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4 Voting and Social Choice

4.1 Ordinal Welfarism

As discussed in section 1.3, ordinal welfarism pursues the welfarist program in those situa-
tions where the cardinal measurement of individual welfares is either unfeasible, unreliable,
or ethically untenable.

Consider voting among several candidates competing for a certain political office. Who
would think of measuring the relative impact of electing Jones or Smith on the individual
welfare of each and every citizen? Say that Ann favors Jones and Bob favors Smith. It
is typically impossible to decide whether Ann’s utility gain from having Jones in office
rather than Smith is larger than Bob’s gain from having Smith rather than Jones. Such an
evaluation would require that each voter forms expectations about all decisions influenced
by the election of Jones or Smith and computes his or her expected utility. The complex-
ity of these computations destroys the plausibility of the cardinal utility model: electors
simply do not perform elaborate computations of cardinal welfare, and even the task of
ranking all candidates from best to worst is challenging, given limited information about
the consequences of the election.

In most real life elections, in the large or in the small, voters are not asked to express
more than an “ordinal” opinion, namely a preference ordering (which may or may not
allow for indifferences) of the names on the ballot. There is more to this restriction than the
practicality and simplicity of an ordinal message.

Recall from section 3.1 the strong ethical objections to the interpersonal comparison
of cardinal welfares. If the outcome of the election depends on the intensity of the voters’
feelings and emotions about the candidates, a minority of fanatics will influence the outcome
more than the quiet majority; worse yet, a subset of voters faking fanaticism are more
influential than the honest, truth-telling voters.

The central postulate of ordinal welfarism is that individual welfare is entirely captured
by a preference ordering of the possible outcomes, also called states of the world. This
ordering is a binary relation R of the set A of possible outcomes (A is often called the
choice set). The relation x Ry reads “x is at least as good as y,” or “welfare at x is not below
welfare at y.” The relation R is assumed to be complete and transitive. Completeness of R
means that all pairs x, y in A can be compared: at least one of x Ry and y Rx holds. If x Ry
but not y Rx, we say that x is strictly preferred to y and write x Py; if x Ry and y Rx , we
say that the choice between x and y is a matter of indifference (or, abusing language, that
x and y are “indifferent”) and we write x I y. Transitivity of R means that x Ry and y Rz
imply x Rz. In particular, strict preferences are transitive (x Py and y Pz imply x Pz), and
so are indifferences (x I y and y I z imply x I z).

The preference relation R expresses the opinion, tastes, or values of a certain agent
over the outcomes in A, and it pointedly avoids any statement about the intensity of these
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preferences. The empirical basis of R is the choice between outcomes: if an agent with
preferences R is presented with a choice between two states of the world x and y, she
will choose x if x Py and y if y Px . If presented with a choice over a subset {x, y, z, . . .}
of outcomes, she will pick one of the outcomes ranked highest in R, namely a∗ such that
a∗ Rx, a∗ Ry, a∗ Rz, and so on.

The choices made by a given agent over the various subsets of outcomes that she may
be presented with, are entirely determined by her preference relation R. Conversely, if
we observe a series of choices, we may or may not be able to identify an underlying
preference relation rationalizing these choices, in the sense that the observed choices are
the highest ranked for R among the feasible choices. For instance, imagine that Ann has
been presented with three successive pairs {x, y}, {y, z}, and her choices are as follows:
choose x from {x, y}, choose y from {y, z}, or choose z from {x, z}. If the preference relation
R rationalizes these choices, it must have x Py because x was unambiguously chosen from
x, y (Ann could say “both choices are okay” but not choose to do so), and similarly we
must have y Pz and z Px, in contradiction of the transitivity of R. Another configuration
ruling out the existence of R is

choose x from {x, y}

choose y from {x, y, z}
(1)

Here the first choice reveals x Py, but the second implies y Px, y Pz, in contradiction of
the definitions of P.

In the configuration (1) the peculiarity of the observed choices is illustrated by the
following classic air travel story. The flight attendant asks this passenger if he will have fish
or chicken for his meal, and his answer is “fish.” A minute later he comes back announcing
that the pasta meal is still available, and would he like to change his mind? Yes, says the
passenger, in that case I will have chicken.

The choices over all conceivable feasible subsets of outcomes are said to be rational (or
rationalizable) if there exists a preference relation R such that for any feasible subset B
of outcomes, the outcomes (or outcomes) S(B) selected from B are precisely the highest
ranked outcomes in B according to R : x Py if x is in S(B) and y is not in S(B); x I x ′ if x
and x ′ are both in S(B). The formal theory of rational choice explores in great detail what
restrictions on the various choices over the various subsets guarantee that these choices can
be rationalized by a preference relation.

The identification of welfare with preferences, and of preferences with choice, is an
intellectual construction at the center of modern economic thinking. We will refer to this
construction as the ordinal approach. It eschews heroic assumptions about cardinal mea-
surement of utility, and offers a testable empirical basis for the construction of individual
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preferences, namely the actual choices made by the agents. Social choice theory adapts
the welfarist program—namely the definition of just compromises between the conflicting
goals of maximizing different individual welfares—to the ordinal approach.

The concept of Pareto optimality, already central in chapter 3, is clearly an ordinal
concept. Outcome y is Pareto superior to outcome x if y R j x for all agent j and y Pi x for at
least one agent i : everyone is at least as satisfied with y as with x and at least one agent is
strictly better off with y.

The main new feature of the ordinal context is that individual welfare can no longer be
separated from the set A of outcomes to which it applies: the binary relation R bears on A
and cannot be defined in a vacuum. Contrast this with the cardinal approach, where we can
compare utility levels u1, u′

1, u2, u′
2, . . . without specifying the outcomes from which these

utilities are derived. Therefore, in the ordinal world, collective decision-making can only be
defined if we specify the set A of feasible outcomes (states of the world), and for each agent
i a preference relation Ri on A. The focus is on the distribution of decision power, namely
how the configuration of these relations Ri —called the profile of preferences—affects the
choice of an outcome in A, or affects the collective preference relation on A—in the cases
of voting and preference aggregation, respectively—as explained below.

We define now the two central models of social choice theory. A voting problem specifies
the set A of outcomes, the set N of agents, and a profile of preferences; the problem is to
“elect” an outcome a in A from these data. A systematic solution of this problem (a rule
for selecting an outcome from any profile of preferences) is a pure example of a public
contract in the sense of section 1.5. Key to the discussion starting in the next section is the
knowledge of which subsets T of N “control” the choice of a in the sense that if all voters
in T have a as their first choice, a will be elected. For instance, under majority voting, any
coalition T containing strictly more agents than N /T controls the outcome of the election.

The voting model has two complementary interpretations, normative and strategic. In the
normative one, the benevolent dictator discovers the profile of preferences Ri and enforces
the compromise outcome deemed just by the voting method. Alternatively, the preference
relation Ri is private information to agent i and a voting rule is a decentralized decision
process enforced by the public authority. Every voter reports a preference relation R̃i to the
central agency, who takes these messages on face value to compute the winning outcome.
As the agency has no way to determine whether the reported preference relation R̃i is indeed
the true relation Ri , each agent is free to report a nontruthful relation if this serves his or
her interest better than reporting the truth. Thus, in the second interpretation of the voting
model, the issue is strategic voting, and how the central agency can avoid misreporting.

The second model of social choice theory is the preference aggregation problem. Here
we associate to a preference profile a collective preference. Much as in chapter 3 a collective
utility function associates a cardinal index to any profile of cardinal utilities; the aggregation
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method computes an ordinal preference relation from any profile of preference relations.
The anthropomorphic bias is the same in both cases, but the new ordinal model is technically
more involved.

We are given, as in the voting model, the outcome set A, agent set N , and a profile of
preferences, but we are now looking for a collective preference R on A, one that will order
all outcomes instead of selecting just one “best” outcome. The two problems are closely
related, and under the axiom independence of irrelevant alternatives (section 4.6), they are
formally equivalent.

The voting and preference aggregation problems are truly the most general microeco-
nomic models of collective decision-making because they make no restrictive assumption,
neither on the set A of outcomes or on the admissible preference profiles of the agents.
Therefore these models encompass, in principle, all resource allocation problems from
chapter 5 onward. On the other hand, the extreme generality of the model leads to two
severe impossibility results, namely Arrow’s theorem about preference aggregation
(section 4.6), and Gibbard-Satterthwaite’s theorem about strategic voting (briefly discussed
at the end of section 4.4). More palatable results obtain when the domain of individual pref-
erences is suitably restricted, and two important examples of such restrictions are discussed
in sections 4.4 and 4.5.

4.2 Condorcet versus Borda

The two most important ideas of voting theory originated more than 200 years ago, in
the work of two French philosophers and mathematicians, Jean-Antoine the marquis de
Condorcet and Jean-Charles de Borda. Both articulated a critique of plurality voting and
proposed a (different) remedy. Their two methods are defined and illustrated in the examples
below.

Plurality voting is, then as today, the most widely used voting method, of unrivaled
simplicity. Each voter chooses one of the competing candidates, and the candidate with
the largest support wins. Thus a voter only needs to designate his or her most preferred
candidate.1 Electors do not need to spell out a complete preference relation ordering all
candidates, and the rule is at once transparent and easy to implement. German tribes elected
their new chief by raising contenders on a shield, around which their supporters gathered:
a simple head count and a couple of strong shields, is all the hardware they needed.

Condorcet and Borda agreed that plurality voting is seriously flawed, because it re-
flects only the distribution of the “top” candidates and fails to take into account the entire
preference relation of the voters. It I vote for an extremist candidate who stands no chance of

1. Barring strategic manipulations, which cannot be ignored among “sophisticated” voters.
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being elected, my ballot will play no role in the “real” contest between the two centrist can-
didates. Both the Condorcet and the Borda voting rule offer a (different) remedy to this
difficulty.

The next three examples are borrowed from Borda’s and Condorcet’s essays on voting.

Example 4.1. Where Condorcet and Borda Agree Borda proposes the following example
with 21 voters and three candidates (or outcomes) a, b, c. The voters are split in three groups
of respective sizes 6, 7, and 8, and all voters within a given group have identical preferences:

Number of voters: 6 7 8
Top: b c a

: c b b
Bottom: a a c

(2)

In the table above a preference relation is represented as a column, with the top candidate
outcome ranked first and the bottom one ranked last. Note that a voter is never indifferent
between two outcomes.

Plurality voting elects a in this profile, yet b is a more convincing compromise. Borda’s
and Condorcet’s argument is that b is just below a in 8 ballots, but a is either just below or
two positions below b in 13 ballots.

Borda proposes to tally the score of a candidate x by counting 2 points for each voter for
whom x is the best candidate, 1 point for each voter who ranks x as second and 0 point for
each voter ranking x last. Thus the Borda scores in example (2) are

score (a) = 8 × 2 = 16

score (b) = 6 × 2 + 15 × 1 = 27

score (c) = 7 × 2 + 6 × 1 = 20

Now b has the highest Borda score hence is elected, whereas the plurality winner a has the
lowest Borda score.

Condorcet’s argument in support of the election of b is different. Suppose that the vote
reduces to a duel between a and b (ignoring c altogether): then b wins by 13 votes against
8; similarly a duel between b and c has b winning 14 to 7, and finally c wins the a versus c
duel by 13 to 8. Thus the majority relation Rm that records the winner of each duel x, y as
“x is preferred to y by a majority of voters,” is as follows:

bPmc bPma cPma

We call b, the top outcome of the majority relation, the Condorcet winner, whereas a is
the Condorcet loser, namely the bottom outcome of the majority relation.
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In the second preference profile, 60 voters must decide among four candidates:

Number of voters: 23 19 18
Top: a b c

d d d
b a a

Bottom: c c b

The plurality winner is a but d is a more equitable compromise when the entire profile is
taken into account.

Borda scores are computed by giving 3 points for each first place, 2 points for each second
place, 1 point for each third place, and no point for each fourth place:

score (d) = 120 > score (a) = 106 > score (b) = 80 > score (c) = 54

As in example (2), the majority relation yields the same ordering of the candidates as the
Borda scores:

d Pma (37/23); d Pmb (41/19); d Pmc (42/18)

a Pmb (41/19); a Pmc (42/18)

bPmc (42/18)

In our next example, the majority relation and the Borda scores make different recommen-
dations, and this divergence reveals some important structural features of these two methods.

Example 4.2 Where Condorcet and Borda Disagree The profile has 26 voters and three
candidates:

Number of voters: 15 11
a b
b c
c a

(3)

The plurality winner is a, and it is the Condorcet winner as well: a wins by 15 to 11 both
duels against b and c. Borda’s objection is that the eleven “minority” voters (supporters
of b) dislike a more than the fifteen majority voters (supporters of a) dislike b. Indeed, a
is the worst outcome for 42 percent of the voters, whereas b is always the first or second
choice. This is reflected in their respective Borda scores:

score (b) = 15 + 2 × 11 = 37 > score (a) = 2 × 15 = 30 > score (c) = 11
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Notice that Borda’s argument relies on the conventional choice of points for first, second,
and third place, which plays the role of a cardinal utility, albeit a mechanical one, unrelated
to the real intensity of feelings of our voters for these three candidates (the voting rule
prevents them from reporting any such intensity). Plurality voting is the voting method
where first place gives one point and any other ranking gives no point.

The general family of scoring methods include Borda’s and the plurality methods as
special cases. Say that p candidates are competing. A scoring method is defined by the choice
of a sequence of scores s1, s2, . . . , sp: a candidate x scores sk points for each voter who ranks
x in the kth place; the candidate or candidates with the highest total score wins. Naturally
the scores decrease with respect to ranks, s1 ≥ s2 ≥ · · · ≥ sp and moreover s1 > sp, lest all
candidates receive the same score irrespective of rank. Plurality corresponds to the scores
s1 = 1, sk = 0 for k = 2, . . . , p and Borda to the scores sk = p − k for k = 1, . . . , p.

Another method of interest is antiplurality, for which sk = 1 for k = 1, . . . , p−1 and sp = 0.
In other words the antiplurality winner is the candidate who is least often regarded as the
worst.

In example 4.2, depending on the choice of the scores, either a or b is elected2—but
never c, whose score is always smaller than that of b, irrespective of the choice of s1, s2, s3.

This flexibility contrasts with the inflexible message of the Condorcet approach: a must
be elected because the “will of the majority” is to prefer a to b and a to c. The fact that
a is ranked last by the minority voters, whereas b is second best for all majority voters,
is irrelevant to the majority relation. This is precisely the reason why the Borda method
prefers b to a. Here Borda’s method takes into account the entire preference profile but
Condorcet’s does not. We abstain at this point to make a normative judgment about this
difference, which is at the heart of the axiom independence of irrelevant alternatives (IIA)
discussed in section 4.6.

In our third example, slightly adapted from one of Condorcet’s examples, the contrast
between the Condorcet approach and the scoring approach (irrespective of the choice of
scores) is especially clear.

Example 4.3 Condorcet against Scoring Methods There are 81 voters and three candi-
dates, with the following preferences:

Number of voters: 30 3 25 14 9
a a b b c
b c a c a
c b c a b

(4)

2. For instance, s1 = 4, s2 = 1, s3 = 0, makes a the winner with a score of 60 against 59 for b.
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Candidate b is the plurality and the Borda winner in this profile. In fact, b wins for any
choice of scores for first, second, and third place. To check this, we assume without loss
of generality that these scores are 1, s, and 0, respectively, with 0 ≤ s ≤ 1 (thus s = 0 is
plurality and s = 1

2 is the Borda method). Compute

score (b) = 39 + 30s > score (a) = 33 + 34s > score (c) = 9 + 17s

By contrast, the Condorcet winner is a because a Pmb by 42/39 and a Pmc by 58/23.

Notice that outcome c fares badly in both approaches. However, for the scoring methods
the relative position of c with respect to b and a matters enormously: b wins essentially
because c is much more often between b and a when b is first choice (this happens for
14 voters) than between a and b when a is first choice (happening only for 3 voters). On
the other hand, a is a Condorcet winner, whether or not we take into account the irrelevant
outcome c, or any other sure loser. This is, again, the IIA property alluded to above. It is
a very strong argument in favor of the election of a in this example, and in support of the
majority relation in general.

The most serious critique of the Condorcet approach is the observation, due to Condorcet
himself, that the majority relation may cycle, meaning that it may fail the transitivity property
(section 4.1). If the cycle involves the best outcomes of the majority relation, no Condorcet
winner exists.

The simplest profiles of preferences exhibiting such cycles involve three outcomes a, b, c
and only three different preference relations:

Number of voters: n1 n2 n3

a c b
b a c
c b a

(5)

If the sum of any two among the three numbers ni , i = 1, 2, 3, is greater than the third,
the majority relation has the following cycle:

n1 + n2 > n3 ⇒ a Pmb

n1 + n3 > n2 ⇒ bPmc

n2 + n3 > n1 ⇒ cPma

and there is no Condorcet winner. Condorcet was keenly aware of this problem and proposed
to break the cycle at his weakest link, namely to ignore the majority preference supported
by the smallest majority.
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For instance, suppose that n1 = 18, n2 = 20, and n3 = 10. Then the link bPmc is the
weakest because b versus c yields a 28/20 split versus 38/10 for a Pmb and 30/18 for
cPma. Thus Condorcet suggests to elect c at this profile. Compare with the Borda method,
electing a because score (a) = 56 > score (c) = 50 > score (b) = 38. In this example the
election of either a or b is plausible.

Our last example uncovers a serious defect of any voting method electing the Condorcet
winner whenever there is one, no matter how this method chooses to break the cycles of the
majority relation when there is no Condorcet winner. To fix ideas, we assume as above that a
cycle is broken at its weakest link, but the example can be adapted to any cycle-breaking rule.

Example 4.4 The Reunion Paradox We consider two disjoint groups of voters, with
respectively 34 and 35 members, who vote over the same three candidates a, b, c. The first
group contains left-handed voters, and the second one right-handed voters:

Number of left-handed voters: 10 6 6 12
a b b c
b a c a
c c a b

Number of right-handed voters: 18 17
a c
c a
b b

Candidate a is the majority winner among right-handed voters. Among left-handed voters,
the majority relation has a cycle, a PmbPmcPma, of which the weakest link is cPma (by
18/16 versus 22/12 for the other two links); therefore we remove this link and elect a.

As a wins both among left-handed and among right-handed voters, we would expect—
even request—that a be still declared the winner among the overall population of 69 voters.
Yet c is the Condorcet winner there: cPma by 35/34 and cPmb by 47/22!

The example above reveals a troubling paradoxical feature of the Condorcet approach.
The paradox does not occur if a is a “real” Condorcet winner among left-handed and among
right-handed electors, namely if for any other candidate x , a majority of lefties prefer a to x
and a majority of righties do too: the union of these two majorities makes a majority in the
grand population. Thus the paradox is a direct consequence of cycles in the majority relation.

Notice that any scoring method is immune to the reunion paradox. In the example a is the
Borda winner in each subgroup and in the grand population. It is a simple exercise to check
that for any system of scores, if two disjoint subsets of voters elect the same candidate a
from the same pool of candidates, then a is still elected by the reunion of all the voters.



moulin-79027 book October 22, 2002 16:9

Voting and Social Choice 116

A related problem is the no-show paradox: at certain profiles of preferences, certain agents
are better off staying home rather than participating in the election and casting a truthful
ballot. This paradox affects all voting methods choosing the Condorcet winner when there
is one, and none of the scoring methods.

4.3 Voting over Resource Allocation

In the discussion of the Condorcet and Borda voting methods, the set A of candidates/
outcomes is typically small, and voters may be endowed with arbitrary preferences over
A. This is the correct modeling assumption when we speak about a political election,
where the ability to report any ranking of the candidates is a basic individual right. How-
ever, when the issue on the ballot concerns the allocation of resources, some important
restrictions on individual preferences come into play. The examples discussed below in-
clude voting time shares (example 4.5), over the location of a facility (example 4.6) and over
tax- or surplus-sharing methods (examples 4.7 and 4.8). We find that majority voting works
brilliantly in several of these problems (sections 4.4 and 4.5) but produces systematic cycling
in others (example 4.5).

On the other hand, scoring methods are hopelessly impractical in all of these models
because the set A of outcomes is large, and typically modeled as an infinite set, such as an
interval of real numbers (example 4.6) or the simplex of an euclidean space (example 4.5).
For instance, assume A = [0, 1]: a scoring method associates to an ordinal preference
relation on A a scoring function representing the relation in question like a utility function.
There are many different ways to define this representation,3 and no natural way to select
any of the scoring methods.

Another serious difficulty limiting the application of scoring methods in resource allo-
cation problems comes from the IIA property: it is explained in the discussion following
example 4.6.

In our next example, the issue is to divide a homogeneous private good when each voter
cares only about his or her share. The commodity is a time share in example 4.5; it could
be interpreted as money when the voters decide on a distribution of tax shares, or on the
allocation of a surplus. The central feature is the pervasive cycling of the majority relation.

Example 4.5 Voting over Time Shares: Example 3.6a Continued We can choose any
mixture (x1, . . . , x5) of the five radio stations, where xi represents the time share of

3. One way is to pick a positive measure m on [0, 1] and define the score s(x) = m(P(x)), where P(x) is the set
of outcomes y in A such that x ! y.
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station i, and
∑5

1 xi = 1. The agents use majority voting to decide on the distribution of
time shares.

The set of agents N is partitioned into five disjoint groups of one-minded fans: the
agents in Ni like station i and no other station. We write ni for the cardinality of Ni so
that

∑5
1 ni = n. If one of the five subgroups Ni contains a majority of voters—ni > n/2—

then playing their station all the time—meaning xi = 1—is the Condorcet winner (and the
plurality winner as well). On the other hand, if none of the five coalitions forms an absolute
majority, ni < n/2 for i = 1, . . . , 5, then the majority relation is strongly cyclic and there is
no Condorcet winner.

Consider an arbitrary distribution of time shares x1, . . . , x5. Suppose that station 1
receives a positive share x1 > 0. The coalition of all agents who do not like station 1 can
“gang up” on the n1 supporters of this station and give a positive piece of the spoil to each
one of the four other stations. In other words, consider the following vector of timeshares
y1, . . . , y5:

y1 = 0, yi = xi + 1
4 x1, for i = 2, 3, 4, 5

Every supporter of station i, i = 2, . . . , 5, strictly prefers the distribution y over x . Our
assumption n1 < n/2 means that

∑5
2 ni > n/2; that is to say, a majority of voters prefer y

over x so that x can’t be a Condorcet winner. But, for any distribution x of time shares,
some station i receives a positive share, and the argument above shows that taking away the
share xi to distribute it among all other stations is a move from which a majority of voters
benefit. Hence there is no Condorcet winner.

The example illustrates a strategic situation known as “destructive competition,” that
often emerges when relatively small coalitions can inflict severe negative externalities upon
the complementary coalition. Examples of destructive competition involving production
and exchange of private goods are discussed in section 7.3. There as here, the issue is a
failure of the logic of private contracting. Every distribution of time shares among the five
coalitions is threatened by a private contract of at most four coalitions joining to deprive the
remaining coalition of any benefit whatsoever. The cycles of the majority relation correspond
to the never ending process of these majority “coups.” Instability and unpredictability of the
eventual outcome is a consequence of the excessive power awarded to any majority of the
voters. A solution to destructive competition in the voting context is to reduce the power
of coalitions, for instance, by requiring a qualified majority (a larger support) to overturn a
given outcome.

In example 4.5, to fix ideas, assume that n = 100 and n1 = 40, n2 = 25, n3 = 15,

n4 = 12, n5 = 8. We require a qualified majority of Q or more to overturn any given
allocation. If 51 ≤ Q ≤ 60, destructive competition reigns, exactly as before, because any
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reunion of four out of the five homogeneous subgroups reaches the quota Q. If 61≤ Q ≤ 75,

the coalition N2 ∪ N3 ∪ N4 ∪ N5 no longer passes the quota Q, so these agents can’t get to-
gether to “steal” the time share x1. On the other hand, the four other coalitions made of four of
the five subgroups reaches Q; therefore the argument in example 4.5 shows that a distribution
x where xi > 0 for one of i = 2, 3, 4, 5 will be outvoted when the union of N j , for all j ̸= i,
forms. In turn this establishes that the only stable allocation of time shares is x1 = 1, xi = 0
for i = 2, 3, 4, 5! The homogeneous group N1 holds veto power and uses it to extract the
entire surplus. The strategic logic here is core stability (as in sections 7.1 through 7.3).

Next consider the case 76 ≤ Q ≤ 85. Now we need some voters in N1 and some
voters in N2 to form a coalition of size Q or more; therefore both N1 and N2 have veto
power. As a result the corestable outcomes are all distributions x of time shares such that
x1 + x2 = 1, xi = 0 for i = 3, 4, 5. A similar argument shows that all distributions x
such that x1 + x2 + x3 = 1, and only those, are corestable when 86 ≤ Q ≤ 88. Finally
when the quota reaches 93, the core stability property loses all bite, and any distribution
x,
∑5

1 xi = 1, is stable.

4.4 Single-Peaked Preferences

The domain of preferences discussed in this section guarantees the transitivity of the majority
relation, in turn making the Condorcet approach to voting unambiguously successful.

Example 4.6 Location of a Facility (Example 3.4 Continued) As in example 3.4 the
voters live in a linear city represented as the interval [0, 1]. A voter living at x , 0 ≤ x ≤ 1,

wishes that the facility be located as close as possible to x, and her utility when the facility
is at y is the negative of the distance between x and y, ui (y) = −|y − xi |. The distribution
of our voters along [0, 1] is represented by a cumulative function F, where F(z) is the
proportion of voters living on [0, x], and 1− F(z) is the proportion of those living on [z, 1].

We assume, for simplicity, that there is a large number of voters spread continuously
between 0 and 1 so that the function F increases continuously from F(0) = 0 to F(1) = 1.

In other words, the proportion of agents living at a given point z is always zero.4

The median of the distribution F is this point y∗ such that F(y∗) = 1
2 , meaning that half

of the population lives to the left of y∗ and half to its right. Recall from example 3.4 that
y∗ is the classical utilitarian solution. In fact, y∗ is the Condorcet winner as well.

If we compare y∗ to y on its left, 0 ≤ y < y∗, all voters in [y∗, 1] prefer y∗ to y, and so
do those in [(y + y∗)/2, y∗] because they are closer to y∗ than to y. Thus the supporters of

4. All results are preserved if we deal with a small finite set of voters or if a positive fraction of the voters are
piled up at certain locations.
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y∗ versus y form the proportion 1 − F((y + y∗)/2) of the population, and this constitutes
a majority:

y < y∗ ⇒ F
(

y + y∗

2

)

< F(y∗) = 1
2

⇒ 1 − F
(

y + y∗

2

)

>
1
2

A symmetrical argument applies when we compare y∗ to y in ]y∗, 1]: all voters living in
[0, (y + y∗)/2] prefer y∗ to y and they form a majority because F((y + y∗)/2) > F(y∗) = 1

2 .

This proves our claim that y∗ is the majority winner. By similar arguments it is easy to
show that the majority relation coincides with the preferences of an agent living at y∗.

Location y is preferred by a majority to location y′ if and only if y is closer to y′, namely
|y − y∗| < |y′ − y∗| (see exercise 4.6).

The remarkable coincidence of the Condorcet winner and the utilitarian optimum in
example 4.6 depends on the particular assumption that the distance from the facility to
one’s home is the disutility function of each agent. An important observation is that the
median of the distribution is still the Condorcet winner (if not the utilitarian optimum) for
a much larger domain of individual preferences, called the single-peaked preferences.

Given an ordering of the set A from left to right (from 0 to 1 if outcomes in A are
represented by real numbers as in the example above), we write x < y when x is to the left
of y and we say that z is “between” x and y if either x ≤ z ≤ y or y ≤ z ≤ x . The preference
relation Ri is single peaked (in the ordering of A) with peak xi if xi is the top outcome of
Ri in A, and moreover for all outcome x, x ̸= xi , Ri prefers any outcome between xi and
x to x itself.

The simple geometric intuition for single-peaked preferences is shown on figure 4.1,
where A is represented by an interval [a, b]. The preferences are increasing when x increases
(moves right) from a to the peak xi of Ri ; they are decreasing when x increases from xi

to b. The important point is that the comparison of outcomes across the peak—say x to its
left versus y to its right—are not restricted: see figure 4.1.

The assumption that all individual preferences are single-peaked is plausible in many
problems where the outcomes are naturally arranged along a line. This is especially clear if
we vote over the drinking age, or the tax rate, or the length of a patent. Another important
example is the Downsian model of political competition, where A models the size of the
defense budget, the funding of public education, and so on. Of course, a real assembly
is rarely so simple as to be lined up from leftist to rightist on all issues, but on specific
issues the assumption makes sense. A final example is product differentiation: the group of
agents N must pick a software or a copier, or any item whose cost is equally split among all.
There is a single dimension of “quality,” ordered by price. The assumption that each user
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Figure 4.1
Single-peaked preferences

has single-peaked preferences over the different levels of quality amounts to the familiar
convexity property.5

In example 4.6 the central argument is that the median y∗ of the distribution of individual
peaks xi (where agent i lives) is the Condorcet winner. This argument is valid for any profile
of single-peaked preferences. Consider an outcome x to the left of y∗ (x < y∗) : all agents
whose peak xi is to the right of y∗ or at y∗ prefer y∗ to x because y∗ is between x and xi .

These agents form a majority by definition of the median; therefore y∗ defeats x for the
majority relation. A symmetrical argument shows that y∗ defeats all outcomes to its right.

Another property of example 4.6 is preserved under any profile of single-peaked prefer-
ences: the majority relation is transitive, and is single peaked as well. Its peak is the median
peak, and so is the Condorcet winner. Exercise 4.6 explains these facts.

The Condorcet winner is particularly easy to implement when preferences are single-
peaked because each agent only needs to report her peak. The way she compares outcomes
on the left of her peak to outcomes on its right, does not affect the Condorcet winner
(although it does affect the majority relation over outcomes below the winner).

Moreover the definition of the feasible set A far away from the Condorcet winner does not
matter either. If we extend A to the right or to the left by adding a few outcomes that stand
no chance of being elected, the Condorcet winner does not change, another illustration of
the property Independence of Irrelevant alternatives. Here is a simple example with seven
agents with single-peaked preferences on [0, 100] and the following peaks:

x1 = 35 x2 = 10 x3 = 22 x4 = 78 x5 = 92 x6 = 18 x7 = 50

5. If level x is preferred to level y, and x ′ is also preferred to y, then all levels in [x, x ′] are preferred to y.
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On A = [0, 100] the median of these peaks is at y∗ = 35, and this is true on the following
smaller intervals:

B = [20, 75]: peaks x1 = 35, x̃2 = x̃6 = 20, x3 = 22, x̃4 = x̃5 = 75, x7 = 50

C = [20, 40]: peaks x1 = 35, x̃2 = x̃6 = 20, x3 = 22, x̃4 = x̃5 = x̃7 = 40

and on any interval containing 35.
By contrast, if one wishes to apply a scoring method in a problem like example 4.6, the

entire preference relation of every voter matters, and so do the precise end points of the
set A.

The last but not least desirable feature of the Condorcet method is strategy-proofness: a
voter has no incentive to lie strategically when reporting the peak of his preferences. Even
when a group of voters attempt to jointly misreport their peaks, they cannot find a move
from which they all benefit.

We check this claim in example 4.6, where y∗ is the median of the distribution of individual
peaks xi . In the argument below, it does not matter whether the set of agents is large (infinite,
as in example 4.6) or small, finite, as in the numerical example three paragraphs above.

Denote by N− the set of agents whose peak is (strictly) to the left of y∗ on A (xi < y∗),

by N+ the set of those whose peak is to its right (y∗ < xi ), and by N0 those with xi = y∗.

Suppose that the coalition T of voters agree to alter their reported peaks, from the true peak
xi to a fake x̃ i , while the rest of the agents report their peak truthfully as before. Denote by
z∗ the new median of the reported peaks: we show that either z∗ = y∗ or at least one agent
in T strictly prefers y∗ to z∗. In the former case, the joint misreport is inconsequential; in
the latter, it is not plausible because participation has to be voluntary.

The proof is by contradiction. Suppose that z∗ ≠ y∗ and that no i in T strictly prefers
y∗ to z∗. Say that z∗ is to the right of y∗ in A (y∗ < z∗). Because preferences are single
peaked, everyone in N− and in N0 strictly prefers y∗ to z∗; therefore T is contained in N+. By
definition of the median, N− ∪N0 forms a strict majority, and we just proved that they all still
report their true peak; therefore a majority prefers y∗ to z∗, and z∗ cannot be chosen when
T misreports, contradiction. A symmetrical argument applies when z∗ is to the left of y∗.

Strategy-proofness is the ultimate test of incentive-compatibility in mechanism design. In
a strategy-proof allocation or voting mechanism, no participant has any incentive to report
his own characteristics (preferences, endowment) strategically: the simple truth is always my
best move, whether I have no information about other agents’ messages, or full information,
or anything in between. Two very important examples of strategy-proof mechanisms are
majority voting over single-peaked preferences, and the competitive equilibrium when
each market participant is negligible with respect to the total endowment of the economy
(sections 6.3 and 7.1).
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Note that all scoring rules fail to be strategy-proof, even when individual preferences are
single peaked. An example with three outcomes a, b, c and nine voters illustrate the point.
We have five voters with preferences a ≻ b ≻ c, and four voters with b ≻ a ≻ c; these
preferences are single peaked for the ordering a < b < c. The Borda winner is a, but if the
four “losing” voters report b ≻ c ≻ a, the winner is b and the misreport is thus profitable.

Majority voting à la Condorcet is thus a compelling voting method when the outcomes
are arranged along a line and individual preferences are single-peaked. The assumption that
the outcome set is a one-dimensional interval can be weakened to a tree pattern, but not to
a one-dimensional “loop”; see exercises 4.8 and 4.9.

Real life voting rules, however, do not impose any restriction on the shape of individual
preferences, and in this case incentive-compatibility becomes a thorny issue. A disappoint-
ing impossibility result, discovered in the early 1970s, eliminates any hope of a simple
answer.

Any voting method defined for all rational preferences over a set A of three or more
outcomes must fail the strategyproofness property: at some preference profile, some agent
will be able to “rig” the election to his or her advantage (i.e., bring about the election of
a better outcome) by reporting untruthfully his or her preferences. This important fact,
known as the Gibbard-Satterthwaite theorem, is technically equivalent to Arrow’s theorem
discussed in section 4.6. It is formally stated in chapter 8.

4.5 Intermediate Preferences

We turn to the second configuration of preferences guaranteeing that the majority relation
is transitive, hence a Condorcet winner exists. The property of intermediate preferences
relies on an ordering of the agents, instead of an ordering of the outcomes in the case of
single-peaked preferences. In example 4.8 below, the agents choose a taxation method and
differ only by their pre-tax income (they are selfish, only interested in maximizing aftertax
income): they are naturally ordered along the income scale.

We say that the profile has the intermediate preferences property if whenever two agents
i, j agree to prefer outcome a to b, so do all agents “between” i and j . Say that the 100 agents
are ordered as N = {1, 2, . . . , 100}. Intermediate preferences imply that the set N (a, b) of
agents preferring a over b is an interval [i1, i2], namely N (a, b) consists of all agents i such
that i1 ≤ i ≤ i2. The same observation applies to the set N (b, a) of agents preferring b to
a. Barring indifferences for simplicity, we see that N (a, b) and N (b, a) partition [1, 100]
in two disjoint intervals: thus N (a, b) must be an interval of the type [1, i∗] or [ j∗, 100].

We check that the majority relation is transitive. Pick three outcomes a, b, c such that
N (a, b) and N (b, c) each contain 51 agents or more, so that the majority relation prefers a to
b and b to c. If N (a, b) = [1, i∗] and N (b, c) = [1, j∗], with i∗, j∗ ≥ 51, then all agents in
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[1, 51] prefer a to b and b to c, hence a to c, and the majority relation prefers a to c as claimed.

A symmetrical argument applies if N (a, b) = [i∗, 100] and N (b, c) = [ j∗, 100], with
i∗, j∗ ≤ 50. Suppose next that N (a, b) = [1, i∗] and N (b, c) = [ j∗, 100], with i∗ ≥ 51
and j∗ ≤ 50. Then agents 50 and 51 both belong to N (a, b) and N (b, c), hence to N (a, c)
as well. If N (a, c) takes the form [1, i], this implies i ≥ 51 and if N (a, c) = [ j, 100], this
implies j ≤ 50: in both cases N (a, c) is a strict majority and the claim is proved.

Example 4.7 Voting over Three Surplus-Sharing Methods We consider first the three
surplus-sharing methods in section 2.2, namely the proportional (PRO), equal surplus (ES),
and uniform gains (UG) methods.

Given a particular profile of claims and amount of resources t to be divided, our agents
vote to choose which method will be implemented. Agents are ranked by the size of their
initial claims/investments. They compare the three methods exclusively by the size of their
own share of total surplus, and the larger the better. Here is an example with 11 voters, total
resources t = 745, and initial claims ranging from 10 to 120 and totalling 580. We compute
the shares allocated by our three methods:

Agent 1 2 3 4 5 6 7 8 9 10 11

Claim 10 10 20 25 40 40 60 70 85 100 120

PRO 12.8 12.8 25.7 32.11 51.4 51.4 77.1 89.9 109.2 128.4 154.1

ES 25 25 35 40 55 55 75 85 100 115 135

UG 51.7 51.7 51.7 51.7 51.7 51.7 60 70 85 100 120

The four agents with the smallest claims rank the uniform method above equal surplus
and the latter above proportional. The five agents with the largest claims have the exactly
opposite preferences.6 For the two middle agents with claim 40, the best method is equal
surplus. Thus all preferences are single peaked with respect to the ordering {uniform, equal
surplus, proportional} of the three outcomes. The median peak is 40 and “equal surplus” is
the Condorcet winner at this profile.

Next we check the intermediate preferences property. It suffices to check that the sets
N (a, b) are intervals of the form [1, i] or [ j, 11] for all a, b:

N (UG, PRO) = N (ES, PRO) = [1, 6]; N (ES, UG) = [5, 11]

Assume that the commodity being distributed is a “bad,” and that individual claims represent
a liability. Now an agent prefers method m to another method m ′ if and only if his share
under m is smaller than under m ′. Observe that the new preferences are not single peaked

6. Recall from exercise 2.5 that the smallest claim and largest claim agents have these preferences for all surplus-
sharing problems.
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anymore, because each method is the worst outcome for some agents: PRO for agents
[7, 11], ES for 5, 6, and UG for [1, 4]. On the other hand, the intermediate preferences
property is preserved because the intervals N (a, b) and N (b, a) are simply exchanged:

N ′(UG, PRO) = N ′(ES, PRO) = [7, 11]; N ′(ES, UG) = [1, 4]

The proportional solution is the Condorcet winner; indeed, it is the best method for the six
agents 1, 2, . . . , 6.

Exercise 4.13 shows that for all surplus-sharing problems of any size, the preferences
over the three methods PRO, ES and UG have the intermediate preference property. Our
next example shows that the same holds true when agents choose a rationing method within
the one-parameter family uncovered in section 2.4.

Example 4.8 Voting over Tax Schedules The agents choose one of the equal sacrifice
methods described at the end of section 2.4, namely they choose a common utility function
u to measure sacrifice, and this function takes one of the following forms:

u p(z) = − 1
z p

for some positive parameter p

u0(z) = v0(z) = log z

vq(z) = zq for some positive parameter q

(6)

Once their vote has elected one such utility function, taxes are computed by solving sys-
tem (10) in chapter 2. Recall that the function u0 = v0 corresponds to the proportional
method (flat tax), the function v1 to uniform losses (head tax), and u∞ to uniform gains
(full redistribution).

Remarkably, the intermediate preferences property holds true for any number of taxpayers
and any profile of taxable incomes, so that majority voting always delivers a Condorcet
winner. Before explaining this result, we note that the pattern of preferences over this
family of tax schedules is not in general single peaked for any ordering of the family.

Consider the profile of taxable incomes x1 = 20, x2 = 80, x3 = 100, and total aftertax
income t = 120 (i.e., total tax levied is 80). The three basic methods give the following
aftertax incomes:

Agent 1 2 3

PRO 12 48 60

UG 20 50 50

UL 0 50 70
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so that PRO is the worst method for agent 2, UG is the worst for agent 3, and UL is
the worst for agent 1, which rules out single-peakedness for any ordering of the three
methods.

We check now the intermediate preference property for the two methods u1 and u2.
7

Recall that the u p methods are computed by solving the simpler system (9) in chapter 2.
Fix the profile of taxable incomes xi , the total aftertax income t, and denote by yi , zi the
aftertax incomes under u1 and u2 respectively. System (9) tells us that there are two positive
numbers λ, µ such that

1
yi

− 1
xi

= λ and
1
z2

i
− 1

x2
i

= µ for all i

⇔ yi = xi

1 + λxi
and zi = xi

(

1 + µx2
i

)1/2 for all i

Compare the two concave functions f (x) = x/(1 + λx) and δ(x) = x/(1 + µx2)1/2

for x ≥ 0 : they coincide at x = 0, where they both have a slope of 1, then they cross
once at x = 2λ/(µ − λ2) if µ > λ2, or not at all if µ ≤ λ2. Figure 4.2 illustrate these two
cases.

Therefore for any λ and µ, the set of agents i for whom f (xi ) > g(xi ) is made either of
all agents whose taxable income is below a certain level, or of all those with income above
some level. This is exactly the intermediate preferences property when we order the agents
according to their taxable incomes.

4.6 Preference Aggregation and Arrow’s Theorem

As indicated in section 4.1, a social choice problem is made of three ingredients. The
set A contains all the outcomes (states of the world) among which the set N of concerned
agents—the “society”—must choose one. The choice of an outcome a in A affects the
ordinal welfare of each concerned agent i : this is captured by a preference relation Ri on
A, namely a complete and transitive binary relation.

The differences between individual preferences are resolved by the aggregation method
F, associating to each profile of preferences R̃ = (Ri , i ∈ N ), a collective—or social—
preference relation R∗ = F(R̃), interpreted as the ordinal collective welfare. The aggre-
gation method plays exactly the same role, in the ordinal context, as the collective utility
function in the cardinal context of the previous chapter.

7. The general argument is the subject of exercise 4.16.
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Collective welfare is identified with a preference relation R∗, guiding the collective choice
over any subset B of feasible outcomes: welfare is identical to choice. This construction is
anthropomorphic, in the sense that the collective body is treated exactly like an individual
agent. The mechanical computation of the collective relation R∗ from the profile R̃ is
social engineering at its best, or its worst, namely a controversial normative construction.
It suggests one way of thinking about democratic institutions, but competing models offer
alternative answers to this central question of political philosophy.

Recall from section 1.5 the basic tenet of the minimal state (libertarian) doctrine: collec-
tive decisions merely result from the interaction of free citizens exercising their political
rights. This decision process may indeed yield a pattern of choices that can in no way be
deciphered as rational, as maximizing some underlying collective preference. But this fea-
ture is by no means a subject of concern: collective choice is devoid of normative content,
and any outcome of the free interplay of individual rights is as good as any other.

Social choice theory takes the diametrically opposed view that the process to reach a
democratic compromise should rest on sound axiomatic foundations and allow positive
predictions. For instance, cycles of the majority relation are deemed undesirable because
they lead to the chronic formation of unstable coalitions and arbitrariness of the final decision
which, ultimately, threatens the political legitimacy of the institutions for collective decision.
The model of preference aggregation is the most general—the most ambitious—project
of mechanism design in the microeconomic tradition. Its limited success, underlined by
Arrow’s impossibility theorem, can just as easily be viewed as a vindication of the minimal
state doctrine—the search for rationality of collective choice is hopeless—or as the first
step in a larger project of social engineering poised to discover specific allocation problems
for which rational collective choice is within our reach.

The two voting methods proposed by Condorcet and Borda suggest two simple aggrega-
tion methods. Condorcet’s argument is that for a given profile R̃ the majority relation is the
correct expression of the general will (volonté générale). Formally this relation Rm = F(R̃)

is defined as follows, for any pair of outcomes x, y:

x Rm y ⇔ |{i ∈ N | x Pi y}| ≥ |{i ∈ N | y Pi x}| (7)

namely the supporters of x against y are not outnumbered by their opponents.
We saw in the previous section that for some preference profiles R̃, the relation Rm is

cyclic, hence violates the transitivity requirement for rational choice. In many collective
decision problems, we can exclude a priori no preference relation on A. Voting over candi-
dates to a political office is an obvious example, because of freedom of opinions. In this case
the majority relation is not a valid aggregation method. On the other hand, the Borda scoring
method provides an aggregation method for all preference profiles on any finite set A.
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If p is the number of outcomes in A and Ri an arbitrary preference relation on A, we
define the Borda scores s(a, Ri ) awarded by Ri . If Ri expresses strict preferences between
any two outcomes (agent i is never indifferent between a and b), we set, as in section 4.2,

s(a, Ri ) = p − k for the outcome ranked kth in A

(hence the top outcome gets p − 1 points and the bottom one gets 0 point). When Ri is
indifferent between say a, b and c, these outcomes split equally the total scores they would
fetch if preferences were strict and a, b, c were adjacent. To illustrate this straightforward
construction, consider p = 8 and the following preference Ri :

{a, b}Pi cPi {d, e, f }Pi g Pi h

where the brackets denote an indifference class; for example, Ri is indifferent toward d, e,
and f. Outcomes a and b split the total score 7 + 6, so they get 6.5 each; c gets 5; d, e, and
f each get 3; g gets 1, and h gets 0.

The Borda aggregation method yields Rb = F(R̃) as follows for any pair of outcomes
x, y:

x Rb y ⇔
∑

i∈N

s(x, Ri ) ≥
∑

i∈N

s(y, Ri ) (8)

The transitivity of the relation Rb follows at once from that of the inequality relation between
scores.

Consider the profile (4) in example 4.3. We noted there that b, the Borda winner, owes
its success over a to the relative position of c vis-à-vis b and a. By contrast, the majority
relation (transitive in this example) puts a above b: if the issue is to choose between a and
b, it compares the numbers of supporters of a versus b and b versus a, without paying any
attention to c at all.

The property independence of irrelevant alternatives (IIA) requires that the collective
preference R∗ between any two outcomes x and y only depend upon individual preferences
between any two outcomes. That is, if R̃ and R̃′ are two profiles of preferences that produce
exactly the same sets of supporters of x versus y and y versus x :

for all i : x Pi y ⇔ x P ′
i y, y Pi x ⇔ y P ′

i x, x Ii y ⇔ x I ′
i y

then the collective preferences R = F(R̃) and R′ = F(R̃′) compare x and y in precisely the
same way:

x Py ⇔ x P ′y, y Px ⇔ y P ′x, x I y ⇔ x I ′y

The majority aggregation method (7) meets the IIA property but does not always produce
a rational collective preference. When it cycles, say a Pmb, bPmc, and cPma, it is helpless
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to guide the choice among a, b, and c. Any method to break the cycle, for instance, at its
weakest link (see example 4.4 and the discussion preceding it), leads to a violation of IIA: if
we declare a the winner among a, b, c because the statement cPma is the “weakest” (has the
smallest number of supporters), then “a wins over b” depends on the individual preferences
over a, b, and c, not just over a and b. Similarly, if the collective preference declares a, b,
and c to be indifferent, then the mere knowledge of the supporters of a versus b and b versus a
is not enough to determine the collective preference between a and b: it also matters whether
a, b are part of some cycle of the majority relation (involving other outcomes) or not.

The Borda aggregation method (8) produces a rational collective preference for any profile
R̃ but fails the IIA property. This means that the choice of the set A of outcomes/candidates
on the ballot is of critical importance to the eventual outcome. Adding to A = {a, b} a
candidate c who stands no chance to win against either a or b (and will be ranked last by the
collective preference) may turn around the choice between a and b, as in examples 4.2 and
4.3. Control of the “agenda,” namely the set A of eligible candidates, is often tantamount
to control of the election and of the collective preference. Thus the definition of A is
controversial and may be the subject of a preliminary round of collective decision-making,
the agenda of which is itself a matter of dispute, and so on ad infinitum.

Arrow’s impossibility theorem explores the sharp trade-offs between the IAA property
and the rationality of collective preferences, in the formal context of aggregation functions.
In a nutshell, the theorem says that any aggregation function producing a rational collective
preference and meeting IIA must be highly undesirable on account of its lack of efficiency
or of fairness. A formal statement is given in chapter 8.

For instance, suppose that we want an efficient aggregation method, namely we insist
that the collective preference R∗ respects the unanimous preferences of the citizens. For
any two outcomes x, y,

{x Pi y for all i ∈ N } ⇒ x P∗y

Then the only rational aggregation methods meeting IIA are the dictatorial methods,
where the collective preference relation R∗ coincides with R∗

i , the preference relation
of the dictator i∗. The point is that the dictator’s preferences prevail irrespective of those of
the rest of the agents, a state of affairs that we may call maximally unfair.

Suppose next that we restrict our attention to aggregation functions that are fair in the sense
that all voters have equal influence a priori on the collective preference.8 Some unpalatable
rational aggregation methods meeting IIA are the “imposed” methods, always selecting
the same collective preference Ro, irrespective of the preferences of our citizens. Such a
method is fair, but it is pathetically inefficient: even when the citizens share a common

8. Formally, this means that the function F is symmetrical in its n variables Ri .
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preference Ri = Ro for all i, the collective preference ignores this fact entirely. It turns out
that the only fair rational aggregation methods meeting IIA are imposed, except for at most
two fixed outcomes a, b that can be compared, for instance, by the majority relation.

The proof of Arrow’s theorem is beyond the scope of this book. The two “ways out” of the
impossibility have been discussed earlier in this chapter. One way is to restrict the domain
of admissible preference profiles, as with the single peaked (section 4.3) or intermediate
(section 4.4) preferences. Another way is to weaken the rationality properties of the collec-
tive preference, by only requiring that its strict preferences do not cycle. This is the idea
of qualified majorities briefly discussed at the end of section 4.3. The approach leads to
indecisive collective preferences, however, with too many different outcomes declared
winners.

4.7 Introduction to the Literature

The theory of rational choice and ordinal preferences, discussed in section 4.1, is the very
foundation of microeconomic analysis. Textbook presentations are easy to find; a particu-
larly good one is in Mas-Colell, Whinston, and Green (1995, ch. 1).

The original discussion of the optimal design of voting rules by Condorcet (dating back
to 1785), is still extremely useful and accessible in the excellent English translation of
McLean and Urken (1995). Our examples 4.1 to 4.3 are adapted from Condorcet’s original
examples.

The reunion paradox (example 4.4) is the basis of an important result due to Smith (1973)
and Young (1974): the scoring methods are the only voting methods avoiding the reunion
paradox and treating symmetrically both voters and candidates. Two excellent surveys on
voting rules are Brams (1994) and Brams and Fishburn (2002); see also Ordershook (1986).

The central result underlying section 4.4 is due to Black (1948) and is formally described
in exercise 4.6: the majority relation is a rational preference when individual preferences
are single-peaked. The related property of strategyproofness has been studied extensively:
Moulin (1980) uncovers the full family of strategy-proof voting rules on the single-peaked
domain, a result later extended to multidimensional versions of this domain; see Sprumont
(1995) and Barbera (2001) for a survey of this literature.

The seminal impossibility result on strategy-proof voting with unrestricted preferences
is due to Gibbard (1973) and Satterthwaite (1975): it is briefly discussed at the end of
section 4.4. Textbook presentations can be found in Moulin (1988, ch. 10) and Mas-Colell,
Whinston, and Green (1995).

Grandmont (1978) introduced the notion of intermediate preferences, section 4.5, and
Roberts (1977) noticed that preferences over tax schedules can be expected to fit this pattern.
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Arrow’s 1951 book, with the original proof of his theorem, is the unambiguous starting
point of mathematical welfare economics, and in this sense its influence pervades the entire
book. The formal statement and proof of the theorem is available in many books, among
them Sen (1970), Kelly (1978), Moulin (1988), and Mas-Colell, Whinston, and Green
(1995).

Peremans and Storcken (1996) introduce the concept of single-dipped preferences
discussed in exercise 4.7.

Exercises to Chapter 4

Exercise 4.1 Two More Examples of Condorcet

a. In the following profile with 60 voters shows that the majority relation and the Borda
scores yield the same ranking of the three outcomes. Compare it with the ranking of plurality
voting.

Number of voters: 18 5 16 3 13 5
a a b b c c
c b c a b a
b c a c a b

b. In the next profile the majority relation has a cycle. What outcome wins if we use
Condorcet’s idea to break the cycle at its weakest link? What outcome (outcomes) is (are)
elected by some scoring method?

Number of voters: 23 2 17 10 8
a b b c c
b a c a b
c c a b a

Exercise 4.2 An Example due to Joe Malkovitch

We have 55 voters and five outcomes. The profile of preferences is as follows:

Number of voters: 18 12 10 9 4 2
a b c d e e
e e b c b c
d d e e d d
c c d b c b
b a a a a a
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Check that the majority relation is transitive and orders the candidates exactly like the Borda
scores. Compare with plurality voting.

Exercise 4.3 More on Profile (5)

Consider the preference profile (5) where the majority relation has a cycle: ni < n/2 for
i = 1, 2, 3. Check that the Borda winner corresponds to the index i maximizing ni − ni+1,

where we set n3+1 = n1. Check that the Condorcet solution (break the cycle at its weakest
link) corresponds to i maximizing ni .

Give an example where these two solutions are unique and different.

Exercise 4.4

Consider the profile with seven voters and four candidates:

Number of voters: 3 2 2
c b a
b a d
a d c
d c b

a. Compute the majority relation and show that it has several cycles. By “breaking” the
two weakest majority preferences, check that the ordering cPbPaPd obtains.

b. Compute the Borda ranking of our four candidates. Find an outcome x such that, upon
removing x , the ranking of the other three candidates is completely reversed! The violation
of which axiom does this illustrate?

Exercise 4.5 Location of a Noxious Facility (Example 3.5)

The public facility that must be located somewhere in [0, 1] is undesirable (prison, waste
disposal) and the distance from agent i ′s home xi to the site y of the facility measures her
utility ui (y) = |xi − y|. See example 3.5.

a. Show that the endpoint (0 or 1) farthest away from the median y∗ of the distribution
F of agents (see example 4.6) is the Condorcet winner. Recall from example 3.5 that the
utilitarian optimum is the endpoint farthest away from the mean of F (the barycenter of all
homes).

b. Show that the majority relation coincides with the preferences of the median agent living
at y∗. Exercise 4.7 generalizes this property.
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*Exercise 4.6 Majority Relation under Single-Peaked Preferences

a. In example 4.6, show that the majority relation strictly prefers y to y′ if and only if
|y − y∗| < |y′ − y∗|.
b. In the rest of the exercise, we only assume that individual preferences are single-peaked
on [0, 1], as in the discussion following example 4.6. We denote by y∗ the Condorcet winner.

Show that if y < y′ ≤ y∗, of y∗ ≤ y′ < y, the majority relation Rm strictly prefers y′

over y.

c. Check now that the majority relation is transitive across its peak y∗. Pick a, b, c such
that a < y∗ < b < c, and assume a Pmb. We know from question b that bPmc. Show a
Pmc. (Hint: An agent preferring a to b must have its peak to the left of b). Show similarly
a Rmb ⇒ a Rmc.

Next pick a, b, c such that b < a < y∗ < c, and assume bPmc. Show a Pmc. (Hint: An
agent preferring b to c must prefer a to c.) Conclude that the majority relation is single
peaked, as claimed in section 4.4.

*Exercise 4.7 Majority Relation under Single-Dipped Preferences

We say that the preference relation Ri on [0, 1] is single dipped if there is an outcome xi ,

the dip, such that Ri decreases on [0, xi ] and increases on [xi , 1]. In other words, xi is the
worst outcome for Ri and for all x, x ̸= xi , Ri prefers x to any outcome between x and xi .

We fix a profile of single-dipped preferences on [0, 1], and we denote by y∗ the median
dip.

a. Show that the majority relation Rm is decreasing on [0, y∗] and increasing on [y∗, 1]:

{y < y′ ≤ y∗ or y∗ ≤ y′ < y} ⇒ y Pm y′

b. Show that Rm is transitive across its dip y∗ (the argument is similar to that in question c
of exercise 4.6.).

Exercise 4.8 Location of a Facility on a Network with a Loop

When the set of feasible locations of the facility is a one-dimensional network with a loop,
the Condorcet winner often does not exist.

a. Consider the road network of example 3.8, depicted as figure 3.6. There are five agents
living at A, B, C, D, and E respectively. If the “inner roads” to X are not feasible locations,
it follows from example 4.6 that location C , the utilitarian optimum, is also the Condorcet
winner. Assume now that the entire network on figure 3.6 is feasible to locate the facility.
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Show that X, the utilitarian optimum is not a Condorcet winner, and neither is any other
location.

b. Consider the road network of exercise 3.4, question a, depicted as figure 3.11. There
are five agents living at A, B, C, D, and E respectively. Show similarly that no location of
the facility is a Condorcet winner.

c. Consider the road network of exercise 3.4, question b, depicted as figure 3.12. There are
nine agents, of whom two live at B, three at C , and four at D. Assume first that the direct
road between C and B is closed. Show that A, the utilitarian optimum, is also the Condorcet
winner.

Next show that when the road CB is open, the problem has no Condorcet winner.

*Exercise 4.9 Location of a Facility on a Star-Tree

The road network is a “star” as in exercise 3.6. Each outer location Ak is connected to the
center O by a road of length dk, and nk agents live at Ak . See figure 3.13.

a. Assume that the facility is desirable, so an agent wants to minimize his travel cost to the
facility. Show that the Condorcet winner coincides with the utilitarian optimum: it is the
center O of the tree if none of the nodes Ak contains a strict majority of the total population;
otherwise, it is this most populated location.

b. Now the facility is noxious and agents want it to be as far away as possible from where
they live. Show that the Condorcet winner is Ak∗ , the location farthest away from the center
among those hosting a minority of the total population:

nk∗ <
n
2

and
{

for all k, nk <
n
2

⇒ dk∗ ≥ dk

}

(Note that the borderline case n1 = n2 = n/2 leads, as usual, to an “indecisive” majority
relation.) Compare with the utilitarian optimum described in exercise 3.6.

Exercise 4.10 An Example with Intermediate Preferences

There are nine voters and three outcomes. Preferences are as follows:

Number of voters: 1 4 3 1
b a b a
a b c c
c c a b

a. Check that the Condorcet winner and Borda winners are different.
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b. Show an ordering of the nine agents for which the profile has the intermediate preferences
property.

Exercise 4.11 Voting over Surplus-Sharing and Taxation Methods

Using notations as in examples 4.7 and 4.8,

a. Give two examples of three person surplus-sharing problems with increasing claims
x1 < x2 < x3 and resources t, t > x1 + x2 + x3, such that agent 2′s shares are ordered
respectively as follows:

y2(ES) > y2(PRO) > y2(UG)

y2(ES) > y2(UG) > y2(PRO)

b. Give two examples of three-person taxation problems with increasing taxable incomes
x1 < x2 < x3 and total aftertax income t, t < x1 + x2 + x3, such that agent 2’s aftertax
incomes are ordered respectively as follows:

y2(PRO) > y2(UG) > y2(UL)

y2(PRO) > y2(UL) > y2(UG)

Note that example 4.8 contains a three-person example where y2(PRO) is the smallest
among these three shares.

Exercise 4.12 Voting over Taxation Methods

a. Consider the five voters profile of taxable incomes 10, 20, 50, 70, 80, and total aftertax
income t = 100. Compute the aftertax distribution of incomes under the three basic methods
PRO, UG, and UL and the majority relation.

b. Compute next the shares awarded by the Talmudic (T) and random priority (RP) methods
defined in exercises 2.11 and 2.10 respectively. Check that the Talmudic method is the
Condorcet winner and that RP is ranked third by the majority relation. Check that the Borda
scores order the five methods in precisely the same way.

c. Consider the profile of taxable incomes 10, 15, 30, 40, 55, and aftertax income t = 100.

Show that the Talmudic method is now the Condorcet loser as well as the Borda loser, with
random priority ranked next to last in the majority and Borda relations.

*Exercise 4.13 Generalizing Example 4.7

We consider an arbitrary surplus-sharing problem with profile of claims xi , x1 ≤ x2 ≤
· · · ≤ xn and resources t, t ≥

∑n
1 xi .
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a. Show that the profile of preferences over the three methods PRO, ES, and UG has the
intermediate preferences property.

b. Show that the preferences of any agent over PRO, ES, UG are single-peaked when the
three methods are so ordered.

Hint: By the inequalities proved in question a of exercise 2.5, it suffices to show that for
any i, the inequalities yi (ES) < yi (PRO), yi (ES) < yi (UG), cannot both be true. Proceed
by contradiction. The UG shares are y j (UG) = max{x j , λ}; show that λ ≤ t/n and that
agent i for whom both inequalities hold has xi ≤ λ.

Exercise 4.14 Voting over the Commons

In the model of the commons of chapter 6, three solutions are compared: CEEI (competitive
equilibrium with equal incomes), VP (virtual price), and RP (random priority). The users
of the commons are identified by their willingness to pay, providing a natural ordering
of N . Using the formulas of section 6.6, show that the preferences of the users over the
three methods have the intermediate preference property. Show that in general, there is no
ordering of CEEI, VP, and RP in which these preferences are single peaked.

Exercise 4.15 Counting Preference Relations

a. Given an ordering of the choice set A with cardinality p, show that there are 2p−1

different preference relations that are single peaked in this ordering.

b. Given a preference profile with the intermediate preferences property (with respect to
some ordering of N ), show that there are at most [p(p − 1)/2] + 1 different preference
relations in this profile.

Exercise 4.16 Proving the Claim in Example 4.8

Consider an arbitrary profile xi , x1 ≤ x2 ≤ · · · ≤ xn, of taxable incomes and total aftertax
income t, t ≤

∑n
1 xi .

a. Show that the profile of preferences over the three methods PRO, UG, UL has the
intermediate preferences property. Hint: Check successively the property for any two of the
three methods, and for both orderings of the two methods in each case.

b. Show that the IP property is maintained if we add the Talmudic (T) and random priority
(RP) methods defined in exercises 2.11 and 2.10.

c. The goal of this question is to prove the IP property when the choice set contains all equal
sacrifice methods listed in formula (6). We prove a slightly more general result. Consider two
increasing utility functions u, v and the associated equal sacrifice after tax incomes yi , zi .
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For simplicity, we assume first that all yi , zi are positive—system (9) in chapter 2—so that
there are two positive numbers λ, µ such that

u(xi ) − u(yi ) = λ, v(xi ) − v(zi ) = µ for all i

⇔ yi = u−1(u(xi ) − λ), z = v−1(v(xi ) − µ) for all i

The desired IP property amounts to the fact that the two increasing functions, f (x) = u−1

(u(x) − λ) and g(x) = v−1(v(x) − µ), have the single-crossing property over positive
numbers x : the graphs of these two functions cross at most once.

We assume now that the function v is more concave than u, namely v(x) = w(u(x)),

all x ≥ 0, for some increasing and concave function w. Check that this implies the single-
crossing property. Check that if v is more concave than u, the IP property over u, v holds
even if some agents receive a zero share—system (10) instead of (9) in chapter 2. Check
finally that for any two utility functions in the family (6), one of them is more concave than
the other.


