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How the basic 
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firm and of game 

theory are used. 



Basic ingredients

� Two firms:
� Issue of entry is not considered.

� But monopoly could be a special limiting case.

� Profit maximisation.

� Quantities or prices?
� There’s nothing within the model to determine which 

“weapon” is used.

� It’s determined a priori.

� Highlights artificiality of the approach.

� Simple market situation:
� There is a known demand curve.

� Single, homogeneous product.



Reaction

� We deal with “competition amongst the few”.

� Each actor has to take into account what others do.

� A simple way to do this: the reaction function.

� Based on the idea of “best response”.
� We can extend this idea… 

� In the case where more than one possible reaction to a 

particular action.

� It is then known as a reaction correspondence.

� We will see how this works:
� Where reaction is in terms of prices.

� Where reaction is in terms of quantities.
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Competing by price

� There is a market for a single, homogeneous good.

� Firms announce prices.

� Each firm does not know the other’s announcement 

when making its own.

� Total output is determined by demand.

�Determinate market demand curve

�Known to the firms.

� Division of output amongst the firms determined by 

market “rules.”

� Let’s take a specific model with a clear-cut 

solution…



Bertrand – basic set-up

� Two firms can potentially supply the market.

� Each firm: zero fixed cost, constant marginal cost c.

� If one firm alone supplied the market it would 

charge monopoly price p
M

> c.

� If both firms are present they announce prices.

� The outcome of these announcements:
� If p1 < p2 firm 1 captures the whole market.

� If p1 > p2 firm 2 captures the whole market.

� If p1 = p2 the firms supply equal amounts to the market.

� What will be the equilibrium price?



Bertrand – best response?

� Consider firm 1’s response to firm 2
� If firm 2 foolishly sets a price p2 above p

M
then it sells zero output.

� Firm 1 can safely set monopoly price pM .

� If firm 2 sets p2 above c but less than or equal to p
M

then firm 1 can 
“undercut” and capture the market.
� Firm 1 sets p1 = p2 −δ, where δ >0.

� Firm 1’s profit always increases if δ is made smaller…

� …but to capture the market the discount δ must be positive!

� So strictly speaking there’s no best response for firm 1.

� If firm 2 sets price equal to c then firm 1 cannot undercut
� Firm 1 also sets price equal to c .

� If firm 2 sets a price below c it would make a loss.
� Firm 1 would be crazy to match this price.

� If firm 1 sets p1 = c at least it won’t make a loss.

� Let’s look at the diagram…



Bertrand model – equilibrium

p2

c

c

p1

pM

pM

�Firm 1’s reaction 

function

�Monopoly price level

�Marginal cost for each 

firm

�Firm 2’s reaction 

function

�Bertrand equilibrium

� B



Bertrand  − assessment  

� Using “natural tools” – prices. 

� Yields a remarkable conclusion.

� Mimics the outcome of perfect competition
� Price = MC.

� But it is based on a special case.

� Neglects some important practical features
� Fixed costs.

� Product diversity

� Capacity constraints.

� Outcome of price-competition models usually 
very sensitive to these.
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quantity models

� Now take output quantity as the firms’ choice variable.

� Price is determined by the market once total quantity is 

known:
� An auctioneer?

� Three important possibilities:

1. Collusion:
� Competition is an illusion.
� Monopoly by another name.
� But a useful reference point for other cases

2. Simultaneous-move competing in quantities:
� Complementary approach to the Bertrand-price model.

3. Leader-follower  (sequential) competing in quantities.



Collusion – basic set-up

� Two firms agree to maximise joint profits. 

� This is what they can make by acting as 

though they were a single firm.

� Essentially a monopoly with two plants.

� They also agree on a rule for dividing the 

profits.

� Could be (but need not be) equal shares.

� In principle these two issues are separate.



The profit frontier

� To show what is possible for the firms…

� …draw the profit frontier.

� Show the possible combination of profits 

for the two firms
� given demand conditions

� given cost function

� Start with the case where cash transfers 

between the firms are not possible



Frontier – non-transferable profits 

Π1

Π2

�Suppose profits can’t be 

transferred between firms

�Constant returns to scale

�Decreasing returns to 

scale in each firm (1): MC 

always rising

�Increasing returns to scale 

in each firm (fixed cost and 

constant marginal cost)

�Take case of identical 

firms

�Decreasing returns to 

scale in each firm (2): 

capacity constraints



Frontier – transferable profits 

Π1

Π2

�Now suppose firms can 

make “side-payments”

�Increasing returns to scale 

(without transfers)

�So profits can be 

transferred between firms

�Profits if  everything were 

produced by firm 1

Π
M

�Profits if  everything were 

produced by firm 2

•

•Π
M

�The profit frontier if 

transfers  are possible

�Joint-profit maximisation 

with equal shares

Π
J

Π
J

� Cash transfers 

“convexify” the set 

of attainable profits.



Collusion – simple model

� Take the special case of the “linear” model  

where marginal costs are identical: c1 = c2 = c.

� Will both firms produce a positive output?
� If unlimited output is possible then only one firm 

needs to incur the fixed cost… 

� …in other words a true monopoly.

� But if there are capacity constraints then both 

firms may need to produce.

� Both firms incur fixed costs.

� We examine both cases – capacity constraints 

first.



� If both firms are active total profit is
[a – bq] q  – [C

0
1 + C

0
2 + cq]

� Maximising this, we get the FOC:
a – 2bq – c = 0.

� Which gives equilibrium quantity and price: 
a – c                 a + c

q =  –––– ;       p =  –––– .2b                      2

� So maximised profits are:
[a – c]2

Π
M

=  ––––– – [C
0
1 + C

0
2 ] .4b        

� Now assume the firms are identical: C0
1 = C0

2 = C0.

� Given equal division of profits each firm’s payoff is
[a – c]2

Π
J

=  ––––– – C
0

.8b        

Collusion: capacity constraints



Collusion: no capacity constraints

� With no capacity limits and constant marginal 

costs…

� …there seems to be no reason for both firms to 

be active.

� Only need to incur one lot of fixed costs C
0
.

� C0 is the smaller of the two firms’ fixed costs.

� Previous analysis only needs slight tweaking.

� Modify formula for Π
J

by replacing C
0

with ½C
0
.

� But is the division of the profits still 

implementable?
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Cournot – basic set-up

� Two firms.
� Assumed to be profit-maximisers
� Each is fully described by its cost function.

� Price of output determined by demand.
� Determinate market demand curve
� Known to both firms.

� Each chooses the quantity of output.
� Single homogeneous output.
� Neither firm knows the other’s decision when making its own.

� Each firm makes an assumption about the other’s decision
� Firm 1 assumes firm 2’s output to be given  number.
� Likewise for firm 2. 

� How do we find an equilibrium?



Cournot – model setup

� Two firms labelled f = 1,2

� Firm f produces output qf.

� So total output is: 
� q = q1 + q2

� Market price is given by:
� p = p (q)

� Firm f has cost function Cf(·).

� So profit for firm f is:

� p(q) qf  – Cf(qf )

� Each firm’s profit depends on the other firm’s 
output
� (because p depends on total q).



Cournot – firm’s maximisation

� Firm 1’s problem is to choose q1 so as to maximise

Π1(q1; q2) := p (q1 + q2) q1  – C1 (q1)

� Differentiate Π1 to find FOC:

∂Π1(q1; q2) 
————— = pq(q

1 + q2) q1   + p(q1 + q2) – Cq
1(q1)

∂ q1

� For an interior solution this is zero.

� Solving, we find q1 as a function of q2 . 

� This gives us 1’s reaction function, χ1 :

q1 = χ1 (q2)

� Let’s look at it graphically…



Cournot – the reaction function

q1

q2

χ1(·)

•

•
Π1(q1; q2) = const

Π1(q1; q2) = const

Π1(q1; q2) = const

q
0

0

Firm 1’s choice given that 2 

chooses output q
0

•

�Firm 1’s Iso-profit curves

�Assuming 2’s output constant at q0 /

�/firm 1 maximises profit

�The reaction function

�If 2’s output were constant at a higher level

� 2’s output at a yet higher level



� χ1(·) encapsulates profit-maximisation by firm 1.

� Gives firm’s reaction 1 to a fixed output level of the 

competitor firm:

� q1 = χ1 (q2) 

� Of course firm 2’s problem is solved in the same way.

� We get q2 as a function of q1 :

� q2 = χ2 (q1) 

� Treat the above as a pair of simultaneous equations.

� Solution is a pair of numbers (qC
1 , qC

2). 
� So we have q

C
1 = χ1(χ2(q

C
1)) for firm 1…

� … and q
C

2 = χ2(χ1(q
C

2)) for firm 2.

� This gives the Cournot-Nash equilibrium outputs.

Cournot – solving the model



Cournot-Nash equilibrium (1)

q1

q2

χ2(·)

�Firm 2’s Iso-profit curves

�If 1’s output is q0 /

�/firm 2 maximises profit

�Firm 2’s reaction function

•

•

•

�Repeat at higher levels of  1’s output 

Π2(q2; q1) = const
Π1(q2; q1) = const

Π2(q2; q1) = const

q
0

0

Firm 2’s choice given that 1 

chooses output q
0

χ1(·)
�Combine with firm ’s reaction function

�“Consistent conjectures”

� C



q1

q2

χ2(·)

χ1(·)

�

�

0

(q
C
, q

C
)1       2

(q
J
, q

J
)1      2

Cournot-Nash equilibrium (2)

�Firm 2’s Iso-profit curves

�Firm 2’s reaction function

�Cournot-Nash equilibrium

�Firm 1’s Iso-profit curves

�Firm 1’s reaction function

�Outputs with higher profits for both firms

�Joint profit-maximising solution



The Cournot-Nash equilibrium
� Why “Cournot-Nash” ?

� It is the general form of Cournot’s (1838) 

solution.

� But it also is the Nash equilibrium of a simple 

quantity game:
� The players are the two firms.

� Moves are simultaneous.

� Strategies are actions – the choice of output levels.

� The functions give the best-response of each firm to 

the other’s strategy (action).

� To see more, take a simplified example…



� Take the case where the inverse demand function is:

p = β
0

– βq

� And the cost function for f is given by:

Cf(qf ) = C0
f + cf qf 

� So profits for firm f are:

[β
0

– βq ] qf  – [C0
f + cf qf ]

� Suppose firm 1’s profits are Π.

� Then, rearranging, the iso-profit curve for firm 1 is:

β
0

– c1                        C0
1 + Π

q2 =  ——— – q1 – ————
β                        β q1

Cournot – a “linear” example



� Firm 1’s profits are given by 

� Π1(q1; q2) = [β
0

– βq] q1 – [C
0
1 + c1q1] 

� So, choose q1 so as to maximise this. 

� Differentiating we get:

∂Π1(q1; q2) 
� ————— = – 2βq1   + β

0
– βq2 – c1

∂ q1

� FOC for an interior solution (q1 > 0) sets this equal to zero. 

� Doing this and rearranging, we get the reaction function:

β
0

– c1

� q1 = max     —— – ½ q2 , 0
2β

{             }

Cournot – solving the linear example



The reaction function again

q1

q2

χ1(·)

�Firm 1’s Iso-profit curves

�Firm 1 maximises 

profit, given q2 .

�The reaction function

•

•

•

Π1(q1; q2) = const



Finding Cournot-Nash equilibrium
� Assume output of both firm 1 and firm 2 is positive.

� Reaction functions of the firms, χ1(·), χ2(·) are given by:
a – c1 a – c2

q1 =  –––– – ½q2 ;       q2 =  –––– – ½q1 .2b                                    2b

� Substitute from χ2 into χ1:

1
a – c1 ┌ a – c2      

1
┐

q
C

=  –––– – ½ │  –––– – ½q
C 

│ .2b └ 2b ┘

� Solving this we get the Cournot-Nash output for firm 1:

1
a + c2 – 2c1 

q
C

=  –––––––––– .3b

� By symmetry get the Cournot-Nash output for firm 2:

2
a + c1 – 2c2 

q
C

=  –––––––––– .3b



� Take the case where the firms are identical.

� This is useful but very special.

� Use the previous formula for the Cournot-Nash outputs.

1
a + c2 – 2c1 

2
a + c1 – 2c2 

q
C

=  –––––––––– ; q
C

=  –––––––––– .3b 3b

� Put c1 = c2 = c. Then we find qC
1 = qC

2 = qC where 
a – c

q
C

=  –––––– .  3b

� From the demand curve the price in this case is ⅓[a+2c]

� Profits are
[a – c]2

Π
C

=  –––––– – C
0

.  9b

Cournot – identical firms

ReminderReminder



� C

Symmetric Cournot

q1

q2

q
C

q
C

χ2(·)

χ1(·)

�A case with identical firms

�Firm 1’s reaction to firm 2

�The Cournot-Nash 

equilibrium

�Firm 2’s reaction to firm 1



Cournot  − assessment  

� Cournot-Nash outcome straightforward.
� Usually have continuous reaction functions.

� Apparently “suboptimal” from the selfish point of 

view of the firms.
� Could get higher profits for all firms by collusion.

� Unsatisfactory aspect is that price emerges as a 

“by-product.”
� Contrast with Bertrand model.

� Absence of time in the model may be 

unsatisfactory.
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Leader-Follower – basic set-up

� Two firms choose the quantity of output.
� Single homogeneous output.

� Both firms know the market demand curve.

� But firm 1 is able to choose first.
� It announces an output level.

� Firm 2 then moves, knowing the announced output 

of firm 1.

� Firm 1 knows the reaction function of firm 2.

� So it can use firm 2’s reaction as a “menu” for 

choosing its own output…



� Firm 1 (the leader) knows firm 2’s reaction.

� If firm 1 produces q1 then firm 2 produces χ2(q1).

� Firm 1 uses χ2 as a feasibility constraint for its own action.

� Building in this constraint, firm 1’s profits are given by 

p(q1 + χ2(q1)) q1 – C1 (q1)

� In the “linear” case firm 2’s reaction function is
a – c2

q2 =  –––– – ½q1 .2b  

� So firm 1’s profits are

[a – b [q1 + [a – c2]/2b – ½q1]]q1 – [C
0
1 + c1q1]

Leader-follower – model 

ReminderReminder



Solving the leader-follower model

� Simplifying the expression for firm 1’s profits we have: 

½ [a + c2 – bq1] q1 – [C
0
1 + c1q1]

� The FOC for maximising this is:

½ [a + c2] – bq1 – c1 = 0

� Solving for q1 we get:

1
a + c2 – 2c1 

q
S

=   –––––––––– .2b

� Using 2’s reaction function to find q2 we get:

2
a + 2c1 – 3c2 

q
S

=   –––––––––– .4b



Leader-follower – identical firms 

� Again assume that the firms have the same cost function.

� Take the previous expressions for the Leader-Follower 

outputs:

1
a + c2 – 2c1 

2
a + 2c1 – 3c2 

q
S

=   –––––––––– ;     q
S

=   –––––––––– .2b 4b

� Put c1 = c2 = c; then we get the following outputs:

1
a – c

2
a – c

q
S

=  ––––– ;     q
S

=   ––––– .2b 4b

� Using the demand curve, market price is ¼ [a + 3c].

� So profits are:

1
[a – c]2

2
[a – c]2  

Π
S

=    ––––– – C
0

;     Π
S

=   ––––– – C
0

.8b 16b

ReminderReminder

Of course they still differ in 

terms of their strategic 

position – firm 1 moves first.



q
S

1

� C

Leader-Follower

q1

q2

q
S

2
� S

�Firm 1’s Iso-profit curves

�Firm 2’s reaction to firm 1

�Firm 1 takes this as an 

opportunity set/

�/and maximises profit 

here

�Firm 2 follows suit

� Leader has higher 

output (and follower 

less) than in 

Cournot-Nash

� “S” stands for 

von Stackelberg

χ2(·)
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Comparing the models

� The price-competition model may seem more 

“natural”

� But the outcome (p = MC) is surely at variance 

with everyday experience.

� To evaluate the quantity-based models we need to:
� Compare the quantity outcomes of the three versions

� Compare the profits attained in each case.



J

qM

� C

� S

Output under different regimes

qM

q
C

q
J

q
C

q
J

q1

q2

�Joint-profit maximisation 

with equal outputs

�Reaction curves for the 

two firms. 

�Cournot-Nash equilibrium

�Leader-follower 

(Stackelberg) equilibrium



Profits under different regimes

Π1

Π2

Π
M

•

•
Π

M

�Joint-profit maximisation 

with equal shares

Π
J

Π
J

�Attainable set with 

transferable profits 

• J
• .

C

�Profits at Cournot-Nash 

equilibrium

�Profits in leader-follower 

(Stackelberg) equilibrium

• S

� Cournot and 

leader-follower 

models yield profit 

levels inside the 

frontier. 



What next?

� Introduce the possibility of entry.

� General models of oligopoly.

� Dynamic versions of Cournot competition


