Solutions to Problem Set 3

1)

i) When they act independently each will maximize its own profit:

$$
\max \Pi_{0}=p_{0} q_{0}-\frac{q_{0}^{2}}{100}+q_{h}
$$

From the FOC we get that $q_{0}=200$
Similarly, $\max \Pi_{h}$ and we get $q_{h}=100$
ii) When they merge, they act as one firm:

$$
\max \Pi=p_{0} q_{0}+p_{h} q_{h}-\frac{q_{0}^{2}}{100}+q_{h}-\frac{q_{h}^{2}}{100}
$$

From the FOCS we have that:

$$
\begin{aligned}
& \qquad \frac{\partial \Pi}{\partial q_{o}}=0 \Rightarrow q_{0}=200 \\
& \text { And } \frac{\partial \Pi}{\partial q_{h}}=0 \Rightarrow q_{h}=150
\end{aligned}
$$

2)

i) Indirect utility function:
$\max _{1}$ subject to: $p_{1} x_{1}+m_{1} \leq w_{1}$

$$
L=m_{1}+10 \ln \left(1+x_{1}\right)+5 h-h^{2}+\lambda\left(p_{1} x_{1}+m_{1}-w_{1}\right)
$$

From the FOCS we get that:

$$
x_{1}=\frac{10}{p_{1}}-1
$$

And $m_{1}=w_{1}-10+p$
So substituting into u_{1} we get:

$$
v_{1}=w_{1}-10+p+10 \ln \left(\frac{10}{p}\right)+5 h-h^{2}
$$

In a similar manner, $v_{2}=w_{2}-5+p+5 \ln \left(\frac{5}{p}\right)-h^{2}$
ii) $\quad v_{1}=w_{1}-10+p+10 \ln \left(\frac{10}{p}\right)+5 h-h^{2} \Rightarrow \Phi_{1}(h)=5 h-h^{2}$

$$
v_{2}=w_{2}-5+p+5 \ln \left(\frac{5}{p}\right)-h^{2} \Rightarrow \Phi_{2}(h)=-h^{2}
$$

From $\max \Phi_{1}(h)$ we have that $h=5 / 2$
iii) $\quad \max \Phi_{1}(h)+\Phi_{2}(h)=5 h-2 h^{2}$

From the FOC we get that $h^{*}=5 / 4$
iv) Programs of the two agents:

Agent 1:
$\max 5 h-h^{2}-p_{h} h$ and from the FOC we get $5-2 h=p_{h}$
Agent 2:
$\max \left(-h^{2}\right)+p_{h} h$ and from the FOC: $p_{h}=2 h$
Solving the system we have that $h=5 / 4$ and $p_{h}=5 / 2$
3) MWG chapter 11 exercise 11.D. 5 (see solution manual you can find it if you google it)
4)
i) \quad A's maximization problem:

$$
\max \log x_{A}+\log G
$$

s.t. $g_{A}+g_{B}=G$ and $g_{A}+x_{A}=w$
or: $\max \log \left(w-g_{A}\right)+\log \left(g_{A}+g_{B}\right)$
From the FOC we get $g_{A}\left(g_{B}\right)=\frac{w-g_{B}}{2}$
In a similar manner we have that $g_{B}\left(g_{A}\right)=\frac{w-g_{A}}{2}$
(we have assumed that they hold the same amount of wealth as it simplifies the expressions)
ii) Because of symmetry it must be that $g_{A}=g_{B}$. So by the above equations, $g_{A}=g_{B}=w / 3$
iii) $\quad \max \log \left(w-g_{A}\right)=\log \left(g_{A}+g_{B}\right)+\log \left(w-g_{B}\right)+\log \left(g_{A}+g_{B}\right)$
due to symmetry: $g_{A}=g_{B}=g=G / 2$
so from the FOC we get: $g=w / 2$
In this case $G=w$ while in the previous case, $G=\frac{2 w}{3}$ (underprovision)
5) From MWG chapter 11 exercise 11.D.4
6) From MWG chapter 10 exercise 10.C. 1
7) From MWG chapter 10 exercise 10.C. 2

