3 Cardinal Welfarism

3.1 Welfarism

The welfarist postulate states that the distribution of individual welfare across the agents/
citizens is the only legitimate yardstick along which the states of the world can be compared.
In the cardinal version of welfarism,' individual welfare is measured by an index of utility,
and comparisons of the utilities of two different agents are meaningful.

Welfarism is a reductionist model of distributive justice. It views an agent as a machine
producing welfare/utility at a given state of the world, and compares two feasible states
by means of the two utility profiles they generate. Welfarism is endstate justice at its best;
that is to say, the process by which a particular utility profile is reached (e.g., the physical
allocation of the resources of the world) is devoid of ethical content: it is the means toward
achieving a particular profile of utilities. For instance, the criterion “no envy” discussed in
chapters 6 and 7 is irrelevant to welfarism because it relies on interpersonal comparisons
of individual allocations of resources.

The most basic concept of welfarism? is efficiency-fitness (Pareto optimality) of which
we repeat the definition already given in section 1.3. Consider two feasible states of the
world x and y, resulting for agent i in the utility u, (x) and u; (y) respectively. State y is
Pareto superior to state x if no agent j strictly prefers state x to state y, that is to say,
uj(x) < uj(y) for all j, and moreover at least one agent i strictly prefers state y, u; (x) <
u;(y). Thus y is Pareto superior to x if the move from x to y is by unanimous consent (in the
sense that everyone agrees to a change that does not decrease his or her own utility level). A
state x is Pareto optimal (efficient) if there is no feasible state y Pareto superior to x. Thus,
if the current state is x, we cannot generate a consensus to move to another state y (except
in the case where everyone enjoys the same utility level in both states).

The task of cardinal welfarism is to pick, among the feasible utility profiles (lists of one
utility level per agent), one of the Pareto optimal ones. In many specific allocation problems,
the Pareto optimality property has much bite, in the sense that it eliminates many if not most
feasible allocations of the resources. Examples 3.2, 3.3, 3.8, and 3.9. On the other hand, in
the fair division problems of section 2.5, all feasible allocations are Pareto optimal because
there is a single commodity and everyone prefers a bigger share to a smaller one. The only
way to increase agents i’s utility is to give him more resources, which in turn decreases
the utility of another agent. The same property (all feasible allocations are Pareto optimal)
holds true in examples 3.1, 3.4, 3.5, and 3.6.

1. The ordinal version of welfarism is called social choice; it is the subject of chapter 4.

2. Be it in its cardinal or ordinal version.
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A general fact is that the property of efficiency/Pareto optimality is orthogonal to distribu-
tive concerns. Typically the allocation where all of the available resources are used to the
benefit of a single agent meets the criterion, although it is the most unfair of all distributive
systems.

The task of the welfarist benevolent dictator is to compare normatively any two utility
profiles (u;), (u;) and decide which one is best. The key idea is to insist that this comparison
should follow the rationality principles of individual decision-making, namely completeness
and transitivity.> Completeness says that any two profiles can always be compared: either
(u;) is preferred to (u}), denoted (u;) > (u}), or the reverse preference (u;) > (u;) holds, or
they are declared indifferent (u;) ~ (u;). Transitivity means that (u;) ; (u;)—that profile
(u;) is preferred or indifferent to profile (u;)—and (u}) x () imply (u;) = (u}).

The preference relation is called a social welfare ordering, and the definition and com-
parison of various social welfare orderings is the object of cardinal welfarism. The two
most prominent instances of social welfare orderings are the classical utilitarian, namely
(u;) = (u;),ifand only if Y, u; > >~ u}, and the egalitarian one, namely (u;) > (u}) if and
only if, upon reordering the profile by increasing coordinates as (1) and (u;"), the former
is lexicographically superior to the latter. The former expresses the sumfitness principle in
the welfarist world, whereas the latter conveys the compensation principle. A variety of
social welfare orderings in between those two are introduced in the subsequent sections.

Before we start the general discussion of social welfare orderings in section 3.2, it is
important to recall that we focus exclusively on the “micro” version of welfarism, and pay
only lip service to its “macro” interpretation still an influential idea in contemporary political
philosophy. We look at microallocation problems, involving a small number of commodities
and where utility is tailored to the problem at hand. For instance, in the problem of locating
a facility (examples 3.4 and 3.8), utility measures the (negative of the) distance between
the agent in question and the facility. In example 3.11 the issue is to distribute fruits from
which our agents metabolize vitamins, and utility is measured by the quantity of such
vitamins. And so it goes on. Thus the context dictates the interpretation of utility and,
in turn, influences the choice of the social welfare ordering (see the distinction between
tastes and needs in the examples just mentioned). The central assumption that individual
utilities can be objectively measured and compared across different agents can be more or
less convincing. The distance from an agents’ home to the facility (examples 3.4, 3.5, and
3.8) is an objective fact, as is, to a large extent, the amount of a certain vitamin or drug he
needs to be healthy. But his taste for a certain piece of cake, or for art, cannot be measured
along a common scale.

3. A general discussion of the rationality of choice for a single decision-maker is in section 4.1.



65 3.1 Welfarism

The microwelfarist viewpoint separates the allocation problem at stake from the rest of
our agent’s characteristics. It assumes that the level of my utility from the allocation I receive
in the microproblem can be measured independently from the rest of my characteristics.
Moreover the utility of those agents not concerned by the microallocation problem should
not matter either. This crucial property of separability is expressed axiomatically in the next
section and is the basis of the additive representation discussed there.

From this axiomatic analysis, three paramount social welfare orderings emerge. In addi-
tion to the classical utilitarian collective utility function and the egalitarian social welfare
ordering already mentioned, the Nash collective utility function is simply the product of
individual utilities. From the theoretical discussion of section 3.2, as well as the examples
of sections 3.4 and 3.5, the Nash collective utility function emerges as a sensible compro-
mise between the egalitarian and classical utilitarian ones. The nontechnical reader is urged
to skip section 3.2 and go directly to the examples listed from section 3.3 on.

In contrast to microwelfarism, macrowelfarism is an encompassing approach to social
justice, where utilities measure the overall level of happiness of a given agent/citizen (the
sum of his pleasures and pains, in Bentham’s words), so that the choice of a social welfare
ordering amounts to an entire program of social justice.

Recall from section 1.3 the two main objections to macrowelfarism. An objective grasp
of individual welfare defeats the purpose of methodological individualism. And ignoring
individual responsibility in the formation of one’s own welfare is morally untenable.

A popular macrowelfarist method to take into account agent’s responsibility in the forma-
tion of their own welfare is to use proxy commodities (called primary goods by Rawls) as
surrogate measurement of individual welfare. The idea is that our ability or inability to lead
full and satisfying lives, to achieve high or low levels of welfare, is determined by our share
of certain fundamental goods: food, shelter, health, self-respect, love, education, wealth,
job, and so on. The catalog of these goods is the common denominator of human nature. The
actual distribution of these primary goods tells us all that we can hope to learn about actual
welfares; hence it can be used as a surrogate measurement of the distribution of welfare. If
the trick of primary goods, due to Rawls, succeeds in maintaining a private sphere around
each person, while offering an objective index of (access to) welfare, it pushes the difficulty
back without eliminating it. The choice of a method to aggregate my holdings of primary
goods into a summary “index” is tantamount (although in a less obvious way) to imposing
a common value system upon all individual citizens: it imposes the same trade-offs among
primary goods on all citizens. Yet an important component of my value system is my own
trade-off between health and wealth (e.g., I may choose a physically dangerous, well-paid
job) or between education and leisure, and so on.
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*3.2 Additive Collective Utility Functions

In this section we describe the most important axiomatic results of the cardinal theory of
welfarism. We state a handful of axiomatic requirements pertaining to collective rationality
or fairness. Then we deduce the small family of collective utility functions (and social
welfare orderings) satisfying these requirements. In this family three key social welfare
orderings stand out: the classical utilitarian and Nash collective utility functions and the
leximin social welfare ordering.

Two basic requirements of a social welfare ordering >, beside the property of complete-
ness and transitivity already mentioned, are monotonicity and symmetry. The social welfare
ordering > is monotonic in utility u; if an increase in agent i’s utility, ceteris paribus, in-
creases social welfare. That is, if two utility profiles u = (u;) and u' = (u’j) are such that
uj = u/j forall j, j # i, and u; > u}, then u > u’; that is, the social welfare ordering prefers
the former profile to the latter. Monotonicity has much to do with Pareto optimality: a
monotonic social welfare ordering is compatible with the Pareto relation* in the sense that
if u is Pareto superior to v, then u > v. In particular, the maximal elements of a monotonic
social welfare ordering, over any feasible set of utility profiles, are Pareto optimal.

The social welfare ordering > is symmetric if it does not pay attention to the identity
of the agents, only to their utility level. If the utility profile # obtains from v simply by
permuting the index of the agents in arbitrary fashion, as (7, 2, 8, 2, 4, 4, 2) obtains from (4,
8,4,2,7, 2, 2), the social welfare ordering views these two profiles as equivalent: u ~ v.
Symmetry is equal treatment of equals, namely the basic fairness axiom discussed in sec-
tion 1.1: agents can only be discriminated on the basis of their utilities, not of any other
exogenous factors.

Most social welfare orderings of importance” are represented by a collective utility func-
tion, namely a real-valued function W (uy, u», ..., u,) with the utility profile for argument
and the level of collective utility for value. The function W represents the social welfare
ordering = if u - u’ is logically equivalent to W («) > W (u’). The monotonicity and sym-
metry properties of - translate into the properties with the same name, for W : W is strictly
monotonic in each of the variables u; and a symmetric function of the profile.

The next property is the key argument of welfarist rationality. It says that we can ignore
the unconcerned agents when choosing between two particular utility profiles u and u’.
That is, if agent j receives the same utility in both profiles, u; = u’j, his utility level has no
influence on the comparison of u and u’. Formally, we denote by (u; |/ a) the utility vector
identical to (u;) except that the jth coordinate has been replaced by a. Then the property

5

4. This relation is transitive but not complete; therefore it is not a social welfare ordering.

5. The leximin social welfare ordering is a notable exception, discussed in the next section.
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independence of unconcerned agents reads as follows:
iV a)s @) a) < (u; " b)) |/ b) forallu,u’, j,a, andb (1)

This means that an agent who has no vested interest in the choice between u and u'—because
his utility is the same in both profiles—can be ignored.

If property (1) fails, the choice between two particular states of the world will depend
on the utility of some agents who are truly indifferent between these two states. This
runs counter to the intuition of endstate justice. Absent the property, the set of agents whose
utilities can influence the social welfare ordering (whether or not they are personally affected
by the subsequent decisions) must be defined precisely for any microproblem of distributive
justice. By contrast, under independence of unconcerned agents, microjustice works very
well with aloose, encompassing set of potentially concerned agents. The property guarantees
that the social welfare ordering (and the associated collective utility function) focuses
exclusively on those agents whose utility is affected by the decisions to be made.

The collective utility function W is called additive if there is an increasing function g of
one real variable such that

W) => g;) forallu 2)

It should be clear that the social welfare ordering represented by an additive collective utility
function meets property (1). If we restrict attention to continuous® social welfare orderings,
the following converse property holds. If the continuous ordering > is independent of
unconcerned agents, then it is represented by an additive collective utility (2). This important
theorem gives a convenient representation of a rich family of social welfare orderings.

We introduce two additional properties of the collective utility (2), that limit the choice
of the function g. The first property is one of fairness, and expresses an aversion for “pure”
inequality. It is called the Pigou-Dalton transfer principle. Say that u; < u, at profile u
and consider a transfer of utility from agent 2 to agent 1 where u/ and u), the utilities after
the transfer, are such that

up <uj,uy <up and w4 uhy=up+uy

Thus total utility to agents 1 and 2 is preserved, and the inequality gap is reduced (note
that it could be reversed: u, < u} is possible). We say that the move from u to u’ (where
uj= u/j for j > 3) reduces the inequality between agents 1 and 2. The Pigou-Dalton transfer

6. The social welfare ordering - is continuous for all u, the sets {v | v ZZu} and {v | u 77 v}, called respectively
the upper and lower contour sets of u, are topologically closed.
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principle requires that the social welfare ordering increases (or at least, does not decrease)
in a move reducing the inequality between any two agents.
Applying this principle to the additive collective utility (2) we find that

{ur < uj,uy <upand uy +up = u'y +us} = {guy) + g(uz) < g + g(uh)}

which is equivalent to the concavity of the function g, namely its derivative is nonincreasing.

The next property is one of invariance. It is called independence of common scale (ICS).
The property requires us to restrict attention to positive utilities, a feature that is automati-
cally satisfied in most of our examples where the zero of utilities corresponds to the minimal
feasible level; see examples 3.1, 3.2, and 3.5. The ICS property states that a simultaneous
rescaling of every individual utility function does not affect the underlying social welfare
ordering; it yields the same binary comparisons of utility profiles:

ur-u &= 3)

where the two profiles u, u” as well as the scaling constant A are positive and otherwise
arbitrary. For instance, if utilities represent money = willingness to pay (as in chapter 5), it
does not matter if we compare cents, dozens of dollars, or thousands of dollars: the order
of magnitude of the utility levels under comparison does not matter.

For an additive collective utility taking the form (2), the ICS property holds true only for a
very specific family of power functions. To see this, apply (3) to the function (2), which yields

D (i) —g))) = 06 > (g(hu;) — g(hu)) = 0

It can further be shown that the only (increasing, continuous) functions g satisfying this
property are (up to a multiplicative constant) of exactly three types:
gl =17 for a positive p
g(z) = log(z)
g(z) =—z771 for a positive ¢

The corresponding collective utility W take the form

W,u) = Zuf’, with p > 0 and fixed

Wo(u) = log u; 4)

1
Wi(u) = — Z " with ¢ > 0 and fixed



69 3.2 Additive Collective Utility Functions

The family (4) has many interesting features. First, the particular collective utility func-
tion ), log u; is the limit of the other two families when p or g, respectively, approach
zero.” It is called the Nash collective utility function, and is usually written in the equivalent
multiplicative form Wy (u) = IT;u;. Of course, the function Wy is not additively decom-
posed as in (2), but it represents the same social welfare ordering »; as the additive collective
utility Wy.

Another collective utility function of interest within the family (4) is the classical utili-
tarian Wy (u) = Zi u;, corresponding to p = 1. It embodies the idea of sum-fitness, and
its implications are discussed in a variety of examples in the subsequent sections.

Finally we examine the impact of the Pigou-Dalton transfer principle on the family of
utility functions (4). Consider the quadratic W (1) = >, u,z Far from seeking to reduce
inequality, this collective utility function is actively promoting it. For instance, the following
mathematical fact

Ut +ul < (uy +u2)* + (0)?

implies that under W,, transferring all the utility to one agent is desirable. Such a preference
runs counter to the basic distributive fairness conveyed by the Pigou-Dalton principle.

As noted earlier, an additive collective utility (2) meets the Pigou-Dalton principle if
and only if g is a concave function. Within the family (4), this eliminates all the functions
W, with 1 < p < 400 and only those.

We are ready to sum up the results of our axiomatic discussion. Starting with a continuous
collective utility function W representing the social welfare ordering -, we imposed suc-
cessively three requirements: independence of unconcerned individuals (1), independence
of common scale (3), and the Pigou-Dalton transfer principle. Together, these properties
leave us with a one-dimensional family of collective utility functions, namely

Wyu) = ul 0<p<1
Wo(u) = logu ©)

W"(u):—Zui_q,0<q < 400

Notice the striking similarity of the formula above with the family of equal sacrifice methods
presented in section 2.4.

7. To see this, use the approximation z” = e” '°¢ 2 ~ | 4 p log z, valid when p is close to zero.
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Although it is defined in three pieces, the family (5) is actually continuous in the sense
that W, is the limit of W, and of W% as p or g goes to zero. Two outstanding elements
are the classical utilitarian W; and the Nash utility function W, (often written in multiplica-
tive form as Wy ). The third remarkable point of the family is the limit of (the social welfare
ordering represented by) W?as g goes to infinity: this is the important leximin social welfare
ordering, defined and illustrated in the next section.

The three social orderings, classical utilitarian, Nash, and leximin are the three most
important objects of cardinal welfarism. They are systematically compared in sections 3.4
and 3.5.

3.3 Egalitarianism and the Leximin Social Welfare Ordering

We focus in this section on the welfarist formulation of the compensation principle as the
equalization of individual utilities. Full equalization is often impossible within the set of
feasible outcomes—as in examples 3.1, 3.2, 3.4, and 3.5; in other cases it is feasible but
incompatible with Pareto optimality—see example 3.3. The leximin social welfare ordering
then selects the most egalitarian among the Pareto optimal utility distributions.

Example 3.1 Pure Lifeboat Problem As in example 2.1, some but not all agents can be
allowed on the boat, and the arbitrator must choose which subset will be saved. She can
pick from a given list of subsets. Suppose that five agents are labeled {1, 2, 3, 4, 5} and that
the feasible subsets are

{1, 2}{1,3}{1,4}{2, 3, 5}{3, 4, 5}{2,4, 5}

Thus agents 1 and 5 cannot both be in the lifeboat; we can have one of agents 2, 3, or 4
along with 1, or two of these three along with 5.

A less dramatic story is the purchase of a software program that will be available to our
five agents: there are six programs to choose from, and each program is only compatible
with the machines of a certain subset of agents. Or we must choose the musical background
in the office space occupied by our five agents; they are six programs to choose from and
a given agent likes certain programs and dislikes others: only agents 1 and 2 like the first
program, and so on.® Note that each one of the six feasible outcomes is Pareto optimal:
there is no unanimous agreement to dismiss any one of the six outcomes.

Suppose first that for each agent the utility of staying on the boat is 10 and that of
swimming is 1. Then the classical utilitarian utility recommends choosing one (any one) of

8. In example 3.1 the arbitrator must choose one of the six subsets, with no possibility of compromise by
randomization or timesharing. The latter is the subject of example 3.6b. See also exercise 3.6b, question c.
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the three largest subsets (each one with three agents). The egalitarian arbitrator makes the
same choice, based on comparing the increasing profile of utilities from lowest to highest.
If a two-person subset stays on the boat, this profile is (1, 1, 1, 10, 10) and if a three-person
subset stays, it is (1, 1, 10, 10, 10) which is lexicographically superior because the third
ranked utility level is higher in the latter profile.

The point of the example is much sharper when we assume that the individual util-
ity for being among the chosen ones varies across agents—such as in the radio program
interpretation, some agents are more partial to “good” versus “bad” music than others:

Agent 1 2 3 4 5
Utility for good outcome 10 6 6 5 3
For bad outcome 0 1 1 1 0

Now the classical utilitarian arbitrator prefers to choose {1, 2} or {1, 3}, for a total utility
of 16, over any other subset; the second best is {2, 4, 5} yielding total utility 15. His ranking
of the six outcomes is as follows:

{1,2} ~{1,3} > {1,4} ~ {2,3,5} > {2,4,5} ~ {3,4, 5}

The egalitarian arbitrator, by contrast, prefers any three-person subset over any two-
person one; his ranking is as follows:

{2,3,5) with utility profile 0, 1,3,6,6)
2,4,5 ~ 3,4,5 with utilit rofile 0,1,3,5,6)
y p
(1,2} ~ (1,3} with  utility  profile (0,1, 1,6, 10)
{1,4} with utility profile 0,1,1,5,10)

Exercise 3.1 contrasts the classical utilitarian and egalitarian choices in example 3.1 for
arbitrary utility functions.

Example 3.2 Fair Division with Identical Preference We must divide six indivisible
objects among three agents, and each lot must contain two objects. Individual preferences
over the different lots are identical: given any two lots, everyone agrees on which one is the
better lot, or everyone is indifferent between the two lots.

The leximin social welfare ordering compares all feasible allocations, and does not require
one to attach a common cardinal utility to each lot. For instance, assume that the common
ordering of the fifteen lots from the objects a, b, ¢, d, e, and f is as follows:

{a,b} > {b, f} ~{b,e} > {c,d} > {a,c} > {d,e} ~ {b,c} > {c, f} > {a,d} > {a, e}
~{c,e} ~ e, f} > {b,d} ~{a, f} ~{d, f}
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There are fifteen ways to split the six objects in three lots of two objects, and the leximin
ordering allows us to compare all fifteen. For instance, {a, b}{c, d}{e, f} is ranked above
{a, f}{d, e}{b, c}, because in the latter, one lot yields the worst welfare, whereas all lots
yield a higher welfare in the former. Next compare {a, e}{b, f}{c,d} and {a, d}{b, f}{c,e}:
both yield the same lowest welfare level (at {a, e} and {a, d} respectively); the latter gives
this level to two agents and the former to only one agent: therefore the former division is
better. Here the leximin social welfare ordering picks {a, c}{b, f}{d, e} as the unambiguous
best split, followed by {a, b}{c, f}{d, e}: both guarantee the same lowest welfare level (for
whomever gets {d, e}), but the latter gives that level to two of the three agents, against only
one in the former. The fact that one agent gets the absolute best lot {a, b} in the latter split
is unimportant.

We give now the general definition of the leximin social welfare ordering, also called
the egalitarian social welfare ordering, and sometimes “practical egalitarianism.” Given
two feasible utility profiles u and u’, we rearrange them first in increasing order, from the
lowest to the highest utility, and denote the new profiles #* and u™ : uj < uj < --- <
up and u}" <uf < -.. <u/". The leximin social welfare ordering compares u#* and u’
lexicographically. Thus u > u’ holds if u} > u}" (u}* > u} implies similarly that u’ > u):
if the lowest utility is higher in one profile than in the other, this is enough to declare it
a better profile. If u7 = u/", the leximin ordering compares the second lowest utilities u}
and u5'; if they differ, the profile with the higher one is preferred. Thus {u} = u}* and
ub > u’} implies that u > u’. And so on: if the k lowest utility levels coincide in both
profiles (u = u}* fori = 1,...,k) and the (k + 1) lowest differ, the latter determines the
preferred profile.

The mathematical definition of the leximin ordering is slightly more involved than that of
any additive collective utility in the family (5). In fact this ordering cannot be represented by
any collective utility function. On the other hand, leximin belongs to the family (5) in a limit
sense: as g goes to infinity, the social welfare ordering represented by the collective utility
function W9 converges to the leximin one. Moreover the leximin ordering is independent
of unconcerned individuals, independent of the common scale of utility and satisfies the
Pigou-Dalton transfer principle.’

In many examples, such as examples 3.3 and 3.4, finding the maximum of the leximin
ordering reduces to maximizing the first component u7 = min; u; of the utility profile
rearranged in increasing order. In such cases we are simply maximizing the egalitarian
collective utility function W,(u) = min; u#;, meaning that we maximize the utility of the

9. Exercise 3.12 states formally the limit property and discusses these properties of the leximin.
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Figure 3.1
No equality/efficiency trade-off

worst-off individual. Of course W, is not a proper representation of the leximin ordering,
because u = u’ implies that W, (#) > W, (u'), but the converse implication does not hold.

Example 3.3 The Equality/Efficiency Trade-off with Two Agents Consider the feasible
utility sets in figures 3.1 and 3.2. We do not specify from what allocation problem these
utility profiles come from. Under the welfarist postulate (section 3.1) this does not matter.

In figure 3.1 there is a fully egalitarian and efficient utility profile «. This profile is the
unique maximizer of the egalitarian collective utility W,, hence the leximin optimum as
well. There is no conflict between equality and efficiency.

In figure 3.2, by contrast, the profile « is the highest feasible equal utility one, but it is not
efficient: both agents enjoy a higher utility at profile «* that maximizes the egalitarian utility
W, (and the leximin ordering). Here we have a trade-off between equality and efficiency.
The egalitarian collective utility function justifies the inequality at «* to augment the utility
of the worst off agent.

The configurations in figures 3.3 and 3.4 are similar with an equality/efficiency trade-off
in the latter (successfully resolved by the maximum of W,) but not in the former.

We conclude this section with a crucial—indeed a characteristic—property of the leximin
ordering. Recall that in example 3.2 all we need to define the egalitarian division in lots
is the ability to rank any two lots. More generally, consider two utility profiles u and u'.
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!
Uy
Figure 3.2
Equality/efficiency trade-off
A
u;
!
Uy

Figure 3.3
No equality/efficiency trade-off
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u

Figure 3.4
Equality/efficiency trade-off

Suppose that for any one of the n? pairs u;, u/j, i,j =1,...,n, we know their relative
ranking, meaning that we know which one of u; > u/j, u; < u’j, oru; = u/j holds. This
is enough to deduce the ranking of u versus '’ in the leximin ordering. For instance, let us
take four agents and the following pattern:

u} u) uj uy
u > < > <
u < < = <
u3 > > > >
Uy = < > <

where an entry > reads: the row u; is greater than the column u/J
From this pattern we deduce the rankings of u;, u’;:

fx
/ ! ! /

Up =Uy < Ug=U; < U] <Uy <Uy < U3

Hence

* Ik * % * ko
uy =u,uy =u;, and uz=u; <u; =uy

We conclude that u’ is preferred to u by the leximin ordering.
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The invariance property underlying the example above is that the leximin ordering is
preserved under a common arbitrary (in particular, nonlinear) rescaling of the utilities.
Thus the comparison of u versus u’ is the same as that of v = (uiz) versus v’ = (uﬁz), or of
(e Ty versus (e”;+\/z ), and so on. This property is called independence of the common
utility pace.

Leximin is not the only social welfare ordering independent of the common utility pace.
But it is the only one that also respects the Pigou-Dalton transfer principle.'? This remarkable
characterization result explains why this social welfare ordering occupies such a central
place in cardinal welfarism.

In the next two sections, we compare systematically the three basic social orderings—
leximin, classical utilitarian, and Nash—and explain along the way the axiomatic charac-
terizations of the latter two.

3.4 Comparing Classical Utilitarianism, Nash, and Leximin

In section 3.2 we identified three outstanding welfarist solutions as the classical utilitarian
and Nash collective utility functions, and the leximin social welfare ordering. We now
compare them in a series of examples, where we stress their relation to the compensation
and sum-fitness principles. Thus this section and the next pursue a discussion initiated in
section 2.5, by testing our three welfarist solutions in more general problems of resource
allocations.

The central tension between the classical utilitarian and egalitarian welfarist objectives
was already uncovered in section 2.5. They are advocating different kinds of sacrifices.
Under the former, the welfare of a single agent may be sacrificed for the sake of improving
total welfare (the slavery of the talented—example 3.9—is a striking case in point). Under
the latter, large amounts of joint welfare may be forfeited in order to improve the lot of the
worst off individual (e.g., examples 3.4 and 3.6).

Example 3.4. Location of a Facility A desirable facility (examples are given below) must
be located somewhere in the interval [0, 1], representing a “linear” city. Each agent i lives at
a specific location x; in [0, 1]; if the facility is located at y, agent i ’s disutility is the distance
|y — x;|. The agents are spread arbitrarily along the interval [0, 1], and the problem is to
find a fair compromise location.

The egalitarian solution is the easiest to compute. Suppose that there are some agents
living at 0 and some living at 1. Then the egalitarian collective disutility function W, equals

10. Exercise 3.12 offers more discussion of these two facts.
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% when the facility is located at y, = % For any other location y, the distance from y to 0
or to 1 is larger than % Thus the unique egalitarian optimum is the midpoint of the range of
our agents.

Classical utilitarianism chooses the median of the distribution of agents, namely the point
v, such that at most half of the agents live strictly to the left of y, and at most half of them
live strictly to its right. To see why this is so, observe that a move of ¢ to the right of y,
increases by ¢ the disutility of at least one-half of the agents (i.e., those located at y, or to
its left) while reducing by ¢ that of at most one-half. A similar argument shows that a move
to the left cannot reduce the sum total of individual disutilities.!!

The interpretation of the facility has much to do with the choice between the two solutions.
If the facility is a swimming pool, or an information booth, then the utilitarian choice is
more appealing because it minimizes overall transportation costs, and we accept to sacrifice
the isolated rural resident: disutility is interpreted as distaste and the isolated agents have
chosen freely to be so. On the other hand, if the facility meets a basic need, such as a post
office or a police station, the egalitarian compromise has more appeal, because equal access
to the facility is tantamount to meeting this need equally. Some cases are more ambiguous:
if we are locating a fire station, the goals of equal access and of maximizing the expected
return (i.e., the expected reduction of property losses) are both valid, but they pull us toward
the midpoint and the median respectively.

The Nash collective utility function is not easy to use in this example because the natural
zero of individual utilities is when the facility is located precisely where the agent in question
lives, say x;: then we set u;(y) = — |y — x;| if the facility is located at y. The Nash utility
is not defined when some utilities are negative; therefore we must adjust the zero of each
agent so as to ensure she gets nonnegative utility for any choice of y. One way to do so
is to set the zero of an agent’s utility where the distance from his location to the facility
is 1:

uj(») =1- 1y — x|
Another way is to set agent i ’s zero where y is as far as can be from his location, namely
aty =0ifx; > L andaty = 1if x; < 1. This yields the following utility:

uiz(y) =x; — |y — x;| ifiis such that x; > %

u?(y) =1-x;—|y—x;| if jissuchthatx; < %

11. Insection 4.3 we give an alternative interpretation of the median location y as the Condorcet winner outcome:
for any other location y, more than half of the citizens prefer y, to y.
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Clearly, the choice of one or the other of the two normalizations is of great consequence on
the optimal location for the Nash collective utility.'?

The great advantage of the classical utilitarian utility is to be independent of individual
zeros of utilities. If we replace utility u; = — |y — x;| by ull or “1‘2 above for any number
of agents, the optimal utilitarian location remains the median of the distribution and the
preference ranking between any two locations does not change. This independence property
uniquely characterizes the classical utilitarian among all collective utility functions.'3

Notice that the egalitarian location remains at y, = % with all utility functions normalized
as u}, or all as u? (exercise: Why?), but this is not a general feature. For instance, if no
one lives near the location 0, the optimal egalitarian location under u} moves above % but
remains at % under u?.

*Example 3.5 Location of a Noxious Facility Now the facility is a toxic waste disposal,
a jail, or any other operation from which everyone wants to live as far away as possible.
The distance from x;, where agent i lives, to the facility at y measures her utility, instead
of her disutility in the previous example.

If the agents are spread all over the interval [0, 1], the egalitarian collective utility is zero
everywhere: W, (y) = 0 for all y because there is always someone living at y. The leximin
social welfare ordering, on the other hand, wants to locate the noxious facility at a point
where the density of agents is lowest. If there are several such points, it breaks ties in favor
of a location where the second derivative of the density is lowest (exercise: Why?).

The utilitarian collective utility W, (y) is now minimal at the median y, and maximal at
one of the two endpoints 0 or 1.!* Thus it is enough to compare W; (0) and W (1). Denoting
by f(x) dx the population density at x, we compute

1 1
W1(0)<W1(1)<:>/ xf(x)dx</ (1 —x)f(x)dx
0 0

1
> Ex=/ xf(x)dx <%
0

We conclude that the utilitarian location is the endpoint farthest away from the mean
location Ef.

12. And in each case this optimum is neither easy to compute nor to interpret.
13. Even those that are not independent of unconcerned agents (see section 3.2).

14. Each utility function is convex in the variable y. Therefore so is W;; a convex function reaches its maximum
over an interval at one of the endpoints.
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We turn to a simple, yet important model where the problem is to pick a fair compromise
between several pure public goods. The model brings to the fore the contrasting distributive
policies of our three basic collective utility functions.

Example 3.6a Time-Sharing The n agents work in a common space (e.g., fitness room)
where the radio must be turned on one of five available stations (one of them may be the
“off” station). As their tastes differ greatly, they ask the manager to share the time fairly
between the five stations.

Each agent likes some stations, and dislike some; if we set her utility at O or 1 for a station
she dislikes or likes, respectively, we have a pure lifeboat problem as in example 3.1. The
difference is that we allow mixing between the five decisions: the manager chooses a list
of timeshares x;, k = 1,...,5suchthat x; > Oand x; +x, + -+ + x5 = 1.

In this example we assume a simple preference pattern that makes it easy to compute
and contrast the solution chosen by our three basic collective utility functions. Each agent
likes exactly one station and dislikes the other four, with corresponding utilities at 1 and 0.
There are n; fans of station k, withny + --- + ns = n.

The classical utilitarian manager chooses the “tyranny of the majority”: the station with
the largest support is on all the time (and if there are several such stations, any mixing
between them is optimal as well). The egalitarian manager does exactly the opposite, namely
it pays not attention to the size of support and plays each station %th of the time (provided
that each station has at least one fan) so that everyone is happy 20 percent of the time.

The Nash collective utility picks an appealing compromise between the two extremist
solutions above. The relative sizes of n; matter and everyone is guaranteed some share of
her favorite station. The optimal times shares x; for the Nash utility maximize } _, nx log xx
under the constraint ) _, x; = 1; therefore x; = ny/n, namely the time share of each station
is proportional to the number of its fans. This can be interpreted as random dictatorship:
each agent gets to choose the station he likes for 1/nth of the time.

The proportional time shares make good sense in the radio-sharing story, because we
interpret utilities as subjective tastes for one type of music or the other. Alternative inter-
pretations of utilities yield a very different intuition.

Consider a pure lifeboat decision, where we must choose, literally, whom to save: say
five boats are about to sink, and we can only help one of them. Who would hesitate to give
all his help to the most populated boat, as utilitarianism recommends? Flipping a fair coin
to decide which boat to help allows the rescuer to give an equal chance of survival to every
person, but our claim is that he won’t and that utilitarianism is compelling here.

In some other contexts utilities may measure the satisfaction of a need: our agents are
away from home, and the radio broadcasts news from their hometown station. They come
from five different towns and station k gives news from town k only. Now the egalitarian
solution makes a lot of sense!
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Example 3.6b Time-Sharing Five agents share a radio as in example 3.6a, and the pref-
erences of three of them (agents 3, 4, and 5) are somewhat flexible, in the sense that they
like two of the five stations according to the following pattern:

Station
a b ¢ d e
1 1 0 0 0 O
2 0 1 0 0 O
Agent 3 o 0 1 1 0
4 0 0 O 1 1
5 0 O 1 0 1

The utilitarian manager shares the time between the three stations c, d, and e but never
plays stations a or b. The egalitarian manager selects x, = x;, = %, Xe =Xg =X, = %, SO
that everyone listens to a program he or she likes 28.6 percent of the time. The utilitarian
solution is too harsh on agents 1, 2, while the egalitarian solution appears too soft on
these two agents: agents 3, 4, 5 should be somewhat rewarded for the flexibility of their
preferences.

The Nash collective utility function recommends a sensible compromise between utilitar-
ianism and egalitarianism: it plays each station with equal probability % To check this, we
note that outcomes a, b play a symmetrical role, hence are allocated the same time share x;
similarly each one of ¢, d, and e receives the same time share y. The Nash maximization

problem is now
maximize x2(2y)3 under x,y >0,2x +3y =1

A straightforward computation gives the optimal solution x* = y* = %

To conclude this section, we illustrate the great advantage of the Nash collective utility
function in the variant of example 3.6a where individual utilities for listening to the “right”
kind of music differ across agents: a supporter i of station k enjoys utility u; if k is on and
0 otherwise. Both the classical utilitarian and egalitarian collective utility functions pay a
great deal of attention to the relative intensities of these utilities. For instance, the egalitarian
arbitrator computes for each k the smallest individual utility a; among the fans of station k
and allocates to k a time share proportional 1/a; (exercise: prove this claim). And classical
utilitarianism may end up broadcasting exclusively a station with a handful of very vocal
supporters.

The Nash utility function, by contrast, is independent of individual scale of utilities. In
our example, this means that the intensity u; of agent i’s musical pleasure is irrelevant to the
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choice of a fair time-sharing. Indeed, for a profile of time shares (x1, ..., xs5) the collective
utility Wy is computed as follows:

5

Wy =Y > logu;.xi)

k=1 €Ny
5
= Zlog U; +anlog Xk
i k=1

where Ny is the set of k fans. The maximization of this collective utility is independent of
the numbers u;; hence the Nash arbitrator still recommends giving station k a time share
proportional to 7.

Independence of individual scales of utilities eliminates the possibility of influencing
the arbitrator’s choice by distorting the intensity of one’s utility for good music. If the
arbitrator is classical utilitarian, it is clearly to agent’s i advantage to increase u; (which
may make his favorite station look best); if he is egalitarian, it is advantageous to decrease
u; (exercise: prove these claims). The Nash collective utility function is immune to both
kinds of distortions, which is a considerable advantage in a context where utility measures
subjective tastes. Notice that the profitability of increasing one’s utility scale under classical
utilitarianism (resp. to decrease it under egalitarianism) is fully general (not limited to
our simple example): exercise 3.14 explains this important property. Similarly, under an
egalitarian or a Nash arbitrator, it is always profitable to increase one’s zero of utility.

The Nash collective utility function is uniquely characterized among all collective utility
functions,' by the property independence of individual scales. Thus each of the three
basic social welfare orderings is characterized by a specific independence property: the
independence of common utility pace picks the leximin social welfare ordering,'® and
the independence of individual zeros captures the classical utilitarian collective utility.!”

3.5 Failures of Monotonicity

Some paradoxical features of welfarism affect our three basic collective utility functions.
The main issue is how the optimal solution reacts when the resources of the economy
change and was already discussed in section 2.5. There we noticed that the property may
fail under classical utilitarianism if some individual utility functions are not concave in the

15. Even those that fail independence of unconcerned agents.
16. See the discussion at the end of section 3.3.

17. As discussed after example 3.4.
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amount of resources. Below we give examples displaying the same failure with concave
utility functions both for the classical utilitarian and Nash arbitrators.

For the egalitarian solution, resource monotonicity is always satisfied if the optimal allo-
cation gives equal utilities to all agents—namely if there is no equality/efficiency trade-off
(example 3.3). This important fact is obvious: if my utility and yours remain equal whenever
an arbitrary parameter affecting the allocation of resources changes, we will both benefit
or we will both suffer from the change, or we will both be unaffected. Shocks do not break
the egalitarian harmony.

However, practical egalitarianism (i.e., maximization of the leximin ordering) may lead
to the paradoxical feature. An elementary example involves indivisible goods.

Ann, Bob, and Chris want to play tennis, but they do not have enough racquets (balls
and courts are not scarce). Ann enjoys playing against the wall as much as against Bob or
Chris. Bob and Chris hate to play the wall and only enjoy playing against each other or
against Ann. If only one racquet is available, the leximin ordering tells us to give it to Ann
(indeed, this is the only efficient allocation of the resources). If two racquets are available,
the egalitarian solution is an equitable time-sharing arrangement where the three pairs take
turns on the court and everyone plays % of the time: thus Ann is worse off after the resource
increase.

Our next fair division example has divisible goods and concave utility functions, therefore
no equality/efficiency trade-off. Thus the egalitarian optimum has equal utilities for both
agents, and resource monotonicity is automatically verified. On the other hand, maximizing
the Nash or classical utilitarian collective utility leads to monotonicity failures.

Example 3.7 Dividing Complementary Goods Jones and Smith both use a different mix
of two goods labeled A and B. To produce one unit of utility, Jones needs one unit of A for
two of B while Smith needs two units of A for one of B.

Jones: uy(a;, by) = min{2ay, by}
Smith: uy(ay, by) = min{a,, 2b,}

A “serious” example is the mix of labor and capital to produce a certain service: good A
is labor and good B a certain machine, both measured in hours; Jones’s technology is less
labor intensive than Smith’s. A “frivolous” one involves a cocktail of two liquors that they
mix in different proportions.

Suppose first that 12 units of each good are available. The set of feasible utility profiles
is depicted on figure 3.5a. Any collective utility function that does not like inequality (i.e.,
meeting the Pigou-Dalton transfer principle in section 3.2) chooses the equal utility profile
(u1, up) = (8, 8) coming from the allocation (a;, b;) = (4, 8), (az, b2) = (8, 4).
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U

Y

Uy
Figure 3.5a
Feasible utility profiles in example 3.7
Uy A
ur

Figure 3.5b
Modified feasible utility set
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Next suppose that 12 more units of good B are available, for a total of 12 units of A
and 24 units of B. The new feasible set of utility profiles is depicted on figure 3.5b: it
has increased to the triangle of all pairs (u;, up) such that u; + 2u, = 24 and u; > O:
for any x, 0 < x <12, the utility profile (u;, u;) = (24 — 2x, x) comes from (a;, b;) =
(12 —x,24 —2x), (az, b2) = (x, 2x). The egalitarian arbitrator still picks the utility profile
(8, 8): the additional resources are simply discarded. The classical utilitarian solution gives
all the resources to agent 1 so that (u;, u;) = (24, 0). Agent 2’s utility loss is less severe
under the Nash solution: the corresponding optimal utility profile is (u;, u2) = (12, 6),
namely the solution of the following problem:

maxlogu; + logu, under constraint u; + 2uy = 24, u; > 0,
i=1,2

The failure of resource monotonicity in the example above is generalized in example 7.12
to many more solutions than the two above.

We give now a pure public good example where both the egalitarian and utilitarian
solutions fail resource monotonicity.

Example 3.8 Location of a Facility (continued) In this variant of example 3.4, the road
network is depicted on figure 3.6. The agents live on the roads AB, BC, CD, and DE where

A E
6 6
sl x5 o
5 4 5
C
Figure 3.6

Road network in example 3.8
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their density is constant and equal to one. Nobody lives on BX, XC, and XD. As before, the
distance of the facility to one’s location is the disutility (negative of utility).

Suppose first that the facility can only be located wherever the agents live (thus the inner
roads BX, XC, and XD are not feasible locations). Then by the symmetry of our problem,
the egalitarian and the classical utilitarian collective utilities are maximized at C. Actually
C is the optimal location for any collective utility function, by virtue of symmetry and
monotonicity (exercise: prove this claim).

Now suppose every point of the road network is a feasible location of the facility. This is
unambiguously an increase of the available resources. The optimal location for the egali-
tarian collective utility is now at X, from where the distance to any agent is at most 9 miles,
whereas with the facility at C, agents living at A or F are 11 miles away. Thus the agents
living at C and near C see their utility decrease as the resources improve. '8

The optimal location for the classical utilitarian is also X (exercise: Why?). Therefore
resource monotonicity fails for this solution as well.

Our last paradoxical example is a famous one. It shows the utilitarian and Nash solutions
penalizing the more productive agent in a distinctly unpalatable fashion.

Example 3.9 Slavery of the Talented In this simple production economy, two agents can
use their labor to produce corn, at a constant productivity s;, i = 1, 2: one unit of agent i’s
labor produces s; units of corn. Agents consume corn and leisure, and these two goods are
perfect complements: if agent i consumes z; units of corn and y; of leisure, her final utility
is min{z;, y;}. Finally each agent can split 20 hours of time between x; units of labor and
y; of leisure: x; + y; = 20.

Consider first the benchmark case where both agents are equally productive at s; =
s = 1. The efficient production plan treating the two agents equally (i.e., respecting the
symmetry of the problem) is the “decentralized” outcome where each agent keeps the corn
he produces; hence x; =y; =z; =10,i =1, 2, and each agent gets 10 utils, u; = 10. The
egalitarian, Nash, or any collective utility function that is strictly averse to inequality'®
picks this allocation uniquely. The utilitarian function is an exception, as it is indifferent to
inequality.?’

Next suppose that agent 1’s productivity raises to s; =2, while agent 2’s productivity
remains s, = 1. Efficiency commands to give agent i exactly the same amount of leisure

18. Those living no more than 4 miles away from C.
19. That is to say, a collective utility that increases from a Pigou-Dalton transfer (section 3.2).

20. Here all efficient allocations maximize the utilitarian function. These allocations are parametrized by the
amount of labor x; = A supplied by agent 1, an arbitrary number between 0 and 20. Thenu; = y; = z; = 20— 2,
x2=20—A, up =y, =20 =A.
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and of corn, i.e., z; = 20 — x;. The feasibility constraint is now
20 —x; +20 —xp =2x1 + x2 & 3x1 + 2x, =40, X1, x>0

Under the egalitarian collective utility, the increase in agent 1’s talent benefits both
agents equally, who end up with u; = u, = 12 utils. The corresponding allocation is x; = 8,
u;=z;=y; =12, i =1, 2: both agents work less hard and 4 units of the corn produced by
agent 1 are transferred to agent 2.

Under the classical utilitarian and the Nash solutions, the fate of agent 1 is less enviable.
Say that agent i works x; hours, i = 1, 2, so that total output is z = 2x; 4 x,. Efficiency
commands to give exactly z; = 20 — x; units of corn to agent i. Thus the classical utilitarian
solution maximizes (20 — x;) + (20 — x,) under the above feasibility constraint.

The optimal solution is x} = 13.3, x; = 0, resulting in the allocation u; = z; = y; =
6.7, up = zo = y» = 20. This is slavery because the talented agent 1 works 33 percent
harder and consumes 33 percent less than before acquiring his special talent. He is also
frustrated to see agent 2 reap all the benefits and get a “free ride,” whereas he (agent 1)
experiences a sharp decrease in his utility!

The utilitarian argument is that one more unit of leisure for agent 2 has a lower opportunity
cost, in terms of lost production, than one unit for agent 1, and this argument holds until
agent 2 is totally exonerated from work.

The Nash collective utility function yields a milder slavery of the talented, but slavery
nevertheless. The Nash arbitrator solves the program

max log(20 — x;) + 1log(20 — x,) under 3x; + 2x, = 40

The solution is x? = 10, xg = 5 hence the allocation u; = z; = y; = 10, up =z, =
vy, = 15. Here agent 1 does not suffer anymore from his productivity boost, but he does not
benefit either; all the benefit goes to the untalented agent who ends up working less hard
and consuming more corn (and leisure) than the talented one.

In section 6.2 we propose a different solution of the above production problem based
on the Lockean theory of entitlements rather than welfarism. This solution rules out any
externality in productivity; hence it eliminates slavery entirely.

3.6 Bargaining Compromise

The bargaining compromise places bounds on individual utilities that depend on the physical
outcomes of the allocation problem; thus it moves a step away from the strict postulate of
welfarism (section 3.1).
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Example 3.10 Priorities Ann, Bob, and Charles work in the same company. Each needs
a computer repair job, and their respective repair jobs are not equally long: Ann’s repair
can be done in 1 hour; Bob’s takes 4 hours, and Charles’s takes 5 hours.

There is a single repairman in the company. Since an agent must stay idle until the
completion of his or her repair, the total waiting time until the repair is completed measures
his or her disutility.

The classical utilitarian solution minimizes total waiting time, and this is achieved by
serving the shortest repair job first. So the respective disutilities are

Ann: 1, Bob:5, Charles: 10

Total disutility is 16, and it is a simple matter to check that any other ordering of the jobs
yields a larger total waiting time. This is hard on Charles, especially so if we reduce the
difference between Bob’s and Charles’ repair jobs. If Charles’s job is one minute longer,
he still has to wait 4 hours more.

If the only available choices are the six deterministic orderings of Ann, Bob, and Charles,
the leximin ordering selects the same ordering Ann < Bob < Charles, as the reader can
easily verify. However, in this example we allow randomization over the six orderings in
order to achieve equitable compromises where two agents with nearly identical character-
istics (job length) have nearly identical expected waiting times.

Classical utilitarianism refuses to compromise, because the ordering above uniquely
minimizes total waiting time. The contrast with the egalitarian solution could not be sharper,
as the latter gives to each participant precisely the same expected disutility. Note that
the smallest waiting time u that can be guaranteed to all three participants is u =7.1,%!
which obtains for instance by randomizing as follows over three different schedulings of
the three jobs:

Scheduling u4 up uc Probability
B,A,C 5 4 10 04
A,C,B 1 10 6 0.1
C,B,A 10 9 5 0.5
7.1 7.1 7.1 Expected utility

Now we see that Ann, whose job is shortest by far, is served first only 10 percent of the
time, whereas Bob is first 40 percent of the time and Charles 50 pelrcent.22 The solution

ignores the differences between the delay externalities caused by jobs of different length.

21. To check this, observe that for any scheduling of the three jobs, the utility of the three agents satisfy us +
4up + Suc = 71. This observation is generalized in exercise 3.10.

22. Note that the probability of agent i being served first is proportional to the length of her job. This is a general
property: see exercise 3.10.
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The bargaining compromise here equalizes “priorities” instead of utilities: each agent
has an equal right to be served first, or second, or third. If we randomize over all six
orderings, with equal probability to each ordering, the expected waiting time of our three
agents are

1 1

1 1
=-14+-5+-64+-10=55
Ua 3 + 6 + 6 + 3

LRV I P
UB = 38T T g T3V T

15 16 19 ! 10=175
This outcome is an egalitarian compromise in the following relative sense: everyone ends
up half-way between his or her worst wait (i.e., 10) and his or her best wait (i.e., 1 for Ann,
4 for Bob, 5 for Charles). These two bounds of the best and worst wait are very natural,
but their meaning goes beyond the mere description of welfare: they depend on the set of
feasible outcomes in the particular allocation problem.

The choice of the zero and/or the scale of individual utilities is crucial whenever a
social welfare ordering picks the solution: with the exception of the classical utilitarian
(independent of individual zeros but not scales) and the Nash collective utility function
(independent of individual scales but not zero), all other social welfare orderings depend
on both the individual zeros and scales.

The bargaining version of welfarism incorporates an objective definition of the zero of
individual utilities, which corresponds to the worst outcome deemed acceptable from the
point of view of a certain agent. In some cases this outcome is interpreted as the disagreement
outcome because each agent has the strategic option to “walk away” from the arbitration
table, so the arbitrator must take the corresponding utility as a hard lower bound. In other
cases, like examples 3.10 and 3.11, zero utility simply comes from the worst feasible
outcome in the allocation problem; hence we call it the minimal utility.

The bargaining approach then applies a scale invariant solution to the zero normalized
problem, which in turns ensures that the solution is independent of both individual zeros
and scales of utilities.

The two prominent bargaining methods are the Nash bargaining and Kalai-Smorodinsky
solutions introduced in our next example.

Example3.11 Annand Bob represent two companies selling related yet different products,
and share a retail outlet. They can set up the outlet in three different modes denoted a, b,
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and c that bring the following volumes of sales (in thousands of dollars):

a b c
Ann 60 50 30 (6)
Bob 80 110 150

Both managers are only interested in maximizing the volume of their own sales (which
may not be the same thing as maximizing profit) and accounting rules prohibit any cash
transfers. Thus the only tool for compromises is time-sharing among the three modes: over
a yearly season, they can mix them in arbitrary proportions such that x, y, z such that
x+y+z=1

Applying any one of our three basic welfarist solutions to the raw utilities given in (6)
make little sense. For instance, the egalitarian collective utility picks outcome a where Ann’s
utility is highest. But the fact that Ann’s business always yields a smaller volume of sales
should not matter: the issue is to find a compromise between three feasible outcomes over
which the agents have opposite preferences; the relative size of Ann’s business to Bob’s
business is irrelevant.

Total utility in classical utilitarian fashion—maximal at c—is similarly irrelevant. We
wish to define a fair compromise that depends neither on the scale nor on the zero of both
individual utilities.

For minimal utility of either player, we pick the lowest feasible volume of sales: 30K for
Ann and 80K for Bob. Indeed, this level is guaranteed even by conceding to the other agent
his or her favorite outcome. This yields the new utility table:

a b ¢
Ann 30 20 O (N
Bob 0 30 70

The idea of a random ordering, successful in example 3.10, suggests letting Ann and Bob
each have their way 50 percent of the time: this means that x = z = % outcomes a and ¢
each with a timeshare % But the resulting normalized utilized vector is (15, 35), whereas
the outcome y’ = 0.8,z = 0.2 (b or ¢ with respective timeshares 0.8 and 0.2) yields the
utilities (16, 38), and hence is Pareto superior.

It turns out that any combination of @ and c is Pareto inferior to some combination of a
and b, or of b and c: this is apparent on figure 3.7, where compromises of a and ¢ produce
the utility vectors in the segment AC.

There are now two simple ways to select the shares x, y, z without taking into account
the scales of individual utilities. The first one is to maximize the Nash collective utility
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function:

max log(30x + 20y) + log(30y + 70z)
3)
under x+y+z=1,x,y,2>0

The second way is the Kalai-Smorodinsky solution, equalizing the relative utility gains,
namely the ratio of the actual gain to the maximum feasible gain. In this example the

maximal feasible gains are 30 and 70 for Ann and Bob respectively. Therefore the KS
solution selects the shares x, y, z so as to

30x +20y 30y + 70z
30 70 )

maximize

under x+y+z=1,x,y,z>0

The resolution of programs (8) and (9) is greatly simplified by taking a look at the feasible
utility set of the normalized utilities (7). Figure 3.7 reveals that the efficient compromises
among a, b, and ¢ involve either ¢ and b only (z = 0 : interval AB) orband conly (x =0 :
interval BC). On each one of these two intervals, there is only one degree of freedom, so
the resolution of programs (8) and (9) becomes easy.

U

I

20 30 u

Figure 3.7
Bargaining solutions in example 3.11



91 3.6 Bargaining Compromise

Consider first the interval A B, corresponding to z = 0 and to the utility vectors (10x +
20, 30 — 30x) for 0 < x < 1. We see that equation (9) is impossible, namely
10x +20 30 —30x 5

30 0 T 16

Therefore the KS solution lies on BC, correspondingtox =0,z =1 — y:

20y _70-40y 21 5
30 70 YT 26 26

We turn to the resolution of program (8). We know that its optimal solution lies either
on AB or on BC. We check that B is the solution of (8) on AB, but on BC we can do
better, namely maximize log(20y) 4+ log(30y + 70(1 — y)) under0 <y <1 = y = %,
hence

7 1
Nash solution: y = 3’ 7= 3 = u; =17.5,u, =35

21 5
KS solution: y=—,z=— =16.1,u; =37.7
solution: 'y 262 26:’“ 7%}
where the utilities are normalized as in (7).
Note that both solutions are Pareto superior to the random dictator outcome a/2 + ¢/2,
with associated utilities (15, 35). This is a general property, discussed below, of our two
bargaining solutions.

We give now the general definition of the Nash and Kalai-Smorodinsky bargaining
solutions. The data are a set U of feasible utility profiles and a distinguished minimal utility
profile u°. See figure 3.8 where an important feature is the fact that the set U is convex.??
We set the zero of agent i’s utility at u: figure 3.9.

The Nash bargaining solution maximizes the Nash utility under this normalization of
individual zeros, namely IT; (u; — u?). Of course the maximization bears exclusively on
those utility profiles in U such that u; > u? for all i.

Next we compute the maximal utility level #"** that agent i can achieve whenever other
agents receive at least their minimal disagreement utility: that is to say, u"™ solves the
program max u; over all u € U such that u > u°. The quantity §; = u™ — u? is the
maximal feasible gain of agent i above and beyond his minimal utility. The KS solution
equalizes the relative gains (fraction of maximal feasible gains) of all agents. It is the unique

23. It contains the segment joining any two of its points.
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~ -

~—————

Figures 3.8 and 3.9
Nash and KS solutions

utility profile # such that

. ) u; — ; — ul
u is efficient and = L forall i, j.

Figure 3.9 shows the geometry of this construction in a two-agent example: draw first the
utopian utility profile § where each agent gets §;; the KS solution is at the intersection of
the efficiency frontier of U with the line from the zero profile to the utopian profile.

The geometric characterization of the Nash solution is an interesting first-order condition,
namely a property of the line tangent to the efficiency frontier of U at the Nash point N.
Writing a; for the intersection of this line with the u; axis, N is simply the midpoint of a; a5,
as shown on figure 3.9.24

24. Note that this property implies that the tangent line is orthogonal to the vector (u2, u1): hence if (du;, dus)
is a small variation of # at N along the efficiency frontier, we have usdu;| + u1dus = 0, which is the first-order
condition for the maximization of uu,.
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Both the Nash and the KS solutions are independent of the individual scales of utilities.
We know this to be true for the Nash utility function, hence for the outcome maximizing this
function over U. As for the KS solution, we note that the ratios (u; — u?) /8; are invariant
under a rescaling of utility u; (because both numerator and denominator are multiplied by
the same rescaling factor), which proves the point.

Another appealing feature shared by the Nash and KS solutions is to guarantee for agent i
his minimal utility plus 1/nth of his maximal feasible gain &;:

w4+ ) (10)
1 n 1 1

In other words, we draw an agent at random (with uniform probability) and give him
the entire feasible surplus while other agents merely get their minimal utility. The resulting
expected utility is a lower bound of what every agent receives under the Nash or the KS
solution. The proof of this claim in the two-agent case is clear on figure 3.9.%

Our last example emphasizes a property of the KS solution that sets it apart from the
Nash bargaining solution, and from any solution maximizing a collective utility function
after normalizing individual zeros in some objective fashion. The KS solution depends on
the entire shape of the feasible set U: the solution is not independent of irrelevant utility
profiles, meaning utility profiles that are “far” from the equitable compromise.

Example 3.12 Vitamins A bottle containing 10 grams of vitamin X and 10 grams of
vitamin ¥ must be shared by Ann and Bob, who both need to increase their level of zygum,
a certain compound that can only be metabolized from vitamin X or vitamin Y. The zero
utility outcome is that no one gets any vitamin: the agents hold no claim on any of the
resources, which are entirely under the control of the benevolent dictator.

We learn first that both Ann and Bob metabolize 1 unit of zygum from 1 gram of vitamin
X or Y. Thus the utility (quantity of zygum) they derive from the allocation (x;, y;) is
u; = x; + y;. By the symmetry of the problem, the only fair utility profile is (u;, uz) =
(10, 10) (10 grams of vitamins per agent).

Now further testing reveals that Bob’s metabolism is only half as efficient at producing
zygum from vitamin Y than originally thought. From the allocation (x5, y,), Bob derives
uy = x3 + (y2/2). Ann’s metabolism, on the other hand, still gives her u; = x; + y;. The
efficient allocation of vitamins now precludes giving positive amounts of vitamin Y to Bob
and of vitamin X to Ann (for they would be able to find a mutually advantageous swap).

25. Note that U contains both points (0, §2) and (1, 0). Therefore, because U is convex, it contains their midpoint
8/2. The KS solution lies on the segment [0, §] beyond §/2, which proves (10). Next we check a; > §;, again by
the convexity of U': therefore the Nash solution (a; /2, a»/2) in Pareto superior to (81 /2, §/2), establishing (10).
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Bob

10 20 Ann

Figure 3.10
Feasible utility set in example 3.12

The efficiency frontier depicted on figure 3.10 comes from either giving all 10 grams of
vitamin Y to Ann (segment ab) or giving all 10 grams of vitamin X to Bob (segment ac).

The point is that the utility profile (10, 10) is still feasible (all the vitamin X to Bob,
all the vitamin Y to Ann), and that Bob’s decrease in productivity only eliminates certain
utility profiles such as (0, 20) that were unfair in the first place. Any social welfare ordering
called (10, 10) optimal in the former problem still calls it optimal in the latter problem.
This includes the Nash collective utility, the leximin social ordering, and any social welfare
ordering that strictly improves under a Pigou-Dalton transfer.

The KS solution takes a different viewpoint. In the first problem it picks u = (10, 10)
but in the second it recommends u’ = (11.4, 8.6). To see this, check that the maximal
feasible utilities are §] = 20, §, = 15; therefore equality of relative benefits means u/ /20 =
u5/15. Anefficient allocation with associated utility vector on ab (figure 3.10) takes the form

Am: x; =z, y1=10=>u,=10+z2
Bob: x; =10—z, y2=0=u,=10—z2

thus equality of relative benefits yields z = 1.43, and the announced utility vector.
The decrease of Bob’s maximal utility weakens his position, even though it relates to the
“irrelevant” allocations where he would get a higher utility than Ann does. The KS solution
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is even less a welfarist solution than the Nash solution because it takes into account not
only an exogenous notion of minimal utility, but also the corresponding maximal feasible
surplus of each participant.

In the “vitamin” interpretation of our example, the KS solution is not very appealing.
It is, however, plausible if utility represents subjective tastes instead of needs. Think of
the division of ten free meals in restaurant X and ten free meals in restaurant Y. Say that
restaurant Y is strictly nonsmoking, whereas restaurant X has a smoking section. Bob is a
smoker who enjoys one meal where he can smoke as much as two where he can’t. Is it unfair
to give Ann ten meals at ¥ and one meal at X, whereas Bob gets nine meals at X? After
all, meals at ¥ are to Bob a low-quality commodity, so he cannot object to Ann getting a
larger number of such meals than he gets of “good” meals. This kind of argument takes us
directly into the discussion of fair division with respect to heterogeneous preferences and
to the no-envy property, the subject of chapter 7.

In chapter 7 we stress the systematic connection between the two bargaining solutions,
Nash and KS, and the two central fair division methods, known respectively as the competi-
tive allocation with equal incomes and the egalitarian-equivalent solution. See, in particular,
examples 7.12 and 7.10, which are related to examples 3.7 and 3.12.

3.7 Introduction to the Literature

Rawls (1971, 1988) introduced the notion of primary goods; its critique as briefly discussed
in section 3.1 is well articulated by Roemer (1996); see also Sen (1985).

The central result for section 3.2 is the representation of a separable social welfare order-
ings by additive collective utilities, also known as the Debreu-Gorman theorem; see Debreu
(1960) and Gorman (1968). A systematic treatment is in Blackorby et al. (1978). The further
role of invariance axioms and of the Pigou-Dalton transfer principle was developed through
the seventies and is nicely summarized by Sen (1977) and Roberts (1980a, b).

The egalitarian collective utility appeared first in Kolm (1972), and the leximin preorder-
ing was axiomatized by d’ Aspremont and Gevers (1977); see section 3.3. The problem of
example 3.2 is the subject of Brams and Fishburn (2000).

The informal comparison of the leximin, Nash, and classical utilitarian solutions in
section 3.4 is inspired by chapters 1, 2, and 3 in Moulin (1988), which provides a systematic
formal presentation of the material in sections 3.2 to 3.6.

Example 3.4 on the location of a facility is related to the central model of party
competition—Black (1958), whereby the “facility” is the political platform submitted to
the voters whose ideal platforms are spread over the left-right spectrum represented by an
interval. See the discussion of voting over single-peaked preferences in section 4.3.
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Resource monotonicity plays an important role in this book; in addition to section 3.5,
the concept is discussed in sections 2.5, 6.6, and 7.6. The idea appeared first in axiomatic
bargaining, where it yields a simple characterization of the egalitarian solution; see Kalai
(1977). A more systematic discussion of this idea in axiomatic bargaining is in Thomson
(1999). Its application to resource allocation problems are reviewed in Roemer (1996) and
Moulin (1995).

The two classic bargaining solutions of section 3.6 were first axiomatized by Nash (1953)
and Kalai and Smorodinsky (1975). Several surveys on axiomatic bargaining are now
available: Roth (1979), Peters (1992), and Thomson (1999).

Example 3.12 is inspired by Yaari and Bar-Hillel (1984), who conducted stimulating
experiments on fairness in resource allocation. The slavery of the talented—example 3.8—
is due to Mirrlees (1974).

Exercises to Chapter 3

Exercise 3.1 Variant of Example 3.1
We have five agents and the six feasible subsets are the same as in example 3.1.

a. Assume that the utility of agent i being saved is u;, and zero otherwise, with u; > 0.
Show that the leximin ordering always picks one of the three subsets with three agents.

b. Assume from now on that the utility of being saved is u;, and v; otherwise, with u; >
v; > 0. Show that u;, v;,i = 1,...,5 can be chosen so that {1, 2} is the unique optimal
choice of the leximin ordering.

c. Find some values of u;, v; such that the arbitrator ranks all three subsets of size two
above those of size three, whereas the classical utilitarian arbitrator does just the opposite.

Exercise 3.2 Fair Division with Identical Preferences

We have 3 gold coins, 5 silver coins, and 8 bronze ones. As in example 3.1, all agents have
identical preferences over lots. We assume that a gold coin is worth two silver ones, or three
bronze ones. Thus we measure the common utility for a lot by adding 6 utils for a gold
coin, 3 utils for a silver one, and 2 utils for a bronze one. In particular, total utility is 49,
irrespective of the number n of agents among whom the sixteen coins must be divided.

Given n, call “n-equal division” a division of p into n integers a; such that any two
integers a;, a; differ by at most 1. For instance, with n = 5, an equal division of 49 is
(10,9, 10, 10, 10) but (10,9, 9, 11, 10) is not.

Clearly, an n-equal division of p exists for all » and all p, and is unique up to permuting
the a;.
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a. Suppose that the 16 coins can be divided in n lots such that the corresponding profile of
utilities is a n-equal division of 49. Show that these allocations, and only these, maximize
the leximin social welfare ordering.

b. Show thatforn =2, 3,4, 5,6, 8,9, the 16 coins can be divided in lots in such a way that
the corresponding utility profile is a n-equal division of 49. Show that this is not possible
for any other choice of n.

c. Find the division of the 16 coins selected by the egalitarian arbitrator for n = 7 and for
n = 10.

Exercise 3.3 Cake Division with Altruism

One unit of cake is to be distributed between Ann and Bob. The utility of each agent has
two components:

The “selfish” utility increase derived from one’s own consumption and measured by a
function u(x;) where x; is one’s own share.
The “selfish” utility of the other agent.

These two components are combined in some proportion, and the proportion measures

the degree of altruism of each agent. Specifically, we denote by a and b the shares of Ann
and Bob, and we write their utility for a division (a, b) of the cake as follows:

Ann: wu(a) + hau(b)
Bob: u(b) + Agu(a)

Here 14 is Ann’s “degree of altruism,” 0 < A4 < 1, and the interpretation of A is similar.
We assume that the common function u# (measuring utility increase from own consumption)
is increasing and concave.

The goal of the exercise is to assume that Ann is more altruistic than Bob, namely A4 > A5,
and to find out if she receives a bigger share, smaller share, or equal share of the cake:

« If the utilitarian collective utility is maximized
- If the egalitarian collective utility is maximized
- If the Nash collective utility is maximized

Answer first in the two following examples, then with maximal generality, namely without
specifying u, A4, or Ag:

Example 1: Ay = 3, Ap =

,Ap =

u(x

[y
IS,

sulx) =x
Example 2: 1,4 = Ju(x) = /x
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Figure 3.11
Road network for exercise 3.4a

Exercise 3.4 Location of a Facility on a Network with Loops

a. Consider the road network of figure 3.11, where each dot represents an agent (five
agents in total), and numbers represent distances in miles. As in example 3.8, the distance
between two points is that of the shortest path on the network connecting them. Disutility
is the distance between one’s location and that of the facility. The facility can be located
anywhere on the road network.

Where will the classical utilitarian arbitrator locate a desirable facility? Hint: Check
first that the utilitarian optimum must be at one of the five points where an agent
resides.

What about the egalitarian arbitrator?

b. Consider the road network of figure 3.12. Two agents live at B, three live at C, and
four at D (9 agents in total). There is no direct road between B and C. Find the optimum
locations for the egalitarian and the classical utilitarian arbitrators.

c. Suppose now that the dotted line between B and C in figure 3.12 is a new road of length 8.
Answer the same questions as in b. Which agents benefit and which are hurt by the increase
in the resources?
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D@ \“Bz
@ 10 A 20 @

Figure 3.12
Road network for exercise 3.4b

*Exercise 3.5 Location of a Noxious Facility

a. Consider a variant of example 3.5 where the densities of the agents over the interval
[0, 1] are as follows:

Density 2 on [0, 1]
Density 1 on [1, %] andon [2, 1]

Density 0 on]%, %[and on} % % [

Show that the location selected by the classical utilitarianis y, = 1. Show that the egalitarian
arbitrator selects y, = 5/12.

b. Next consider the following densities:

Density 2 on [0 1]

Density 1 on [1, 3]

Density 3 on [
2 §[

3'6

Find the locations selected by the classical utilitarian, egalitarian (leximin), and Nash

arbitrators.

c. Consider the road network of question a in exercise 3.4 depicted in figure 3.11. Show
that the classical utilitarian locates the noxious facility on the road CD, one mile away from
C. Show that the egalitarian selects the midpoint between B and C.

d. Consider the road network of questions b and c in exercise 3.4 depicted on figure 3.12.
Show that the egalitarian arbitrator picks the same location for both networks (with or
without the direct road BC). Show that the utilitarian arbitrator selects B in the network of
questions b, and the location 2 miles away from B on BC in the network of question c.
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Aq(nq)

Ar(ng)

Figure 3.13
Road network for exercise 3.6

*Exercise 3.6 Location on a Star-Tree

The road network depicted on figure 3.13 is a “star-tree.” The outer node A; is connected
to the center O by a direct route of length d, and there is no other road going through A;.
For concreteness, assume ten nodes Ay, ..., Ajg. There are n; agents living at A, and no
one lives anywhere else. Son = n| + - - - 4+ nj is the total number of agents.

a. In this question the facility is a “good” one, as in example 3.4 and exercise 3.4. Show
that the optimal egalitarian location is the midpoint between the two outer nodes A;, A;
farthest away from the center (i.e., d; and d; are the two largest distances). Check that this
location is unambiguous, even if there are several possible choices for A;, A;.

Show that the unique classical utilitarian optimum is at the center if no outer location
contains more than one-half of the agents: ny <n/2 for k = 1, ..., 10. What happens in
the remaining case?

b. Now the facility is noxious, as in example 3.5 and exercise 3.5. Show that the egalitarian
optimum is the midpoint between the outernode farthest away from the center and the
one closest to the center. That is, if d;» = max; d; and d;» = min; d;, the midpoint of
Aj+Aj» maximizes the egalitarian collective utility. Can we use the leximin ordering to
break ties?
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Show that the optimal locations for the classical utilitarian are all the nodes A+ maximiz-
ing the product (n — ny)d;. Comment on the trade-off leading the choice of the utilitarian
arbitrator.

Exercise 3.7 Time-Sharing The exercise proposes variants of examples 3.6a and 3.6b.

a. Consider example 3.6a. Compute the optimal time-sharing for the collective utility func-
tions W,,0 < p < 1 and W?,0 < ¢, as is defined by (5) in section 3.2. Check that when
p or g go to zero (resp. g goes to infinity), the solution converges toward the Nash (resp.
the egalitarian) optimum.

b. In the following four examples we have one agent per row and three decisions. The
arbitrator can mix between the three decisions. Find the classical utilitarian, egalitarian, and
Nash solutions:

a b c a b c
Amm 1 1 0 Amm 1 0 O
Bob 0 0 1 Bob 0 1 O
Chris 0 1 O Chris 0 1 1
Dave 1 0 O Dave 1 1 0

a b c a b c
Anmm 1 0 1 Anm 1 0 O
Bob 0 1 O Bob 1 1 0
Chris 1 0 O Chris 1 0 1
Dave 0 1 1 Dave 0 1 1

Hint: For the first and fourth example, use the symmetry between two of the three decisions;
for the fourth example, the egalitarian collective utility is not enough, and you must invoke
the leximin ordering.

c. Now we have four types of agents and three decisions a, b, c. The total number of agents
isn =2m+2p.

a b c
m 1 0 0
m 0 1 0
p 1 0 1
p 0 1 1

Find the three usual solutions, distinguishing the cases p > m and p < m.
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d. We have here four decisions and four agents:

a b ¢ d
Anm 1 0 1 1
Bob 1 1 0 O
Chris 0 0 1 O
Dave 0 1 0 1

Compute the egalitarian and Nash solutions.

e. Consider example 3.1 where we have six deterministic choices and five agents. Each
choice corresponds to a subset of agents who receive a utility of one, so that the six choices
are

a={1,2},b={1,3},c={1,4},d ={2,4,5},e =1{2,3,5}, f ={3,4,5}
Find the time-sharing recommended by the three usual solutions.
Exercise 3.8 Slavery of the Talented

This is a variant of example 3.9 where the only difference is the common utility function
of the two agents: u; (z;, yi) = /Zi Vi-

a. Assume that s; = 2, s, = 1. Show that if an allocation is efficient and z;, y;, x; are all
positive, we must have

21 =2y, 22=1Y2, 2y1+y =30, 5<yi <15 0<y, <20

b. Show that the utilitarian solution is full slavery of the talented: when productivities are
s; = 2,5, = 1, agent 1 works full time and consumes no corn.

c¢. Show that there is no failure of monotonicity under the Nash solution: both agents benefit
when agent 1’s productivity increases from 1 to 2; yet agent 1’s gain is smaller than agent 2’s.

d. Compare the two solutions above with the egalitarian solution.
Exercise 3.9 Bargaining Compromises

We consider three variants of example 3.11. Compute in each case the Nash and KS
bargaining solutions

a.

a b c
Ann 70 50 20
Bob 80 90 110
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As in example 3.11 we normalize utilities at the worst utility between a, b, and c:

a b ¢
Ann 40 20 10
Bob 20 30 70

b. Two agents and four outcomes. Minimal utility is at outcome a (thus the data are
“pre-normalized”):

a b ¢ d
Ann 0 1 5 6
Bob 0 11 6 3

c¢. Variant of question b: with have two agents with utility identical to Ann’s, and three with
utility identical to Bob’s.

Exercise 3.10 Generalization of Example 3.10

The job of agent i requires ag; units of time, and we assume that a; < a, < --- < a,.
Disutility is total waiting time until completion of one’s job.

a. Assume that the server must choose a deterministic priority ordering. Show that it chooses
the ordering {1, 2, ..., n} under any social welfare ordering (monotonic and symmetric).

b. Now the server can mix over all n! orderings o of {1, 2, .. ., n}, with arbitrary probability
7, >0, ZJ 7, = 1. Show that the utilitarian server chooses the ordering {1, 2, ..., n} with
probability 1, as in question a.

c. Show that for the profile of utilities #” resulting from an ordering o of {1, 2, ..., n}, the
sum Y a;u{ is independent of o. Deduce that any convex combination of the profiles ¢
is a Pareto optimal and feasible utility profile.

d. Compute the expected utility profile when the priority ordering o is selected at random
with uniform probability on all orderings o. Check that it is the Kalai-Smorodinsky solution
if the maximal disutility (minimal utility) is ay =Y, jaj for every agent, and agent i's
minimal disutility is a;.

e. Consider the n orderings o*, k=1,...,n, obtained by successive applications of the
circular permutation i — i + 1.

o' ={1,2,....n}; 6> ={2,3,....n—=1,1};..;of ={kk+1,... . k—1};...

Check that if we choose the priority ordering o with probability a; /ay, fork =1, ..., n,
the resulting utility profile is egalitarian.
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Exercise 3.11 Sharing One Commodity

a. We must divide $100 between two agents with the following utilities for money:

U (x) = V/x, us(x) =2/x

Compute the classical utilitarian, egalitarian, Nash, and KS solutions (for the latter two,
take the minimal utility to be zero).

b. Answer the same questions with the utility functions:

u (x) = x5 up(x) =x

1/3
c. Answer the same questions with the utility functions:

100x
100 + x

ur(x) =x; wux(x) =

d. What happens in the problems of questions a, b, and ¢ when the cash prize increases?
Which agent gets a bigger share of the increment according to what solution?

*Exercise 3.12 Leximin and Leximax

Given a utility profile # = (u;) in R", we denote by u* (resp. *u) the vector obtained by
rearranging the coordinates of u increasingly (resp. decreasingly). The leximin ordering
compares two profiles u, v by comparing u* and v* for the lexicographic ordering:

def
u>v < {ul >} or {uf =vfandui > v3}

or {uj=vj,u;=v;anduj > vj}...
or {u*=v*}.
The leximax ordering compares u and v as the lexicographic ordering compares *u and *v.

a. Show that both orderings, leximin and leximax, are independent of unconcerned agents
(property 1).

b. Show that they are both independent of the common utility pace (discussed at the end
of section 3.3).

c. Show that leximin meets, but leximax fails—the Pigou-Dalton transfer principle.

d. Show that leximin is the limit as g goes to infinity of the social welfare ordering W4
defined in (4). Show that leximax is the limit of W, (also defined in 4) as p goes to infinity.
The convergence statement is defined as follows. Suppose that the two profiles u«, v in R”
are such that W4 (u) > W9(v) for all g large enough. Then u - v for the leximin ordering.
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The other convergence is defined similarly.
*Exercise 3.13 Independence of Common Zero of Utilities

Consider the family of collective utility functions:

Vo(u) = Ze””" for some fixed p,p >0

i

Vi(u) = — Z e 1" for some fixed ¢,q >0
a. Show that each collective utility function V, and V¢ is independent of unconcerned

agents. Show that it is independent of the common zero of utilities, a property similar to (3)
bearing on a simultaneous shift of all individual zeros of utilities.

b. What is the limit of the social welfare ordering V), (resp. V?) as p (resp. q) goes to
infinity? As p (resp. g) goes to zero?

*Exercise 3.14 Distortion of Individual Zeros and Scales
a. Consider the binary choice between the two four-person utility profiles
ua) =(1,4,4,0), u(b)=(0,4,4,2)

The arbitrator uses the leximin ordering to select a or b with no possibility of mixing. Now
agent 1 inflates the scale of his utility by a factor of 3, so his new utility is u/(a) = 3;
uy(b) = 0. Show that this distortion is profitable even if it is a lie (agent 1’s true utility
remains u).

Next suppose that the arbitrator can mix a and b, and still is an ardent egalitarian. Show
that the (untrue) distortion by agent 1 ends up hurting him.
b. From now on we restrict attention to strictly positive individual utilities. We fix a social
welfare ordering - and define the property: “increasing strategically the scale of one’s
utility can’t hurt.” For all profile u, all agent i, and all A, A > 1, we write u’ = (u |’ Au;) for
the profile u; = u; if j # i and u; = Au;.

The property above is now defined:

foralli,A > 1,uandv: {v>uwuandu > v} = {u; > v}

Interpret this definition and explain its name. We say “increasing one’s scale is profitable”
if, in addition to the property above, we have

foralli,and all u,v: {v>=wuandu; > v;}=3IA>1:(u |i Au;) = (v |i Av;)
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Consider the collective utility W,,, p > 0 defined in (4). Show that increasing one’s scale
is profitable for W, hence for its limit as well, the leximax social ordering (defined in
exercise 3.12). What about W, namely the Nash collective utility?

Define similarly the properties “decreasing one’s scale cannot hurt” and “decreasing one’s
scale is profitable.” Show that for the collective utility W?, g > 0, in (4), decreasing one’s
scale is profitable. Therefore the same holds true for its limit, the leximin social welfare
ordering.

c. We still assume strictly positive utilities only. We define “increasing the zero of one’s
utility can’t hurt”:

foralli,A > 0,uandv: {v>=u}and | u; —2) > (| v; — 1) = {u; > v;}

Consider an additive collective utility W as in (2). Show that its ordering meets the above
property if and only if g is concave. Show that decreasing one’s zero cannot hurt if and only
if g is convex.

Deduce that increasing one’s zero can’t hurt if we are using the collective utility W9 in (4)
or W, for 0 < p < 1. In particular, this holds true for the leximin social welfare ordering.



