
Chapter 8

Uncertainty and Risk

The lottery is the one ray of hope in my otherwise unbearable life.
ñ Homer Simpson.

8.1 Introduction

All of the economic analysis so far has been based on the assumption of a
certain world. Where we have touched on the issue of time it can e§ectively
be collapsed into the present through discounting. Now we explicitly change
that by incorporating uncertainty into the microeconomic model. This also
gives us an opportunity to think more about the issue of time. We deal with
a speciÖc, perhaps rather narrow, concept of uncertainty that is, in a sense,
exogenous. It is some external ingredient that has an impact upon individual
agentsí economic circumstances (it a§ects their income, their needs...) and also
upon the agentsí decisions (it a§ects their consumption plans, the pattern of
their asset-holding...)
Although there are some radically new concepts to be introduced, the analy-

sis can be Örmly based on the principles that we have already established, par-
ticularly those used to give meaning to consumer choice. However, the approach
will take us on to more general issues: by modelling uncertainty we can provide
an insight into the deÖnition of risk, attitudes to risk and a precise concept of
risk aversion.

8.2 Consumption and uncertainty

We begin by looking at the way in which elementary consumer theory can be
extended to allow for the fact that the future is only imperfectly known. To Öx
ideas, let us consider two examples of a simple consumer choice problem under
uncertainty.
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178 CHAPTER 8. UNCERTAINTY AND RISK

ìBudget dayî ìElection dayî

states of the world fee does/ Blue/Red wins
does not increase

payo§s (outcomes) ñ£20 or £0, capital gain/capital loss,
depending on ! depending on !

prospects states and outcomes states and outcomes
seen from the morning seen from the morning

ex ante/ex post before/after 3pm before/after the
Election results

Table 8.1: Two simple decision problems under uncertainty

1. Budget day. You have a licence for your car which must be renewed
annually and which still has some weeks before expiry. The government is
announcing tax changes this afternoon which may a§ect the fee for your
licence: if you renew the licence now, you pay the old fee, but you forfeit
the unexpired portion of the licence; if you wait, you may have to renew
the licence at a higher fee.

2. Election day. Two parties are contesting an election, and the result will
be known at noon. In the morning you hold an asset whose value will
be a§ected by the outcome of the election. If you do not sell the asset
immediately your wealth will rise if the Red party wins, and drop if the
Blue party wins.

The essential features in these two examples can be summarised in the ac-
companying box, and the following points are worth noting:

! The states-of-the-world indexed by ! act like labels on physically di§erent
goods.

! The set of all states-of-the-world ! in each of the two examples is very
simple ñ it contains only two elements. But in some interesting economic
models may be (countably or uncountably) inÖnite.

! The payo§s in the two examples are scalars (monetary amounts); but
in more general models it might be useful to represent the payo§ as a
consumption bundle ñ a vector of goods x.

! Timing is crucial. Use the time-line Figure 8.1 as a simple parable; the left-
hand side represents the ìmorningî during which decisions are made; the
outcome of a decision is determined in the afternoon and will be ináuenced
by the state-of-the-world !. The dotted boundary represents the point at
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Figure 8.1: The ex-ante/ex-post distinction

which exactly one ! is realised out of a whole rainbow of possibilities. You
must make your choice ex ante. It is too late to do it ex post ñ after the
realisation of the event.

! The prospects could be treated like consumption vectors.

8.2.1 The nature of choice

It is evident that from these examples that the way we look at choice has
changed somewhat from that analysed in chapter 4. In our earlier exposition
of consumer theory actions by consumers were synonymous with consequences:
you choose the action ìbuy x1 units of commodity 1î and you get to consume
x1 units of commodity 1: it was e§ectively a model of instant gratiÖcation. We
now have a more complex model of the satisfaction of wants. The consumer
may choose to take some action (buy this or that, vote for him or her) but
the consequence that follows is no longer instantaneous and predictable. The
payo§ ñ the consequence that directly a§ects the consumer ñ depends both on
the action and on the outcome of some event.

To put these ideas on an analytical footing we will discuss the economic
issues in stages: later we will examine a speciÖc model of utility that appears
to be well suited for representing choice under uncertainty and then consider
how this model can be used to characterise attitudes to risk and the problem of
choice under uncertainty. However, Örst we will see how far it is possible to get
just by adapting the model of consumer choice that was used in chapter 4.
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Figure 8.2: The state-space diagram: #" = 2

8.2.2 State-space diagram

As a simpliÖed introduction take the case where there are just two possible states
of the world, denoted by the labels red and blue, and scalar payo§s; this means
that the payo§ in each state-of-the-world ! can be represented as the amount
of a composite consumption good x!. Then consumption in each of the two
states-of-the-world xred and xblue can be measured along each of the two axes
in Figure 8.2. These are contingent goods: that is xred and xblue are quantities
of consumption that are contingent on which state-of-the world is eventually
realised. An individual prospect is represented as a vector of contingent goods
such as that marked by the point P0 and the set of all prospects is represented
by the shaded area in Figure 8.2. If instead there were three states in " with
scalar payo§s then a typical prospect would be such as P0 in Figure 8.3. So
the description of the environment in which individual choice is to be exercised
is rather like that of ordinary consumption vectors ñ see page 71. However,
the 45! ray in Figure 8.2 has a special signiÖcance: prospects along this line
represent payo§s under complete certainty. It is arguable that such prospects are
qualitatively di§erent from anywhere else in the diagram and may accordingly be
treated di§erently by consumers; there is no counterpart to this in conventional
choice under certainty.
Now consider the representation of consumersí preferences ñ as viewed from

the morning ñ in this uncertain world. To represent an individualís ranking
of prospects we can use a weak preference relation of the form introduced in
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Figure 8.3: The state-space diagram: #" = 3

DeÖnition 4.2. If we copy across the concepts used in the world of certainty
from chapter 4 we might postulate indi§erence curves deÖned in the space of
contingent goods ñ as in Figure 8.4. This of course will require the standard
axioms of completeness, transitivity and continuity introduced in chapter 4 (see
page 75). Other standard consumer axioms might also seem to be intuitively
reasonable in the case of ranking prospects. An example of this is ìgreedî
(Axiom 4.6 on page 78): prospect P1 will, presumably, be preferred to P0 in
Figure 8.4.

But this may be moving ahead too quickly. Axioms 4.3 to 4.5 might seem
fairly unexceptionable in the context where they were introduced ñ choice under
perfect certainty ñ but some people might wish to question whether the continu-
ity axiom is everywhere appropriate in the case of uncertain prospects. It may
be that people who have a pathological concern for certainty have preferences
that are discontinuous in the neighbourhood of the 45! ray: for such persons a
complete map of indi§erence curves cannot be drawn.1

However, if the individualís preferences are such that you can draw indif-
ference curves then you can get a very useful concept indeed: the certainty
equivalent of any prospect P0. This is point E with coordinates ("; ") in Figure
8.5; the amount " is simply the quantity of the consumption good, guaranteed
with complete certainty, that the individual would accept as a straight swap for

1 If the continuity axiom is violated in this way decribe the shape of the individualís
prefernce map.
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Figure 8.4: Preference contours in state-space

Figure 8.5: The certainty equivalent
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Figure 8.6: Quasiconcavity reinterpreted

the prospect P0. It is clear that the existence of this quantity depends crucially
on the continuity assumption.
Let us consider the concept of the certainty equivalent further. To do this,

connect prospect P0 and its certainty equivalent by a straight line, as shown
in Figure 8.6. Observe that all points on this line are weakly preferred to
P0 if and only if the preference map is quasiconcave (you might Önd it useful
to check the deÖnition of quasiconcavity on page 506 in Appendix A). This
suggests an intuitively appealing interpretation: if the individual always prefers
a mixture of prospect P with its certainty equivalent to prospect P alone then
one might claim that in some sense he or she has ìrisk averseî preferences.
On this interpretation ìrisk aversionî implies, and is implied by, convex-to-the-
origin indi§erence curves (I have used the quote marks around risk aversion
because we have not deÖned what risk is yet).2

Now for another point of interpretation. Suppose red becomes less likely
to win (as perceived by the individual in the morning) ñ what would happen to
the indi§erence curves? We would expect them to shift in the way illustrated in
Figure 8.7. by replacing the existing light-coloured indi§erence curves with the
heavy indi§erence curves The reasoning behind this is as follows. Take E as a
given reference point on the 45! line ñ remember that it represents a payo§ that
is independent of the state of the world that will occur. Before the change the
prospects represented by points E and P0 are regarded as indi§erent; however

2What would the curves look like for a risk-neutral person? For a risk-lover?



184 CHAPTER 8. UNCERTAINTY AND RISK

Figure 8.7: A change in perception

after the change it is P1 ñ that implies a higher payo§ under red ñ that is
regarded as being of ìequal valueî to point E.3

8.3 A model of preferences

So far we have extended the formal model of the consumer by reinterpreting the
commodity space and reinterpreting preferences in this space. This reinterpreta-
tion of preference has included the Örst tentative steps toward a characterisation
of risk including the way in which the preference map ìshouldî change if the

3 Consider a choice between the following two prospects:

P :

!
$1 000
$100 000

with probability 0.7
with probability 0.3

P 0 :

!
$1 000
$30 000

with probability 0.2
with probability 0.8

Starting with Lichtenstein and Slovic (1983) a large number of experimental studies have
shown the following behaviour

1. When a simple choice between P and P 0 is o§ered, many experimental subjects would
choose P 0.

2. When asked to make a dollar bid for the right to either prospect many of those who
had chosen then put a higher bid on P than on P 0.

This phenomenon is known as preference reversal. Which of the fundamental axioms ap-
pears to be violated?



8.3. A MODEL OF PREFERENCES 185

RED BLUE GREEN
P10 1 6 10
P̂10 2 3 10

Table 8.2: Example for Independence Axiom

personís perception about the unknown future should change. It appears that
we could ñ perhaps with some qualiÖcation ñ represent preferences over the
space of contingent goods using a utility function as in Theorem 4.1 and the
associated discussion on page 77.
However some might complain all this is a little vague: we have not speciÖed

exactly what risk is, nor have we attempted to move beyond an elementary two-
state example. To make further progress, it is useful to impose more structure
on preferences. By doing this we shall develop the basis for a standard model of
preference in the face of uncertainty and show the way that this model depends
on the use of a few powerful assumptions.

8.3.1 Key axioms

Let us suppose that all outcomes can be represented as vectors x which belong
to X ! Rn. We shall introduce three more axioms.

Axiom 8.1 (State-irrelevance) The state that is realised has no intrinsic
value to the person.

In other words, the colour of the state itself does not matter. The intuitive
justiÖcation for this is that the objects of desire are just the vectors x and people
do not care whether these materialise on a ìredî day or a ìblueî day; of course
it means that one has to be careful about the way goods and their attributes
are described: the desirability of an umbrella may well depend on whether it is
a rainy or a sunny day.

Axiom 8.2 (Independence) Let Pz and bPz be any two distinct prospects spec-
iÖed in such a way that the payo§ in one particular state of the world is the same
for both prospects: x! = bx! = z: Then, if prospect Pz is preferred to prospect
bPz for one value of z, Pz is preferred to bPz for all values of z.

To see what is involved, consider Table 8.2 in which the payo§s are scalar
quantities. Suppose P10 is preferred to P̂10: would this still hold even if the
payo§ 10 (which always comes up under state green) were to be replaced by
the value 20? Look at the preference map depicted in Figure 8.8: each of the
ìslicesî that have been drawn in shows a glimpse of the (xred ; xblue)-contours
for one given value of xgreen . The independence property also implies that the
individual does not experience disappointment or regret ñ see Exercises 8.5 and
8.6.4

4 Compare Exercises 8.5 and 8.6. What is the essential di§erence between regret and
disappointment?
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Figure 8.8: Independence axiom: illustration

Axiom 8.3 (Revealed Likelihood) Let x! and x be two payo§s such that
under certainty x! would be weakly preferred to x. Let !0 and !1 be any two
given subsets of the set of all states of the world ! and suppose the individual
weakly prefers the prospect

P0 = [x
! if ! 2 !0;x if ! =2 !0]

to the prospect
P1 = [x

! if ! 2 !1;x if ! =2 !1]

for some such x!;x. Then he prefers P0 to P1 for every such x!, x.

Consider an example illustrating this property. Let the set of all states-of-
the-world be given by

! = fred,orange,yellow,green,blue,indigo,violetg:

Now, suppose we have a person who prefers one apple to one banana, and also
prefers one cherry to one date. Consider two prospects P0, P1 which each have
as payo§s an apple or a banana in the manner deÖned in Table 8.3:
Furthermore let us deÖne two subsets of !, namely

!0 := fred,orange,yellow,green,blueg

!1 := fgreen,blue,indigo,violetg;
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RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET

P0 apple apple apple apple apple banana banana

P1 banana banana banana apple apple apple apple

Table 8.3: Prospects with fruit

RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET

P 00 cherry cherry cherry cherry cherry date date

P 01 date date date cherry cherry cherry cherry

Table 8.4: Prospects with di§erent fruit

we see that P0 and P1 then have the property described in the axiom. Suppose
the individual prefers P0 to P1. Then the revealed-likelihood axiom requires that
he also prefer P 00 to P

0
1, deÖned as in Table 8.4; it further implies that the above

hold for any other arbitrary subsets !0, !1 of the set of all states-of-the-world.
The intuition is that the pairs (P0, P1) and (P

0
0, P

0
1) have in common the

same pattern of subsets of the state-space where the ìwinnerî comes up. By

consistently choosing P0 over P1, P
0
0 over P

0
1, and so on, the person is revealing

that he thinks that the subset of events !0 is ìmore likelyî than !1. This
assumption rules out so-called ìambiguity aversionî ñ see Exercise 8.7.

The three new assumptions then yield this important result, proved in Ap-

pendix C:

Theorem 8.1 (Expected utility) Assume that preferences over the space of
state-contingent goods can be represented by a utility function as in Theorem 4.1.
If preferences also satisfy state-irrelevance, independence and revealed likelihood
(axioms 8.1 ñ 8.3) then they can be represented in the form

X

!2#

"!u (x!) (8.1)

where the "! are real numbers and u is a real-valued function on X that is
deÖned up to an increasing, a¢ne transformation.

In honour of its origin the special form (8.1) is often known as a von-
Neumann-Morgenstern utility function. As with the problem of aggregation

discussed in chapter 5 (see page 112), once again the additional requirements

imposed on the representation of preferences induce a set of restrictions on the

class of admissible utility functions. It is di¢cult to overstate the importance of

this result (and its alternate version in Theorem 8.4 below) for much of modern

microeconomic analysis. Nevertheless, before we press on to its interpretation

and some of its many applications, it is worth reminding ourselves that the

additional structural axioms on which it rests may be subject to challenge as

reasonable representations of peopleís preferences in the face of uncertainty.

SpeciÖcally, experimental evidence has repeatedly rejected the independence
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Figure 8.9: Contours of the Expected-Utility function

axiom as a representation of peopleís preferences in the face of choice under
uncertainty.

8.3.2 Von-Neumann-Morgenstern utility

What does this special utility function look like? To scrutinise the properties
of (8.1) and how they work we can extract a lot of information from the simple
case of scalar payo§s ñ e.g. payo§s in money ñ as in section 8.2.2 above.
First the function u. Here we encounter a terminologically awkward corner.

We should not really call u ìthe utility functionî because the whole expression
(8.1) is the personís utility; so u is sometimes known as the individualís cardinal
utility function or felicity function; arguably neither term is a particularly happy
choice of words. The last part of Theorem 8.1 means that the function u could
be validly replaced by û deÖned by

û := a+ bu (8.2)

where a is an arbitrary constant and b > 0: the scale and origin of u are
unimportant. However, although these features of the function u are irrelevant,
other features, such as its curvature, are important because they can be used to
characterise the individualís attitude to risk: this is dealt with in section 8.4.
Now consider the set of weights f%! : ! 2 &g in (8.1). If they are normalised

so as to sum to 1,5 then they are usually known as the subjective probabilities
5 Show that, given the deÖnition of u, this normalisation can always be done.
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of the individual. Notice that the concept of probability has emerged naturally
from the structural assumptions that we have introduced on personal prefer-
ences, rather than as an explicit construct. Furthermore, being ìsubjective,î
they could di§er from one individual to another ñ one person might quite reason-
ably put a higher weight on the outcome ìThe red party will win the electionî
than another. We shall have much more to say about this and other aspects of
probability later in this chapter.
In view of the subjective-probability interpretation of the !s the von-Neumann-

Morgenstern utility function (8.1) can be interpreted as expected utility, and may
more compactly be written Eu(x). In the two-state, scalar payo§ case that we
used as an example earlier this would be written:

!redu (xred) + !blueu (xblue) (8.3)

Using Figure 8.9 for the two-state case we can see the structure that (8.3)
introduces to the problem:6

" The slope of the indi§erence curve where it crosses the 45! line is (#) the
ratio of the probabilities !red=!blue .

" A corollary of this is that all the contours of the expected utility function
must have the same slope at the point where they intersect the 45!-line.

" For any prospect such as point P0 in Figure 8.9, if we draw a line with this
slope through P0, the point at which it cuts the 45!-line represents the
expected value of the prospect P ; the value of this is represented (on either
axis) as Ex, where E is the usual expectations operator (see DeÖnition A.28
on page 517).

8.3.3 The ìfelicityîfunction

Let us know interpret the function u in terms of individual attitudes. To Öx
ideas let us take the two-state case and suppose that payo§s are scalars; further
assume that the individual assigns equal probability weight to the two states
(this is not essential but it makes the diagram more tractable). Figure 8.10
illustrates three main possibilities for the shape of u.

" In the left-hand panel look at the diagonal line joining the points (xblue ; u (xblue))
and (xred ; u (xred)); halfway along this line we can read o§ the individualís
expected utility (8.3); clearly this is strictly less than u (Ex). So if u had
this shape an individual would strictly prefer the expected value of the
prospect (in this case !redxred + !bluexblue) to the prospect itself. It follows
from this that the person would reject some ìbetter-than-fairî gambles
i.e. gambles where the expected payo§ is higher than the stake money for
the gamble.

6 Explain why these results are true, using (8.3).
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Figure 8.10: Attitudes to risk

! In the right-hand panel we see the opposite case; here the individualís
expected utility is higher than u (Ex) and so the person would accept
some unfair gambles (where the expected payo§ is strictly less than the
stake money).7

! Finally the middle panel. Here the expected utility of the gamble just
equals u (Ex).

Clearly each of these cases is saying something important about the personís
attitude to risk; let us investigate this further.

8.4 Risk aversion

We have already developed an intuitive approach to the concept of risk aversion.
If the utility function U over contingent goods is quasiconcave (so that the
indi§erence curves in the state-space diagram are convex to the origin) then we
have argued that the person is risk averse ñ see page 183 above. However, we
can now say more: if, in addition to quasiconcavity the utility function takes
the von-Neumann-Morgenstern form (8.1) then the felicity function u must be
concave.8 This is precisely the case in the left-hand panel of Figure 8.10 and
accords with the accompanying story explaining that the individual might reject
some fair gambles, which is why the panel has been labelled ìrisk averse.î By
the same argument the second and third panels depict risk-neutral and risk-
loving attitudes, respectively.9 However, we can extract more information from
the graph of the felicity function.

7 Would a rational person buy lottery tickets?
8 Prove this. Hint: use Figure 8.9 and extend the line through P0 with slope !"red="blue

to cut the indi§erence curve again at a point P1; then use the deÖnition of quasiconcavity.
9 Draw an example of a u-function similar to those in Figure 9 but where the individual is

risk-loving for small risks and risk-averse for large risks.
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Figure 8.11: The ìfelicityî or ìcardinal utilityî function u.

8.4.1 Risk premium

We have already introduced the concept of the certainty equivalent in 8.2.2:

as shown in Figure 8.5 this is the amount of perfectly certain income that you

would be prepared to exchange for the random prospect lying on the same

indi§erence curve. Now, using the von-Neumann-Morgenstern utility function,

the certainty equivalent can be expressed using a very simple formula: it is

implicitly determined as the number " that satisÖes

u(") = Eu(x): (8.4)

Furthermore we can use the certainty-equivalent to deÖne the risk premium as

Ex" ": (8.5)

This is the amount of income that the risk-averse person would sacriÖce in order

to eliminate the risk associated with a particular prospect: it is illustrated on

the horizontal axis of Figure 8.9,

Now we can also use the graph of the felicity function to illustrate both

the certainty-equivalent and the risk premium ñ see Figure 8.11. In this Ögure

%red > %blue and on the horizontal axis Ex denotes the point %redxred + %bluexblue ;
on the vertical axis Eu(x) denotes the point %redu (xred) + %blueu (xblue). Use the
curve to read o§ on the horizontal axis the income " that corresponds to Eu(x)
on the vertical axis. The distance between the two points " and Ex on the
horizontal axis is the risk premium.
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But we can say more about the shape of the function u by characterising
risk-aversion as a numerical index.

8.4.2 Indices of risk aversion

Why quantify risk-aversion? It is useful to be able to describe individualsí pref-
erences in the face of uncertainty in a way that has intuitive appeal: a complex
issue is made manageable through a readily interpretable index. However, it
should not come as a surprise to know that there is more than one way of deÖn-
ing an index of risk aversion, although the good news is that the number of
alternative approaches is small.
Assume that preferences conform to the standard von-Neumann-Morgenstern

conÖguration. In the case where the payo§ is a scalar (as in our diagrammatic
examples above), we can deÖne an index of risk aversion in a way that en-
capsulates information about the function u depicted in Figure 8.11. Use the
subscript notation ux and uxx to denote the Örst and second derivatives of the
felicity function u. Then we can introduce two useful deÖnitions of risk aversion.

Absolute risk aversion

The Örst of the two risk-aversion concepts is just the normalised rate of decrease
of marginal felicity:

DeÖnition 8.1 The index of absolute risk aversion is a function " given by

"(x) := !
uxx (x)

ux (x)

We can also think of " (") as a sort of index of ìcurvatureî of the function u;
in general the value of "(x) may vary with the level of payo§ x, although we will
examine below the important special case where " is constant. The index " is
positive for risk-averse preferences and zero for risk-neutral preferences (reason:
follows immediately from the sign of uxx (")). Furthermore " is independent of
the scale and origin of the function u.10

This convenient representation enables us to express the risk premium in
terms of the index of absolute risk aversion and the variance of the distribution
of x:11

Theorem 8.2 (Risk premium and variance) For small risks the risk pre-
mium is approximately 1

2"(x)var(x).

10 Show why this property is true.
11 Prove this. Hint, use a Taylor expansion around Ex on the deÖnition of the risk premium

(see page 494).
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Figure 8.12: Concavity of u and risk aversion

Relative risk aversion

The second standard approach to the deÖnition of risk aversion is this:

DeÖnition 8.2 The index of relative risk aversion is a function % given by

%(x) := !x
uxx (x)

ux (x)

Clearly this is just the ìelasticity of marginal felicityî. Again it is clear

that %(x) must remain unchanged under changes in the scale and origin of the
function u. Also, for risk-averse or risk-neutral preferences, increasing absolute
risk aversion implies increasing relative risk aversion (but not vice versa).12

Comparisons of risk-attitudes

We have already seen in above (page 190) that a concave u-function can be
interpreted as risk aversion everywhere, a convex u-function as risk preference
everywhere. We can now be more precise about the association between con-

cavity of u and risk aversion: if we apply a strictly concave transformation to u
then either index of risk aversion must increase, as in the following theorem.13

12 Show this by di§erentiating the expression in DeÖnition 8.2.
13 Prove this by using the result that the second derivative of a strictly concave function is

negative.
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Figure 8.13: Di§erences in risk attitudes

Theorem 8.3 (Concavity and risk aversion) Let u and bu be two felicity
(cardinal utility) functions such that bu is a concave transformation of u. Then
b"(x) ! "(x) and b%(x) ! %(x).

So, the more ìsharply curvedî is the cardinal-utility or felicity function u, the
higher is risk aversion (see Figure 8.12) on either interpretation. An immediate

consequence of this is that the more concave is u the higher is the risk premium
(8.5) on any given prospect.14

This gives us a convenient way of describing not only how an individualís

attitude to risk might change, but also how one compare the risk attitudes

of di§erent people in terms of their risk aversion. Coupled with the notion

of di§erences in subjective probabilities (page 188) we have quite a powerful

method of comparing individualsí preferences. Examine Figure 8.13. On the

left-hand side we Önd that Alf and Bill attach the same subjective probabilities

to the two states red and blue: for each of the two sets of indi§erence curves in
the state-space diagram the slope where they intersect the 45! line is the same.

But they have di§ering degrees of risk aversion ñ Alfís indi§erence curves are

more sharply convex to the origin (his felicity function u will be more concave)
than is the case for Bill. By contrast, on the right-hand side, Alf and Charlie

exhibit the same degree of risk aversion (their indi§erence curves have the same

ìcurvatureî and their associated u-functions will be the same), but Charlie puts
a higher probability weight on state red than does Alf (look at the slopes where
the indi§erence curves cross the 45! line).

14 Show this using Jensenís inequality (see page 517 in Appendix A).
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Figure 8.14: Indi§erence curves with constant absolute risk aversion

8.4.3 Special cases

The risk-aversion indices !(!) and %(!) along with the felicity function u(!) are
quite general. However, for a lot of practical modelling it is useful to focus on

a particular form of u. Among the many possibly fascinating special functional
forms that might be considered it is clearly of interest to consider preferences

where either !(x) or %(x) is constant for all x. In each case we get a particularly
convenient formula for the felicity function u.

Constant Absolute Risk Aversion In the case of constant absolute risk
aversion the felicity function must take the form:15

u(x) = "
1

!
e!!x (8.6)

or some increasing a¢ne transformation of this ñ see (8.2) above. Figure 8.14

illustrates the indi§erence curves in state space for the utility function (8.1)

given a constant !: note that along any 45" line the MRS between consumption
in the two states-of-the-world is constant.16

15 Use DeÖnition 8.1 to establish (8.6) if ! (x) is everywhere a constant !.
16 Suppose individual preferences satisfy (8.1) with u given by (8.6). Show how Figure 8.14

alters if (a) $! is changed, (b) ! is changed.
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Figure 8.15: Indi§erence curves with constant relative risk aversion

Constant Relative Risk Aversion In the case of constant relative risk

aversion the felicity function must take the form:17

u(x) =
1

1! %
x1!% (8.7)

illustrated in Figure 8.1518 or some transformation of (8.7) of the form (8.2).

Figure 8.14 illustrates the indi§erence curves in state space for the utility func-

tion (8.1) given a constant %: in this case we see that the MRS is constant along
any ray through the origin.

Other special cases are sometimes useful, in particular the case where u is a
quadratic function ñ see Exercise 8.8.

Example 8.1 How risk averse are people? Barsky et al. (1997) used survey

questions from the Health and Retirement Survey ñ a panel survey of a nation-

ally representative sample of the US population aged 51 to 61 in 1992 ñ to elicit

information on risk aversion, subjective rate of time preference, and willingness

to substitute intertemporally. The questions involved choice in hypothetical situ-

ations about willingness to gamble on lifetime income. Their principal evidence

17 Use DeÖnition 8.2 to establish (8.7) if % (x) is everywhere a constant %.
18 Suppose individual preferences satisfy (8.1) with u given by (8.7). Show how Figure 8.15

alters if (a) $! is changed, (b) % is changed.
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Figure 8.16: Estimates of % by quintiles from Barsky et al. (1997)

concerns the degree of ìrelative risk toleranceî ñ the inverse of %(x) ñ by indi-
viduals at di§erent points in the income distribution. The implications of these
estimates for relative risk aversion by income and wealth groups group is shown
in Figure 8.16.

8.5 Lotteries and preferences

sections 8.2 to 8.4 managed quite well without reference to probability, except

as a concept derived from the structure of preferences in the face of the un-

known future. This is quite a nice idea where there is no particular case for

introducing an explicit probability model, but now we are going to change that.

By an explicit probability model I mean that there is a well-deÖned concept of

probability conforming to the usual axioms, and that the probability distribu-

tion is objectively knowable (section A.8 on page 515 reviews information on

probability distributions). Where the probabilities come from ñ a coin-tossing,

a spin of the roulette wheel ñ we do not enquire, but we just take them to be

known entities.

We are going to consider the possibility that probability distributions are
themselves the objects of choice. The motivation for this is easy to appreciate

if we think of the individual making a choice amongst lotteries with a given

set of prizes associated with the various possible states of the world: the prizes



198 CHAPTER 8. UNCERTAINTY AND RISK

Figure 8.17: The probability diagram: #" = 2

are Öxed but there are di§erent probability vectors associated with di§erent
lotteries.

8.5.1 The probability space

To formalise this assume a Önite set of states of the world $ as in (A.63): this
is not essential, but it makes the exposition much easier. There is a payo§ x!
and a probability "! associated with each state. We can imagine preferences
being deÖned over the space of probability distributions, a typical member of
which can be written as a $-dimensional vector ! given by (A.64)

! := ("red; "blue; "green; :::) (8.8)

such that X

!2!

"! = 1: (8.9)

Figure 8.17 depicts the case $ = 2 where the set of points representing the
lottery distributions is the 45" line from (0; 1) to (1; 0): the speciÖc distribution
(0:75; 0:25) is depicted as a point on this line. Alternatively, for the case $ = 3,
we can use Figure 8.18 where the set of points representing valid probability
distributions is the shaded triangle with vertices (1; 0; 0), (0; 1; 0), (0; 0; 1); the
speciÖc distribution (0:5; 0:25; 0:25) is illustrated in the Ögure. (Figures 8.17 and
8.18 are essentially exactly the same as the normalised price diagrams, Figures
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Figure 8.18: The probability diagram: #" = 3

7.8 and B.21) The $ = 3 case can be seen more clearly in Figure 8.19 where
the probability triangle has been laid out áat.

8.5.2 Axiomatic approach

Now, suppose we consider an individualís preferences over the space of lotteries.
Again we could try to introduce a ìreasonableî axiomatisation for lotteries and
then use this to characterise the structure of preference maps ñ a particular class
of utility functions ñ that are to be regarded as suitable for problems of choice
under uncertainty.
The three axioms that follow form the standard way of doing this axioma-

tisation. Here !!;!0 and !00 are lotteries with the same payo§s, each being
$-vectors of the form 8.8. The payo§s associated with the given set of prizes
for each of the $ states-of-the-world is the ordered list of consumption vectors
[xred;xblue;xgreen; :::] and (0; 1) is the set of numbers greater than zero but less
than 1.
It is convenient to reintroduce the inelegant ìweak preferenceî notation that

was Örst used in chapter 4. Remember that the symbol ì<î should be read as
ìis at least as good as.î Here are the basic axioms:

Axiom 8.4 (Transitivity over lotteries) If !! < !0 and !0 < !00 then
!! < !00.
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Figure 8.19: The probability diagram: #" = 3 (close-up)

Axiom 8.5 (Independence of lotteries) If !! < !0 and " 2 (0; 1), then

"!! + [1" "]!00 < "!0 + [1" "]!00:

Axiom 8.6 (Continuity over lotteries) If !! # !0 # !00 then there are
numbers "; % 2 (0; 1) such that

"!! + [1" "]!00 # !0

and
!0 # %!! + [1" %]!00

Now for a very appealing result that obviously echoes Theorem 8.1 (for proof
see Appendix C):

Theorem 8.4 (Lottery Preference Representation) If axioms 8.4ñ8.6 hold
then preferences can be represented as a von-Neumann-Morgenstern utility func-
tion: X

!2!

!!u (x!) (8.10)

where u is a real-valued function on X that is deÖned up to an increasing, a¢ne
transformation.



8.5. LOTTERIES AND PREFERENCES 201

Figure 8.20: !-indi§erence curves

So with the set of three axioms over lotteries the individualís preference
structure once again takes the expected utility form

Eu (x) :

Furthermore, it is clear that the utility function (8.10) can be rewritten as a
simple ìbilinearî form X

!2!

!!$! (8.11)

where $! := u (x!) is the payo§ in state-of-the-world !, expressed in utility
terms. We can see the objective function (8.11) in two equivalent ways:

1. As a weighted sum of payo§s (the payo§s are the utilities derived from
consumption; the weights are the probabilities).

2. As a weighted sum of probabilities (the weights are the scalar utility pay-
o§s).

Version 1 is exactly what we already found from our Örst pass through the
axiomatisation of preferences under uncertainty in section 8.3. Version 2 is
perhaps the more natural when it is the probability distributions themselves
that are the objects of choice.
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!! probability that state-of-the-world ! occurs
!h! subjective probability of ! according to h
u felicity or cardinal utility function
%j holding of bonds of type j.
rj! rate-of-return on bonds of type j in state !
pi! price of good i contingent on state !
!y initial wealth
y! wealth in state !

Table 8.5: Uncertainty and risk: notation

The linearity of the expression (8.11) implies that indi§erence curves must
take the form illustrated19 in Figure 8.20 and will exhibit the following proper-
ties:20

! The indi§erence curves must be parallel straight lines.

! If +red > +green > +blue , the slope
d&blue
d&red

is positive.

! If +blue increases, then the slope also increases.

So we now have a second approach to the expected-utility representation
individualís preferences under uncertainty. This alternative way of looking at
the problem of uncertainty and choice is particularly useful when probabilities
are well-deÖned and apparently knowable. It might seem that this is almost a
niche study of rational choice in situations involving gaming machines, lotteries,
horse-race betting and the like. But there is much more to it. We will Önd
in chapter 10 that explicit randomisation is often appropriate as a device for
the analysis and solution of certain types of economic problem: the range of
potential application there is enormous.

8.6 Trade

Now that we have a fairly extensive view of how individualsí preferences uncer-
tainty can be mapped we should try to put the analysis to work. To do this let
us start by considering the logical extension of the exchange-economy analysis of
chapter 7 to a world of uncertainty. We again make use of the timing convention
introduced in Figure 8.1.

19 Another convenient way of representating the set of all probability distributions when
$ = 3 can be constructed by plotting "red on the horizontal axis and "green on the vertical
axis of a conventional two-dimensional diagram. (a) What shape will the set of all possible
lotteries have in this diagrammatic representation? (b) How is "blue to be determined in this
diagram? (c) What shape will an expected-utility maximiserís indi§erence curves have in this
diagram?
20 In the case where $ = 3 show that these are true by using the fundamental property

(8.9) and the bilnear form of utility (8.11).
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8.6.1 Contingent goods: competitive equilibrium

If there are n physical commodities (anchovies, beef, champagne,...) and $
possible states-of-the-world (red, blue,...) then, viewed from the morning,
there are n$ possible ìcontingent goodsî (anchovies-under-red, anchovies-
under-blue, beef-under-red,..., . It is possible that there are markets, open
in the morning, in which titles to these contingent goods can be bought and
sold. Then, using the principles established in chapter 7, one can then immedi-
ately establish the following:

Theorem 8.5 (Equilibrium in contingent goods) If all individuals are risk-
averse or risk-neutral then there market-clearing contingent-goods prices

[pi!] ; i = 1; :::; n; ! 2 % (8.12)

that will support an exchange equilibrium.21

If there is just one physical commodity (n = 1) and two states of the world
the situation can be depicted as in Figure 8.21. In Alf has the endowment
(0; yblue) and Bill has the endowment (yred; 0) where the size of the box is
yred " yblue. Note that Alfís indi§erence curves all have the same slope where
they intersect the 45! through the origin Oa; Billís indi§erence curves all have
the same slope where they intersect the 45! through the origin Ob; as drawn
Alf and Bill have di§erent subjective probabilities about the two events:

*a
red

*a
blue

>
*b
red

*b
blue

Equilibrium contingent-goods prices are shown as the line from the endowment
point (top left-hand corner) to the equilibrium point on the contract curve.22

But the number of contingent goods n$ may be huge, which suggests that
it might be rather optimistic to expect all these markets to exist in practice.
Could the scale of the problem be reduced somewhat?

8.6.2 Financial assets

Let us introduce ìsecuritiesî ñ in other words Önancial assets. These securities
are simply pieces of paper which say ìthe bearer is entitled to $1 if state !
occursî. If person h has an endowment yh of wealth in the morning, and if the
price on the securities market (open in the morning) of an !-security is -!, then
the following constraint holds:

X

!2!

-!z
h
! # y

h

21 Under what circumstances might it be possible to drop the assumption about risk aversion
in this theorem?
22 Redraw Figure 8.21 for two special cases: (a) where overall wealth in the economy

is constant, independent of the state-of-the-world; (b) where Alf and Bill have the same
subjective probabilities.
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Figure 8.21: Contingent goods: equilibrium trade

where zh! is the amount h buys of a !-security. If the (morning) price of a claim
on commodity i contingent on state ! is pi!, and if pij! is the (afternoon) price
of commodity i given that state ! has actually occurred at lunch time, then
equilibrium in the securities market, with all Örms breaking even, requires:

&!pij! = pi!

which, set out in plain language, says:

price price of contingent price
of an ! " champagne when = of champagne
security ! has occurred given !

There is in e§ect a two-stage budgeting process:

1. Choose the securities zh!: this, along with the realisation of !, determines
income in the afternoon.

2. Given that state ! has occurred, choose the purchases xh! in the afternoon
so as to maximise uh(xh!):

This seems to reduce the scale of the problem by an order of magnitude, and
to introduce a sensible separation of the optimisation problem.
But there is a catch. People have to do their Önancial shopping in the

morning (lunchtime is too late). Now, when they are doing this, will they know
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what the pij! would be for each commodity i in each possible state !? This
seems rather a demanding requirement, but they need to have this information
in order to make sensible purchases of the securities zh! in stage 1. Despite
this logically awkward corner the two-stage simpliÖcation provides us a way of
making the individual decision-makerís problem more tractable

8.7 Individual optimisation

In the light of the two-stage problem discussed in section 8.6.2 we can now extend
the elementary modelling of the householdís preferences and constraints to build
in the essential characteristics of uncertainty. We will draw both upon standard
consumer behaviour as presented in chapter 4, and the model of household
production that was introduced in chapter 5. We shall develop further the
idea of Önancial assets introduced in section 8.6.2 in order to focus upon the
comparative statics of behaviour under risk.
To set the scene, consider a general version of the consumerís optimisation

problem in an uncertain world. You have to go shopping for food, clothing and
so on in the afternoon. The amount that you will have available to spend then
may be stochastic (viewed from the morning), but that you can ináuence the
probability distribution a§ecting your income by some choices that you make
in the morning. These choices concern the disposition of your Önancial assets
including the purchase of bonds and of insurance contracts.
Before we get down to the detail of the model let us again use Figure 8.1

to anchor the concepts that we need in developing the analysis. The timing of
matters is in the following order

" The initial endowment is given. The person makes decisions on Önancial
assets.

" The state-of-the-world ! is revealed: this and the Önancial decisions al-
ready made determine Önal wealth in state !.

" Given Önal wealth the person determines consumptions using ex-post util-
ity function and prices then ruling.

An explicit model of this is set out in section 8.7.2 below: Örst we will
examine in more detail what the shape of the individualís attainable set is
going to be in a typical problem of choice under uncertainty.

8.7.1 The attainable set

We need to consider the opportunities that may be open to the decision maker
under uncertainty ñ the market environment and budget constraint. We have
already introduced one aspect of this in that we have considered whether an
individual would swap a given random prospect x for a certain payo§ &: there
may be some possibility of trading away undesirable risk. Is there, however, an
analogue to the type of budget set we considered in chapters 4 and 5?
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Figure 8.22: Attainable set: safe and risky assets

There are many ways that we might approach this question. However we
will proceed by focusing on two key cases ñ where the individualís endowment
is perfectly certain, and where it is stochastic ñ and then reasoning on a leading
example of each case.

Determinate endowment: portfolio choice

Return to the two-state ìred/blueî examples above and examine Figure 8.22
which represents the attainable set for a simple portfolio composition problem.
Imagine that an individual is endowed with an entitlement to a sum !y (denom-
inated in dollars) whichever state of the world is realised. We may think of
this as money. He may use one or more of these dollars to purchase bonds in
dollar units. For the moment, to keep things simple, there is only one type of
bond: each bond has a yield of r! if state blue is realised, and r0 if state red
is realised where we assume that

r0 > 0 > r! > !1

So if the individual purchases an amount $ of bonds and holds the balance
!y ! $ in the form of money then the payo§ in terms of ex-post wealth is either

yred = [!y ! $] + $[1 + r
0]

or
yblue = [!y ! $] + $[1 + r

!]

In other words
(yred ; yblue) = (!y + $r

0; !y + $r!) (8.13)
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By construction of the example, for all positive ! we have yred > !y > yblue .
In Figure 8.22 the points !P and P0 represent, respectively the two cases where
! = 0 and ! = !y. Clearly the slope of the line joining !P and P0 is r

0=r", a
negative number, and the coordinates of P0 are

([1 + r0]!y; [1 + r"]!y) :

Given that he has access to such a bond market, any point on this line must

lie in the feasible set; and assuming that free disposal of his monetary payo§

is available in either case, the attainable set A must include all the points in

the heavily shaded area shown in Figure 8.22. Are there any more such points?

Perhaps.

First of all, consider points in the lightly shaded area above the line A. If
one could ìbuyî a negative amount of bonds, then obviously the line the line

from P0 to !P could be extended until it met the vertical axis. What this would
mean is that the individual is now selling bonds to the market. Whether this is

a practical proposition or not depends on other peopleís evaluation of him as to

his ìÖnancial soundnessî: will he pay up if red materialises? With certain small

transactions ñ betting on horse races among oneís friends, for example ñ this

may be quite reasonable. Otherwise one may have to o§er an extremely large

r0 relative to r" to get anybody to buy oneís bonds.
Secondly consider points in the area to the right of A. Why canít we just

extend the line joining !P and P0 downwards until it meets the horizontal axis?
In order to do this one would have to Önd someone ready to sell bonds ìon

creditî since one would then be buying an amount ! > !y. Whoever extends
this credit then has to bear the risk of the individual going bankrupt if blue is

realised. So lenders might be found who would be prepared to advance him cash

up to the point where he could purchase an amount !!y=r" of bonds. Again, we
can probably imagine situations in which this is a plausible assumption, but it

may seem reasonable to suppose that one may have to pay a very high premium

for such a facility. Accordingly the feasible set might look like Figure 8.23,

although for many purposes Figure 8.22 is the relevant shape.

There might be a rÙle for many such Önancial assets ñ particularly if there

were many possible states-of-the-world ñ in which case the attainable set A
would have many vertices, a point to which we return in section 8.7.2.

Stochastic endowment: the insurance problem

Now consider a di§erent problem using the same diagrammatic approach ñ see

Figure 8.24. Suppose that the individualís endowment is itself stochastic ñ it

equals if y0 if red is realised and y0 ! L if blue is realised, where 0 < L < y0.
As a simple example, state blue might be having oneís house destroyed by Öre
and state red is its not being destroyed, y0 is the total value of your assets in the
absence of a disaster and L is the monetary value of the loss. Let us suppose that
Öre insurance is available and interpret Figure 8.24. If full insurance coverage

is available at a premium represented by

, = y0 ! !y (8.14)
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Figure 8.23: Attainable set: safe and risky assets (2)

then the outcome for such full insurance will be at point !P . If the individual
may also purchase partial insurance at the same rates, then once again the whole
of the line segment from !P to P0 ñ and hence the whole shaded pentagonal area
ñ must lie in the attainable set A.

In this case too we can see that it may be that there are no further points
available to the individual. Again consider the implications of enlarging the set
A in the region above the horizontal line through point !P . At any point in this
area the individual would in fact be better o§ if his house burned down than
if it did not. The person has over-insured himself, a practice which is usually
frowned upon. The reason that it is frowned upon is to be found in the concept
of moral hazard. Moral hazard refers to the ináuence that the actions of the
insured may have on the probability of certain eventsí occurrence. Up until
now we have taken the probabilities ñ ìobjectiveî or ìsubjectiveî ñ attached
to di§erent events as exogenously given. But in practice the probability of a
personís house burning down depends in part on his carelessness or otherwise.
He may be more inclined to be careless if he knows that he has an insurance
company to back him up if one day the house does burn down; furthermore the
person may be inclined to be criminally negligent if he knows that he stands
to gain by event blue being realised. So insurance companies usually prevent
over-insurance and may indeed include an ìexcess clauseî (otherwise known as
ìcoinsuranceî) so that not even all of the shaded area is attainable.

Furthermore, for reasons similar to those of the portfolio selection example,
it is unlikely that the points in the shaded area to the right of A could be
included in the attainable set.
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Figure 8.24: Attainable set: insurance

8.7.2 Components of the optimum

To set out the individualís optimisation problem let us assume that the personís

opportunities are based on the model of section 8.7.1 with a determinate en-

dowment. However, we will introduce one further consideration ñ the possibility

of there being multiple Önancial assets in the form of ìbonds.î The person has

a given amount of wealth !y initially which he or she could invest in bonds of
types 1; :::;m. Denote by %j the amount held of a type-j bond; then, under any
particular state-of-the-world ! we can deÖne income yielded by bond j as:

return holding

on j in ! of = rj!%j
state ! bond j

Then the value of of oneís wealth after the Önancial decision becomes

y! = !y +
mX

j=1

rj!%j (8.15)

ñ see equation (8.13). We could then further specify a standard consumer op-

timisation model conditional upon the realisation of a particular state-of-the-

world !

max
x
U (x) subject to

nX

i=1

pixi " y!

where I have written pi as shorthand for pij! , the actual goods prices once
state-of-the-world ! has been realised. and obtain a set of demand functions
conditional upon !:

x!i = D
i (p; y!) :



210 CHAPTER 8. UNCERTAINTY AND RISK

Figure 8.25: Consumer choice with a variety of Önancial assets

If we assume that goodsí prices are known to be Öxed then we may write the
maximised utility in state ! as u(y!) := V (p; y!) where V is the conventional
indirect utility function (DeÖnition 4.6 page 88).
Suppose that there is a Önite number of all possible states-of-the-world. Then

clearly one also has to solve the problem:

max
"1;:::;"m

X

!2!

&!u (y!)

subject to

y! = (y +
mX

j=1

rj!(j

But we have analysed this type of economic problem before. There is a close
analogy with the general ìhousehold productionî or ìgoods and characteristicsî
model discussed in chapter 5 (page 107). We just need to some translation of
terminology; in the present case:

! yred; yblue; ::: are the ìconsumption goodsî from which one derives utility
directly.

! (1; :::; (m correspond to the ìmarket goodsî or ìinputsî which are pur-
chased by the household.
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! Given uniform interest rates, one has a linear technology which transforms
purchased assets into spendable income in each state of the world using
(8.15).

This is illustrated in Figure 8.25 where the vertices of the attainable set A
correspond to the various types of bond.23 The slope of each facet is given by

rj+1;blue " rj;blue
rj+1;red " rj;red

; (8.16)

Drawing on the analysis of section 5.4 what can one say about the personís
decisions regarding the purchase of Önancial assets in this set-up? Dominated
Önancial assets will obviously be irrelevant to the optimal choice. There may be
many zeros amongst the m assets ñ as illustrated in Figure 8.25 just two types
of asset are purchased. As a result of this, when rates of return change one
may get jumps in demand for Önancial assets as particular assets are brought
into or dropped from the solution. One could also expect jumps in demand as
initial wealth grows if the individualís indi§erence curves are not homothetic.24

But can we say more about the way that this demand for Önancial assets will
respond to changes in the distribution of rates of return?

8.7.3 The portfolio problem

We can say much more if we restrict attention to what happens on just one
facet ñ i.e. if we rule out switching between facets of A as we change the
the parameters of the model. Then, in the case where there are two states-
of-the-world, the problem is e§ectively equivalent to that discussed earlier in
section 8.7.1. However, although we will illustrate it for the two-state case
using diagrams based on Figure 8.22 our approach will be more general in that
we we will allow for arbitrarily many possible states of the world.
So we take a model in which there are just two assets: money and bonds.

The person is endowed with a determinate amount of initial wealth !y. The rate
of return on bonds is given by r a random variable with a known distribution
having positive, Önite mean; the density function of r is illustrated in Figure
8.26
If the person chooses to hold an amount & in the form of bonds, then wealth

after the Önancial decision has been made is

y = !y + &r; (8.17)

also a random variable ñ compare this with equations (8.13) and (8.15). Assume
that the personís preferences are represented by a utility function of the form
Eu(y) where y is given by (8.17).
We can now set out the simpliÖed optimisation problem:

max
#
Eu (!y + &r) (8.18)

23 As depicted bonds 1 and 7 are likely to be uninteresting ñ brieáy explain what they are.
24 Explain why you get jumps in the demand for bonds in this case.
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Figure 8.26: Distribution of returns

subject to 0 ! ! ! "y

Letting uy denote the Örst derivative of u with respect to y, the FOC condition
for this maximisation problem is

E (ruy ("y + !r)) = 0 (8.19)

for an interior solution ñ see Figure 8.27).25

Assuming the interior solution we can, in principle, solve equation (8.19) in
order to derive the optimal purchases of bonds !! which will be a function of the
endowment of assets "y and of the probability distribution of the rate of return
r.
One clear-cut conclusion can easily be drawn from this approach. Consider

what happens in the neighbourhood of point "P in Figure 8.27; speciÖcally con-
sider the e§ect on the personís utility of a small increase in ! away from 0:

@E (u ("y + !r))
@!

!!!!
"=0

= uy ("y) Er (8.20)

So, given that uy ("y) > 0, the impact of ! on utility is positive if Er is positive.
In other words:

25 What would be the FOC corresponding to (8.19) for the two possible corner solutions
(a) where the individual chooses to leave all resources in the riskless asset, (b) where the
individual puts all resources into bonds?
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Figure 8.27: Consumer choice: safe and risky assets

Theorem 8.6 (Risk taking) If the individual is nonsatiated and has a von-
Neumann-Morgenstern utility function and if the expected return to risk-taking
is positive then the individual will hold a positive amount of the risky asset.

It would be interesting to know how this optimal demand for risky assets
!! changes in response to changes in the market environment by modelling the
appropriate changes in the personís budget constraint. We can use the Örst-
order condition (8.19) to look at a number of issues in comparative statics.

An increase in endowment.

Let us analyse the e§ect of a change in the personís assets by di§erentiating
(8.19) with respect to !y:

E
!
ruyy (!y + !

!r)

"
1 + r

@!!

@!y

#$
= 0 (8.21)

which implies
@!!

@!y
=
"E (ruyy (!y + !!r))
E (r2uyy (!y + !!r))

: (8.22)

The denominator of (8.22) is unambiguously negative, since uyy is everywhere
negative (the assumption of risk aversion) and r2 is non-negative. However, the
numerator could be positive or negative, since the risky asset could turn out to
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make a proÖt (r > 0) or a loss (r < 0). So it appears that the e§ect of wealth
upon risk-taking is ambiguous.

In order to resolve this ambiguity, it is common to Önd the following addi-

tional assumption about preferences:

Axiom 8.7 (Decreasing absolute risk aversion) $(x) decreases with x.

This introduces a further restriction on the felicity function u.26 But if

we introduce decreasing absolute risk aversion along with the other standard

assumptions, then we can show (see Appendix C):

Theorem 8.7 (Risk-taking and wealth) If an individual has a von-Neumann-
Morgenstern utility function with decreasing absolute risk aversion and holds a
positive amount of the risky asset then the amount invested in the risky asset
will increase as initial wealth increases.

People whose risk aversion decreases with their endowment will buy more

risky assets if their wealth increases. Notice that the result for any distribution

of returns for which '! > 0. This can be illustrated in Figure 8.28. The

original equilibrium is at P ! and the lightly shaded area shows the increase in
the attainable set when $y increases to $y+&. From (8.13) it is clear that if bond
holdings were kept constant at '! as $y increased then point P ! would move
out along a 45" line. However the indi§erence curves as drawn show decreasing

absolute risk aversion (constant relative risk aversion) and the new equilibrium

is at P !!, to the right of the 45" line through P !: the holding of bonds must
have increased.

A rightward shift of the distribution.

What happens to risk-taking if the returns on the risky asset change in an

unambiguously favourable fashion? We can analyse this by supposing that the

probability distribution of r is ìtranslatedî by adding the same determinate
amount * to every possible value of r; then we look at how '! changes in
response to small changes in * , in the neighbourhood of * = 0.

Adding the amount * to r as mentioned the FOC (8.19) becomes:

E ([r + * ]uy ($y + '! [r + * ])) = 0 (8.23)

Di§erentiate (8.23) with respect to * :

E (uy ($y + '! [r + * ])) + '!E ([r + * ]uyy ($y + '! [r + * ]))

+
@'!

@*
E
!
[r + * ]

2
uyy ($y + '

! [r + * ])
"
= 0 (8.24)

26 This further restriction can be expressed as a condition on the third derivative of u: what
is the condition?
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Figure 8.28: E§ect of an increase in endowment

Figure 8.29: A rightward shift
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Setting ! = 0 we Önd

E (uy (y)) + $!E (ruyy (y)) +
@$!

@!
E
!
r2uyy (y)

"
= 0

where y is given by (8.17). So, in the neighbourhood of ! = 0, we have

@$!

@!
= "

E (uy (y))
E (r2uyy (y))

" $!
E (ruyy (y))
E (r2uyy (y))

(8.25)

and, given (8.22), equation (8.25) becomes

@$!

@!
= "

E (uy (y))
E (r2uyy (y))

+ $!
@$!

@&y
(8.26)

From the way that (8.26) is written it is clear that if $! increases with personal
wealth &y, then it must also increase with this favourable shift in the distribu-
tion. Decreasing absolute risk aversion is a su¢cient condition (although not a
necessary condition) for this.

This is illustrated in Figure 8.30. The attainable set A expands in an un-
balanced way: the point P0 moves out along a 45

" line, so that the boundary
of A rotates through &P as shown. Once again the dotted line through P ! is the
locus that would be followed if the absolute amount of bonds bought $ stayed
constant: clearly the new equilibrium P !! must lie to the right of where this
line intersects the new boundary of A (marked by ì#î).

An increased spread of the distribution.

We can handle this by supposing that the probability distribution of r is ìscaledî
by multiplying every possible value of r by a determinate constant t; then we
look at how changes in t a§ect $! in the neighbourhood of t = 1. The FOC
becomes:

E (truy (&y + $!tr)) = 0: (8.27)

Di§erentiating this with respect to t we now Önd:27

t

$!
@$!

@t
= "1 (8.28)

Equation (8.28) implies that the optimal purchase of bonds, $!, is bound to
decrease; the elasticity of bond purchases with respect to the scale factor t is
"1. We do not need a special assumption about risk aversion in order to get
this result.

27 Fill in the missing lines from the di§erentiation and illustrate the outcome using a Ögure
similar to Figure 8.30.
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Figure 8.30: E§ect of a rightward shift in the distribution

8.7.4 Insurance

From section 8.7.1 it appears that the economic problem of insurance can be

treated in essentially the same way as the portfolio problem just discussed ñ

i.e. as a trade-o§ between safe and risky assets that is determined by the

personís own subjective probability of events, the nature of risk aversion and

the returns to the risky asset. Some results can indeed just be copied across.

In particular Theorem 8.6 shows that if the expected return to risk is positive

then the individual will choose to hold a positive amount of the risky asset: let

us see how this translates.

From Figure 8.24 and the accompanying discussion we can deduce the fol-

lowing. If the risk of loss is !blue and the size of the loss is L then the expected
payout equals the expected receipts for an insurance company if

!blueL = # (8.29)

where #, the premium, is given by (8.14). A quick check reveals that this is

equivalent to
L! #
#

=
!red
!blue

(8.30)

where the left-hand side is clearly the slope of the boundary of the attainable

set A and the right-hand side is the slope of the indi§erence curve where it

crosses the 45! line. So if the insurance premium is set such that the insurance

company expects to break even (8.29) then the indi§erence curve is tangential
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Figure 8.31: E§ect of numbers

to the opportunity set at point !P : the person fully insures at the optimum.
This means that if the terms of the insurance are unfair (replace the ì=î by
ì=î in expressions 8.14 and 8.29) then the individual will take out less than full
insurance or no insurance at all ñ i.e. equilibrium will be in either the interior

of or at the right-hand end of the line joining !P and P0. This is the exact
translation of the result concerning the positive expected return to risk.

Other results will work in the same way. For example, if an individual

with decreasing risk aversion chooses to be partially insured then, if his wealth

grows, the amount of his insurance coverage cannot increase (see exercise 8.12).

However, this type of analysis assumes that an insurance market exists for this

type of risk ñ but under what circumstances would such a market exist?

First, there is a necessary condition of large numbers in the market to permit

the pooling of risks. Take a simple example of an economy consisting of clones.

Each clone faces an identical independent risk on his wealth, and evaluates the

risk with identical subjective probability: $2,000 with probability 0.4 and $4,000

with probability 0.6. Let us suppose the clones assemble themselves and agree

to pool their wealth and share equally the combined realised payo§. Clearly the

mathematical expectation is $3,200. Now consider Figure 8.31. As the economy

is replicated to 2, 4, 8, 16, ... persons, we can see that the distribution of

payo§s to the individual soon becomes symmetric and concentrated about the

expected value. In the limit, of course, the probability of any payo§ di§erent

from the expected value becomes inÖnitesimal. If the insurance company is

owned by a large number of ìsmallî individuals ñ that is if the shares in the
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proÖts and losses from insurance are reasonably di§use ñ then the risks are

not only pooled but also spread. Under such circumstances there may be the
basis for e§ective competition in both the demand side and the supply side of

a market for insurance.

So it appears that with a very large number of agents each one ought to be

able to ìbuy insuranceî against the risk on his income at an actuarially fair price

corresponding to the probabilities given above. But the example also reveals

some obvious pitfalls:

! There is the ìmoral hazardî problem as described above. We must as-

sume that no person can have direct ináuence on the probability of any

particular payo§ being realised.

! Each agent must be ìsmallî in the limit.

! The risks must be independent ñ the results will not work if all the agentsí
risks are closely correlated.

! The payo§s must be tradeable amongst the individuals in the form of some
transferable commodity. Obviously there are some risks which people

confront where the payo§s cannot be thus transferred, and where losses

cannot be compensated for in money.

For any of these reasons a market may simply not exist; more on this and

related problems in chapter 11.

8.8 Summary

The basic approach to decision-making under uncertainty can be analysed as a

straightforward extension of consumer theory, by considering a class of utility

functions that are additively separable over the states of the world. Furthermore

the analysis of market equilibrium and of individual portfolio behaviour in the

face of risk follow on immediately from the core analysis of previous chapters

once we have appropriately modelled preferences and opportunities.

It is evident that at the core of the approach is the concept of expected

utility ñ see the two Theorems 8.1 and 8.4. But why do the job twice over?

Our Örst approach to the subject showed that the special structure of utility

function follows naturally from a coherent representation of preferences over

a space of ìcontingent goodsî without a speciÖc construct of probability; the

second approach shows what happens when one treats probability distributions

ñ lotteries ñ as the focus of the choice problem. The Örst approach provides an

essential link to the standard analysis of decision making treated in chapters 2

to 7; we shall Önd this second approach is essential in providing the basis for

the analysis of games in chapter 10.
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8.9 Reading notes

On the foundations of expected-utility analysis in terms of choices over lotteries
refer to von Neumann and Morgenstern (1944) and Friedman and Savage (1948)
and for early, penetrating critiques see Allais (1953) and Ellsberg (1961). The
von Neumann-Morgenstern approach in some ways builds on the classic contri-
bution by Bernouilli (1954) originally published in 1738. A useful survey is to
be found in Machina (1987). The consumner-theoretic approach to uncertainty
is developed in Deaton and Muellbauer (1980).
The concept of risk aversion developed in Arrow (1970) and Pratt (1964).

On the discussion of conditions such as increasing risk aversion see Menezes
et al. (1980).

8.10 Exercises

8.1 Suppose you have to pay $2 for a ticket to enter a competition. The prize is
$19 and the probability that you win is 1

3 . You have an expected utility function

with u(x) = log x and your current wealth is $10.

1. What is the certainty equivalent of this competition?

2. What is the risk premium?

3. Should you enter the competition?

8.2 You are sending a package worth 10 000AC. You estimate that there is a 0.1
percent chance that the package will be lost or destroyed in transit. An insurance

company o§ers you insurance against this eventuality for a premium of 15AC. If
you are risk-neutral, should you buy insurance?

8.3 Consider the following deÖnition of risk aversion. Let P := f(x!; %!) :
! 2 (g be a random prospect, where x! is the payo§ in state ! and %! is the
(subjective) probability of state ! , and let Ex :=

P
!2# %!x!, the mean of the

prospect, and let P" := f('x! + [1 % ']Ex; %!) : ! 2 (g be a ìmixtureî of the
original prospect with the mean. DeÖne an individual as risk averse if he always

prefers P" to P for 0 < ' < 1.

1. Illustrate this concept on a diagram similar to Figure 8.6 and contrast it

with the concept of risk aversion mentioned on page 183.

2. Show that this deÖnition of risk aversion need not imply convex-to-the-

origin indi§erence curves. (Rothschild and Stiglitz 1970)

8.4 This is an example of the Allais paradox (Allais 1953). Suppose you are
asked to choose between two lotteries. In one case the choice is between P1 and
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P2;and in the other case the choice o§ered is between P3and P4, as speciÖed
below:

P1 : $1; 000; 000 with probability 1

P2 :

8
<

:

$5; 000; 000
$1; 000; 000

$0

with probability 0.1

with probability 0.89

with probability 0.01

P3 :

$
$5; 000; 000

$0
with probability 0.1

with probability 0.9

P4 :

$
$1; 000; 000

$0
with probability 0.11

with probability 0.89

It is often the case that people prefer P1 to P2 and then also prefer P3 to P4.
Show that these preferences violate the independence axiom.

8.5 This is an example to illustrate disappointment (Bell 1988, Machina 1989)
Suppose the payo§s are as follows

x00 weekend for two in your favourite holiday location

x0 book of photographs of the same location

x" Ösh-and-chip supper

Your preferences under certainty are x00 ! x0 ! x". Now consider the following
two prospects

P1 :

8
<

:

x00

x0

x"

with probability 0:99
with probability 0
with probability 0:01

P2 :

8
<

:

x00

x0

x"

with probability 0:99
with probability 0:01
with probability 0

Suppose a person expresses a preference for P1 over P2. Brieáy explain why this
might be the case in practice. Which axiom in section 8.3 is violated by such

preferences?

8.6 An example to illustrate regret. Let

P := f(x!; %!) : ! 2 *g

P 0 := f(x0!; %!) : ! 2 *g
be two prospects available to an individual. DeÖne the expected regret if the

person chooses P rather than P 0 as
X

!2%

%!max fx0! % x!; 0g (8.31)

Now consider the choices amongst prospects presented in Exercise 8.4. Show

that if a person is concerned to minimise expected regret as measured by (8.31),

then it is reasonable that the person select P1 when P2 is also available and then
also select P3 when P4 is available (Bell 1982, Loomes and Sugden 1982).
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8.7 An example of the Ellsberg paradox (Ellsberg 1961). There are two urns
marked Left and Right each of which contains 100 balls. You know that in Urn
L there exactly 49 white balls and the rest are black and that in Urn R there are
black and white balls, but in unknown proportions. Consider the following two
experiments:

1. One ball is to be drawn from each of L and R. The person must choose
between L and R before the draw is made. If the ball drawn from the chosen
urn is black there is a prize of $1000, otherwise nothing.

2. Again one ball is to be drawn from each of L and R; again the person must
choose between L and R before the draw. Now if the ball drawn from the
chosen urn is white there is a prize of $1000, otherwise nothing.
You observe a person choose Urn L in both experiments. Show that this
violates Axiom 8.3.

8.8 An individual faces a prospect with a monetary payo§ represented by a
random variable x that is distributed over the bounded interval of the real line
[a; a]. He has a utility function Ev(x) where

u(x) = a0 + a1x"
1

2
a2x

2

and a0; a1; a2 are all positive numbers.

1. Show that the individualís utility function can also be written as '(Ex; var(x)).
Sketch the indi§erence curves in a diagram with Ex and var(x) on the
axes, and discuss the e§ect on the indi§erence map altering (i) the para-
meter a1, (ii) the parameter a2.

2. For the model to make sense, what value must a have? [Hint: examine
the Örst derivative of u.]

3. Show that increases both absolute and relative risk aversion increase with
x .

8.9 A person lives for 1 or 2 periods. If he lives for both periods has a utility
function given by (5.13) where the parameter ( is the pure rate of time pref-
erence. The probability of survival to period 2 is ), and the personís utility in
period 2 if he does not survive is 0.

1. Show that if the personís preferences in the face of uncertainty are rep-
resented by the functional form in (8.1) then the personís utility can be
written as

u (x1) + (
0u (x2) : (8.32)

What is the value of the parameter (0?
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2. What is the appropriate form of the utility function if the person could live
for an indeÖnite number of periods, the rate of time preference is the same
for any adjacent pair of periods, and the probability of survival to the next
period given survival to the current period remains constant?

8.10 A person has an objective function Eu(y) where u is an increasing, strictly
concave, twice-di§erentiable function, and y is the monetary value of his Önal
wealth after tax. He has an initial stock of assets K which he may keep either
in the form of bonds, where they earn a return at a stochastic rate r, or in the
form of cash where they earn a return of zero. Assume that Er > 0 and that
Prfr < 0g > 0.

1. If he invests an amount ' in bonds (0 < ' < K) and is taxed at rate t
on his income, write down the expression for his disposable Önal wealth y,
assuming full loss o§set of the tax.

2. Find the Örst-order condition which determines his optimal bond portfolio
'!.

3. Examine the way in which a small increase in t will a§ect '!.

4. What would be the e§ect of basing the tax on the personís wealth rather
than income?

8.11 An individual taxpayer has an income y that he should report to the tax
authority. Tax is payable at a constant proportionate rate t. The taxpayer
reports x where 0 $ x $ y and is aware that the tax authority audits some
tax returns. Assume that the probability that the taxpayerís report is audited
is *, that when an audit is carried out the true taxable income becomes public
knowledge and that, if x < y, the taxpayer must pay both the underpaid tax and
a surcharge of s times the underpaid tax.

1. If the taxpayer chooses x < y, show that disposable income c in the two
possible states-of-the-world is given by

cnoaudit = y % tx;
caudit = [1% t% st] y + stx:

2. Assume that the individual chooses x so as to maximise the utility function

[1% *]u (cnoaudit) + *u (caudit) :

where u is increasing and strictly concave.

(a) Write down the FOC for an interior maximum.

(b) Show that if 1% * % *s > 0 then the individual will deÖnitely under-
report income.
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3. If the optimal income report x! satisÖes 0 < x! < y:

(a) Show that if the surcharge is raised then under-reported income will
decrease.

(b) If true income increases will under-reported income increase or de-
crease?

8.12 A risk-averse person has wealth y0 and faces a risk of loss L < y0 with
probability %. An insurance company o§ers cover of the loss at a premium
& > %L. It is possible to take out partial cover on a pro-rata basis, so that an
amount tL of the loss can be covered at cost t& where 0 < t < 1.

1. Explain why the person will not choose full insurance

2. Find the conditions that will determine t!, the optimal value of t.

3. Show how t will change as y0 increases if all other parameters remain
unchanged.

8.13 Consider a competitive, price-taking Örm that confronts one of the fol-
lowing two situations:

! ìuncertaintyî: price p is a random variable with expectation p.

! ìcertaintyî: price is Öxed at p.

It has a cost function C(q) where q is output and it seeks to maximise the
expected utility of proÖt.

1. Suppose that the Örm must choose the level of output before the particular
realisation of p is announced. Set up the Örmís optimisation problem and
derive the Örst- and second-order conditions for a maximum. Show that,
if the Örm is risk averse, then increasing marginal cost is not a necessary
condition for a maximum, and that it strictly prefers ìcertaintyî to ìun-
certaintyî. Show that if the Örm is risk neutral then the Örm is indi§erent
as between ìcertaintyî and ìuncertaintyî.

2. Now suppose that the Örm can select q after the realisation of p is an-
nounced, and that marginal cost is strictly increasing. Using the Örmís
competitive supply function write down proÖt as a function of p and show
that this proÖt function is convex. Hence show that a risk-neutral Örm
would strictly prefer ìuncertaintyî to ìcertaintyî.

8.14 Every year Alf sells apples from his orchard. Although the market price of
apples remains constant (and equal to 1), the output of Alf ís orchard is variable
yielding an amount R1; R2 in good and poor years respectively; the probability of
good and poor years is known to be 1"% and % respectively. A buyer, Bill o§ers
Alf a contract for his apple crop which stipulates a down payment (irrespective
of whether the year is good or poor) and a bonus if the year turns out to be good.
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1. Assuming Alf is risk averse, use a diagram similar to Figure 8.21 to sketch

the set of such contracts which he would be prepared to accept. Assuming

that Bill is also risk averse, sketch his indi§erence curves in the same

diagram.

2. Assuming that Bill knows the shape of Alf ís acceptance set, illustrate the

optimum contract on the diagram. Write down the Örst-order conditions

for this in terms of Alf ís and Billís utility functions.

8.15 In exercise 8.14, what would be the e§ect on the contract if (i) Bill were
risk neutral; (ii) Alf risk neutral?


