_{1}+q_{2}=q
\end{gathered}
$$

Using the FOC, they yield

$$
p-a-2 \beta_{1} q_{1}=p-a-2 \beta_{2} q_{2}
$$

by rearranging and replacing into the constraint we get

$$
q_{1}+\underbrace{\frac{\beta_{1}}{\beta_{2}} q_{1}}_{q_{2}}=q
$$

and solving for q_{1} entails the cost-minimizing production in plant 1 ,

$$
q_{1}\left(1+\frac{\beta_{1}}{\beta_{2}}\right)=q, \text { thus } q_{1}=\frac{\beta_{2}}{\beta_{1}+\beta_{2}} q
$$

And by symmetry we have,

$$
q_{2}=\frac{\beta_{1}}{\beta_{1}+\beta_{2}} q
$$

(b) If $\beta_{j}<0$ for every plant j, how should output be located among the two plants?

First, note that $\beta_{j}<0$ implies that the average $\operatorname{cost} A C_{j}\left(q_{j}\right)=a+\beta_{j} q_{j}$ is decreasing in output. Hence, it is cost-minimizing to concentrate all production on the plant with the smallest $\beta_{j}<0$ (the most negative β_{j}) because average costs (and total costs) are minimized by doing so.
(c) If $\beta_{j}>0$ for for some plants and $\beta_{i}<0$ for others?

Similarly as in part (b), the firm now faces some plants with increasing average costs (those with $\beta_{j}>0$) and some plants with decreasing average costs (those with $\beta_{j}<0$). Hence, it is cost-minimizing to concentrate all production on the plant/s with the smallest $\beta_{j}<0$, since it benefits from the most rapidly decreasing average costs.

In a firm in which both plants exhibit decreasing average costs, but $\beta_{2}<\beta_{1}<0$, implying that it is beneficial for the firm to concentrate all output in plant 2. In addition, note that the average cost in plant 1 is positive for all q_{1} as long as $\alpha-\beta_{1} q_{1}>0$, or $q_{1}<\frac{\alpha}{\beta_{1}}$, where $\frac{\alpha}{\beta_{1}}$ represents the horizontal intercept of $A C_{1}$. Similarly for firm 2 , where $A C_{2}$ for all q_{2} as long as $q_{2}<\frac{\alpha}{\beta_{2}{ }^{\prime}}$ where $\frac{\alpha}{\beta_{2}}$ represents the horizontal intercept of $A C_{2}$. Hence, the original condition $q<\frac{a}{\max _{j}\left|\beta_{j}\right|}$ is equivalent to $q<\min _{j} \frac{a}{\left|\beta_{j}\right|}$
4. A firm has a fixed cost of $€ 400$ and a total variable costs $=20 q+0.25 q^{2}$ where q is output.
(a) If the firm were a price-taker, what is the lowest price at which it would be prepared to produce a positive amount of output? How much output q^{*} would it produce at this price? What is the perfectly competitive firm's supply curve?
(b) If the firm is actually a monopolist and the inverse demand function isp $=170-q$. What is the price charged $p^{* *}$ and the marginal costc** at this ouput. Illustrate the monopoly optimum in a diagram.
(c) The government decides to regulate the monopoly. The government can set a ceiling of $p_{\text {max }}$. In a separate duplicate graph of b plot the average and marginal revenue curves that would face the monopolist, explaining how output will react to different price ceilings relative to $c^{* *}$ and $p^{* *}$.
(d) Linking to diagram in (b) provide a diagramatic exposition of monopolistic competition and explain.
**The key for this exercise is on this directory:
https://eclass.uoa.gr/modules/document/index.php?course=ECON258\&openDir=/54c e0fc5DNfu

