Duopoly

MICROECONOMICS
 Principles and Analysis
 Frank Cowell

Overview...
 Duopoly

How the basic elements of the firm and of game theory are used.

Price
competition

Quantity competition

Assessment

Basic ingredients

- Two firms:
- Issue of entry is not considered.
- But monopoly could be a special limiting case.
- Profit maximisation.
- Quantities or prices?
- There's nothing within the model to determine which "weapon" is used.
- It's determined a priori.
- Highlights artificiality of the approach.
- Simple market situation:
- There is a known demand curve.
- Single, homogeneous product.

Reaction

" We deal with "competition amongst the few".

- Each actor has to take into account what others do.
- A simple way to do this: the reaction function.
- Based on the idea of "best response".
- We can extend this idea...
- In the case where more than one possible reaction to a particular action.
- It is then known as a reaction correspondence.
- We will see how this works:
- Where reaction is in terms of prices.
- Where reaction is in terms of quantities.

Overview...
 Duopoly

Introduction to a simple
simultaneous move price-setting problem.

Competing by price

- There is a market for a single, homogeneous good.
- Firms announce prices.
- Each firm does not know the other's announcement when making its own.
- Total output is determined by demand.
- Determinate market demand curve
- Known to the firms.
- Division of output amongst the firms determined by market "rules."
- Let's take a specific model with a clear-cut solution...

Bertrand - basic set-up

- Two firms can potentially supply the market.
- Each firm: zero fixed cost, constant marginal cost c.
- If one firm alone supplied the market it would charge monopoly price $p_{\mathrm{M}}>c$.
- If both firms are present they announce prices.
- The outcome of these announcements:
- If $p^{1}<p^{2}$ firm 1 captures the whole market.
- If $p^{1}>p^{2}$ firm 2 captures the whole market.
- If $p^{1}=p^{2}$ the firms supply equal amounts to the market.
- What will be the equilibrium price?

Bertrand - best response?

- Consider firm 1's response to firm 2
- If firm 2 foolishly sets a price p^{2} above p_{M} then it sells zero output.
- Firm 1 can safely set monopoly price p_{M}.
- If firm 2 sets p^{2} above c but less than or equal to p_{M} then firm 1 can "undercut" and capture the market.
- Firm 1 sets $p^{1}=p^{2}-\delta$, where $\delta>0$.
- Firm 1's profit always increases if δ is made smaller...
- ...but to capture the market the discount δ must be positive!
- So strictly speaking there's no best response for firm 1.
- If firm 2 sets price equal to c then firm 1 cannot undercut
- Firm 1 also sets price equal to c.
- If firm 2 sets a price below c it would make a loss.
- Firm 1 would be crazy to match this price.
- If firm 1 sets $p^{1}=c$ at least it won't make a loss.
- Let's look at the diagram...

Bertrand model - equilibrium

Bertrand - assessment

" Using "natural tools" - prices.

- Yields a remarkable conclusion.
- Mimics the outcome of perfect competition
- Price = MC.
- But it is based on a special case.
- Neglects some important practical features
- Fixed costs.
- Product diversity
- Capacity constraints.
- Outcome of price-competition models usually very sensitive to these.

Overview...
 Duopoly

The link with monopoly and an introduction to two simple "competitive" paradigms.

```
Price
competition
```

Quantity \quad Collusion
competition

- The Cournot model
-Leader-Follower

Assessment

quantity models

- Now take output quantity as the firms' choice variable.
- Price is determined by the market once total quantity is known:
- An auctioneer?
- Three important possibilities:

1. Collusion:

- Competition is an illusion.
- Monopoly by another name.
- But a useful reference point for other cases

2. Simultaneous-move competing in quantities:

- Complementary approach to the Bertrand-price model.

3. Leader-follower (sequential) competing in quantities.

Collusion - basic set-up

- Two firms agree to maximise joint profits.
- This is what they can make by acting as though they were a single firm.
- Essentially a monopoly with two plants.
- They also agree on a rule for dividing the profits.
- Could be (but need not be) equal shares.
- In principle these two issues are separate.

The profit frontier

- To show what is possible for the firms...
- ...draw the profit frontier.
- Show the possible combination of profits for the two firms
- given demand conditions
- given cost function
- Start with the case where cash transfers between the firms are not possible

Frontier - non-transferable profits

Frontier - transferable profits

 (without transfers)
-Now suppose firms can make "side-payments"
-So profits can be
transferred between firms
-Profits if everything were produced by firm 1
-Profits if everything were produced by firm 2

- The profit frontier if transfers are possible
- Joint-profit maximisation with equal shares
- Cash transfers "convexify" the set of attainable profits.

Collusion - simple model

- Take the special case of the "linear" model where marginal costs are identical: $c^{1}=c^{2}=c$.
- Will both firms produce a positive output?
- If unlimited output is possible then only one firm needs to incur the fixed cost...
- ...in other words a true monopoly.
- But if there are capacity constraints then both firms may need to produce.
- Both firms incur fixed costs.
- We examine both cases - capacity constraints first.

Collusion: capacity constraints

- If both firms are active total profit is

$$
[a-b q] q-\left[C_{0}{ }^{1}+C_{0}{ }^{2}+c q\right]
$$

- Maximising this, we get the FOC:

$$
a-2 b q-c=0 .
$$

- Which gives equilibrium quantity and price:

$$
q=\frac{a-c}{2 b} ; \quad p=\frac{a+c}{2} .
$$

- So maximised profits are:

$$
\Pi_{\mathrm{M}}=\frac{[a-c]^{2}}{4 b}-\left[C_{0}^{1}+C_{0}^{2}\right] .
$$

- Now assume the firms are identical: $C_{0}{ }^{1}=C_{0}{ }^{2}=C_{0}$.
- Given equal division of profits each firm's payoff is

$$
\Pi_{\mathrm{J}}=\frac{[a-c]^{2}}{8 b}-C_{0} .
$$

Collusion: no capacity constraints

- With no capacity limits and constant marginal costs...
- ...there seems to be no reason for both firms to be active.
- Only need to incur one lot of fixed costs C_{0}.
- C_{0} is the smaller of the two firms' fixed costs.
- Previous analysis only needs slight tweaking.
- Modify formula for Π_{J} by replacing C_{0} with $1 / 2 C_{0}$.
- But is the division of the profits still implementable?

Overview...
 Simultaneous move "competition" in quantities

Duopoly

```
Price
competition
```

Quantity \quad Collusion
competition
-The Cournot model
-Leader-Follower

Assessment

Cournot - basic set-up

- Two firms.
- Assumed to be profit-maximisers
- Each is fully described by its cost function.
- Price of output determined by demand.
- Determinate market demand curve
- Known to both firms.
- Each chooses the quantity of output.
- Single homogeneous output.
- Neither firm knows the other's decision when making its own.
- Each firm makes an assumption about the other's decision
- Firm 1 assumes firm 2's output to be given number.
- Likewise for firm 2.
- How do we find an equilibrium?

Cournot - model setup

- Two firms labelled $f=1,2$
- Firm f produces output q^{f}.
- So total output is:
- $q=q^{1}+q^{2}$
- Market price is given by:
- $p=p(q)$
- Firm f has cost function $C(\cdot)$.
- So profit for firm f is:
- $p(q) q^{f}-C^{f}\left(q^{f}\right)$
- Each firm's profit depends on the other firm's output
- (because p depends on total q).

Cournot - firm's maximisation

- Firm 1's problem is to choose q^{1} so as to maximise

$$
\Pi^{1}\left(q^{1} ; q^{2}\right):=p\left(q^{1}+q^{2}\right) q^{1}-C^{1}\left(q^{1}\right)
$$

- Differentiate Π^{1} to find FOC:

$$
\partial \Pi^{1}\left(q^{1} ; q^{2}\right)
$$

$$
\frac{\partial q^{1}}{}=p_{q}\left(q^{1}+q^{2}\right) q^{1}+p\left(q^{1}+q^{2}\right)-C_{q}^{1}\left(q^{1}\right)
$$

- For an interior solution this is zero.
- Solving, we find q^{1} as a function of q^{2}.
- This gives us 1's reaction function, χ^{1} :
$q^{1}=\chi^{1}\left(q^{2}\right)$
- Let's look at it graphically...

Cournot - the reaction function

Cournot - solving the model

- $\chi^{1}(\cdot)$ encapsulates profit-maximisation by firm 1.
- Gives firm's reaction 1 to a fixed output level of the competitor firm:
- $q^{1}=\chi^{1}\left(q^{2}\right)$
- Of course firm 2's problem is solved in the same way.
- We get q^{2} as a function of q^{1} :
- $q^{2}=\chi^{2}\left(q^{1}\right)$
- Treat the above as a pair of simultaneous equations.
- Solution is a pair of numbers $\left(q_{C}{ }^{1}, q_{C}{ }^{2}\right)$.
- So we have $q_{C}{ }^{1}=\chi^{1}\left(\chi^{2}\left(q_{C}{ }^{1}\right)\right)$ for firm $1 \ldots$
- \ldots and $q_{\mathrm{C}}{ }^{2}=\chi^{2}\left(\chi^{1}\left(q_{\mathrm{C}}{ }^{2}\right)\right)$ for firm 2.
- This gives the Cournot-Nash equilibrium outputs.

Cournot-Nash equilibrium (1)

Cournot-Nash equilibrium (2)

The Cournot-Nash equilibrium

- Why "Cournot-Nash"?
- It is the general form of Cournot's (1838) solution.
- But it also is the Nash equilibrium of a simple quantity game:
- The players are the two firms.
- Moves are simultaneous.
- Strategies are actions - the choice of output levels.
- The functions give the best-response of each firm to the other's strategy (action).
- To see more, take a simplified example...

Cournot - a "linear" example

- Take the case where the inverse demand function is:

$$
p=\beta_{0}-\beta q
$$

- And the cost function for f is given by:

$$
C\left(q^{f}\right)=C_{0}^{f}+c^{f} q^{f}
$$

- So profits for firm f are:

$$
\left[\beta_{0}-\beta q\right] q^{f}-\left[C_{0}{ }^{f}+\sigma^{f} q^{f}\right]
$$

- Suppose firm 1's profits are Π.
- Then, rearranging, the iso-profit curve for firm 1 is:

$$
q^{2}=\frac{\beta_{0}-c^{1}}{\beta}-q^{1}-\frac{C_{0}^{1}+\Pi}{\beta q^{1}}
$$

Cournot - solving the linear example

- Firm 1's profits are given by
- $\Pi^{1}\left(q^{1} ; q^{2}\right)=\left[\beta_{0}-\beta q\right] q^{1}-\left[C_{0}{ }^{1}+c^{1} q^{1}\right]$
- So, choose q^{1} so as to maximise this.
- Differentiating we get:

$$
\frac{\partial \Pi^{1}\left(q^{1} ; q^{2}\right)}{\partial q^{1}}=-2 \beta q^{1}+\beta_{0}-\beta q^{2}-c^{1}
$$

- FOC for an interior solution $\left(q^{1}>0\right)$ sets this equal to zero.
- Doing this and rearranging, we get the reaction function:
- $q^{1}=\max \left\{\begin{array}{l}\frac{\beta_{0}-c^{1}}{2 \beta}\end{array}-1 / 2 q^{2}, 0\right\}$

The reaction function again

- Firm 1's Iso-profit curves
- Firm 1 maximises profit, given q^{2}.
-The reaction function

Finding Cournot-Nash equilibrium

- Assume output of both firm 1 and firm 2 is positive.
- Reaction functions of the firms, $\chi^{1}(\cdot), \chi^{2}(\cdot)$ are given by:

$$
q^{1}=\frac{a-c^{1}}{2 b}-1 / 2 q^{2} ; \quad q^{2}=\frac{a-c^{2}}{2 b}-1 / 2 q^{1} .
$$

- Substitute from χ^{2} into χ^{1} :

$$
q_{\mathrm{C}}^{1}=\frac{a-c^{1}}{2 b}-1 / 2\left[\begin{array}{ccc}
a-c^{2} & 1 \\
\frac{1}{2 b} & -1 / 2 q_{\mathrm{C}}
\end{array}\right] .
$$

- Solving this we get the Cournot-Nash output for firm 1:

$$
q_{\mathrm{C}}^{1}=\frac{a+c^{2}-2 c^{1}}{3 b}
$$

- By symmetry get the Cournot-Nash output for firm 2:

$$
q_{\mathrm{C}}^{2}=\frac{a+c^{1}-2 c^{2}}{3 b}
$$

Cournot - identical firms

- Take the case where the firms are identical.
- This is useful but very special.
- Use the previous formula for the Cournot-Nash outputs.

$$
q_{\mathrm{C}}^{1}=\frac{a+c^{2}-2 c^{1}}{3 b} ; q_{\mathrm{C}}^{2}=\frac{a+c^{1}-2 c^{2}}{3 b} .
$$

- Put $c^{1}=c^{2}=c$. Then we find $q_{\mathrm{C}}{ }^{1}=q_{\mathrm{C}}{ }^{2}=q_{\mathrm{C}}$ where

$$
q_{\mathrm{C}}=\frac{a-c}{3 b} .
$$

- From the demand curve the price in this case is $1 / 3[a+2 c]$
- Profits are

$$
\Pi_{C}=\frac{[a-c]^{2}}{9 b}-C_{0} .
$$

Symmetric Cournot

Cournot - assessment

- Cournot-Nash outcome straightforward.
- Usually have continuous reaction functions.
- Apparently "suboptimal" from the selfish point of view of the firms.
- Could get higher profits for all firms by collusion.
- Unsatisfactory aspect is that price emerges as a "by-product."
- Contrast with Bertrand model.
- Absence of time in the model may be unsatisfactory.

Overview...
 Duopoly

Sequential "competition" in quantities

```
Price
competition
```

Quantity \quad Collusion
competition

- The Cournot model
-Leader-Follower

Assessment

Leader-Follower - basic set-up

- Two firms choose the quantity of output.
- Single homogeneous output.
- Both firms know the market demand curve.
- But firm 1 is able to choose first.
- It announces an output level.
- Firm 2 then moves, knowing the announced output of firm 1.
- Firm 1 knows the reaction function of firm 2.
- So it can use firm 2's reaction as a "menu" for choosing its own output...

Leader-follower - model

- Firm 1 (the leader) knows firm 2's reaction.
- If firm 1 produces q^{1} then firm 2 produces $\chi^{2}\left(q^{1}\right)$.
- Firm 1 uses χ^{2} as a feasibility constraint for its own action.
- Building in this constraint, firm 1's profits are given by

$$
p\left(q^{1}+\chi^{2}\left(q^{1}\right)\right) q^{1}-C^{1}\left(q^{1}\right)
$$

- In the "linear" case firm 2's reaction function is

$$
q^{2}=\frac{a-c^{2}}{2 b}-1 / 2 q^{1} .
$$

- So firm 1's profits are

$$
\left[a-b\left[q^{1}+\left[a-c^{2}\right] / 2 b-1 / 2 q^{1}\right]\right] q^{1}-\left[C_{0}{ }^{1}+c^{1} q^{1}\right]
$$

Solving the leader-follower model

- Simplifying the expression for firm 1's profits we have:

$$
1 / 2\left[a+c^{2}-b q^{1}\right] q^{1}-\left[C_{0}{ }^{1}+c^{1} q^{1}\right]
$$

- The FOC for maximising this is:

$$
1 / 2\left[a+c^{2}\right]-b q^{1}-c^{1}=0
$$

- Solving for q^{1} we get:

$$
q_{\mathrm{S}}^{1}=\frac{a+c^{2}-2 c^{1}}{2 b} .
$$

- Using 2's reaction function to find q^{2} we get:

$$
q_{\mathrm{S}}^{2}=\frac{a+2 c^{1}-3 c^{2}}{4 b} .
$$

Leader-follower - identical firms
 Of course they still differ in
 terms of their strategic
 position - firm 1 moves first.

- Again assume that the firus have the same cost function.
- Take the previous expressions for the Leader-Follower outputs:

$$
q_{\mathrm{S}}^{1}=\frac{a+c^{2}-2 c^{1}}{2 b} ; \quad q_{\mathrm{S}}=\frac{a+2 c^{1}-3 c^{2}}{4 b}
$$

- Put $c^{1}=c^{2}=c$; then we get the following outputs:

$$
q_{\mathrm{S}}^{1}=\frac{a-c}{2 b} ; \quad q_{\mathrm{S}}^{2}=\frac{a-c}{4 b}
$$

- Using the demand curve, market price is $1 / 4[a+3 c]$.
- So profits are:

$$
\Pi_{\mathrm{S}}^{1}=\frac{[a-c]^{2}}{\Omega h}-C_{0} ; \quad \Pi_{\mathrm{S}}^{2}=\frac{[a-c]^{2}}{16 h}-C_{0} .
$$

Leader-Follower

- Leader has higher output (and follower less) than in Cournot-Nash
- "S" stands for von Stackelberg

Overview...
 Duopoly

How the simple price- and quantitymodels compare.

Price
competition

Quantity competition

Assessment

Comparing the models

- The price-competition model may seem more "natural"
- But the outcome ($p=\mathrm{MC}$) is surely at variance with everyday experience.
- To evaluate the quantity-based models we need to:
- Compare the quantity outcomes of the three versions
- Compare the profits attained in each case.

Output under different regimes

- Reaction curves for the two firms.
- Joint-profit maximisation with equal outputs
- Cournot-Nash equilibrium

- Leader-follower

(Stackelberg) equilibrium

Profits under different regimes

- Attainable set with transferable profits
- Joint-profit maximisation with equal shares
- Profits at Cournot-Nash equilibrium
-Profits in leader-follower (Stackelberg) equilibrium
- Cournot and leader-follower models yield profit levels inside the frontier.

What next?

- Introduce the possibility of entry.
- General models of oligopoly.
- Dynamic versions of Cournot competition

