Prerequisites

Almost essential Firm: Optimisation

Useful, but optional Firm: Demand and Supply

The Multi-Output Firm

MICROECONOMICS

Principles and Analysis Frank Cowell

October 2006

Introduction

- This presentation focuses on analysis of firm producing more than one good
 - modelling issues
 - production function
 - profit maximisation
- For the single-output firm, some things are obvious:
 - the direction of production
 - returns to scale
 - marginal products
- But what of multi-product processes?
- Some rethinking required...?
 - nature of inputs and outputs?
 - tradeoffs between outputs?
 - counterpart to cost function?

Overview...

The Multi-Output Firm

A fundamental concept

Net outputs

Production possibilities

Profit maximisation

Multi-product firm: issues

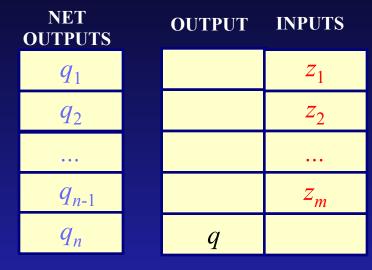
- "Direction" of production
 - Need a more general notation
- Ambiguity of some commodities
 - Is paper an input or an output?
- Aggregation over processes
 - How do we add firm 1's inputs and firm 2's outputs?

Net output

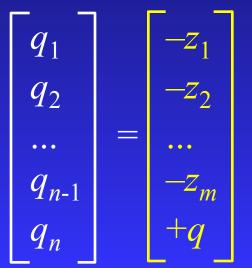
- Net output, written as q_i ,
 - if **positive** denotes the amount of good *i* produced as output
 - if **negative** denotes the amount of good *i* used up as output
- Key concept
 - treat outputs and inputs symmetrically
 - offers a representation that is consistent
- Provides consistency
 - in aggregation
 - in "direction" of production

We just need some reinterpretation

Approaches to outputs and inputs



A standard "accounting" approach
An approach using "net outputs"
How the two are related
A simple sign convention



Outputs:	+	net additions to the stock of a good
Inputs:	_	reductions in the stock of a good

Aggregation

- Consider an industry with two firms
 - Let q_i^f be net output for firm f of good i, f = 1,2
 - Let q_i be net output for whole industry of good i
- How is total related to quantities for individual firms?
 - Just add up
 - $\bullet \quad q_i = q_i^{\ 1} + q_i^{\ 2}$
- Example 1: both firms produce *i* as output
 - $q_i^1 = 100, q_i^2 = 100$
 - $q_i = 200$
- Example 2: both firms use *i* as input
 - $q_i^1 = -100, q_i^2 = -100$
 - $q_i = -200$
- Example 3: firm 1 produces *i* that is used by firm 2 as input
 - $q_i^1 = 100, q_i^2 = -100$
 - $q_i = 0$

Net output: summary

- Sign convention is common sense
- If *i* is an output...
 - addition to overall supply of *i*
 - so sign is positive
- If *i* is an inputs
 - net reduction in overall supply of *i*
 - so sign is negative
- If *i* is a pure intermediate good
 - no change in overall supply of *i*
 - so assign it a zero in aggregate

Overview...

The Multi-Output Firm

A production function with many outputs, many inputs... Net outputs

Production possibilities

Profit maximisation

Rewriting the production function...

- Reconsider single-output firm example given earlier
 - goods 1,...,*m* are inputs
 - good m+1 is output
 - n=m+1
- Conventional way of writing feasibility condition:
 - $q \leq \phi(z_1, z_2, ..., z_m)$
 - where ϕ is the production function
- Express this in net-output notation and rearrange:
 - $q_n \leq \phi(-q_1, -q_2, ..., -q_{n-1})$
 - $q_n \phi(-q_1, -q_2, ..., -q_{n-1}) \leq 0$
- Rewrite this relationship as
 - $\Phi(q_1, q_2, ..., q_{n-1}, q_n) \le 0$
 - where Φ is the implicit production function
- Properties of Φ are implied by those of ϕ ...

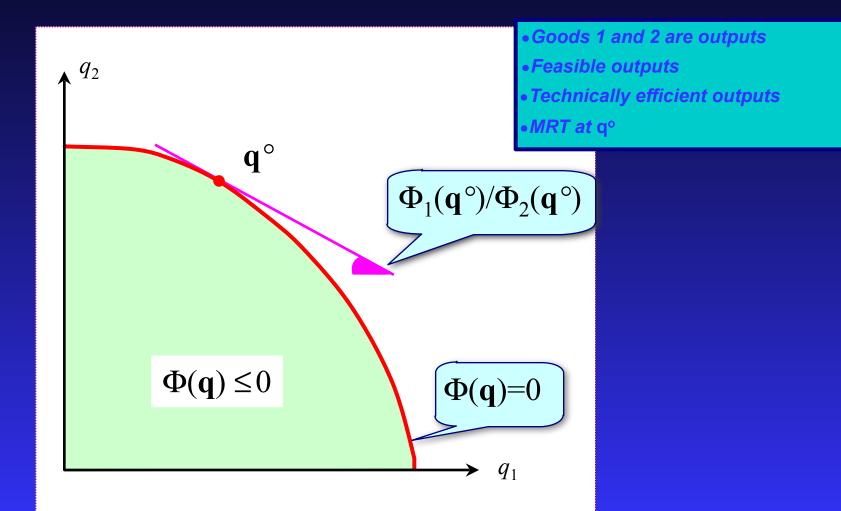
The production function Φ

- Recall equivalence for single output firm:
 - $q_n \phi(-q_1, -q_2, \dots, -q_{n-1}) \le 0$
 - $\Phi(q_1, q_2, ..., q_{n-1}, q_n) \le 0$
- So, for this case:
 - Φ is increasing in q_1, q_2, \dots, q_n
 - if φ is homogeneous of degree 1, Φ is homogeneous of degree 0
 - if ϕ is differentiable so is Φ
 - for any i, j = 1, 2, ..., n-1 MRTS_{*ij*} = $\Phi_j(\mathbf{q})/\Phi_i(\mathbf{q})$
- It makes sense to generalise these...

The production function Φ (more)

- For a vector **q** of net outputs
 - **q** is feasible if $\Phi(\mathbf{q}) \leq 0$
 - **q** is technically efficient if $\Phi(\mathbf{q}) = 0$
 - **q** is infeasible if $\Phi(\mathbf{q}) > 0$
- For all feasible **q**:
 - $\Phi(\mathbf{q})$ is increasing in q_1, q_2, \dots, q_n
 - if there is CRTS then Φ is homogeneous of degree 0
 - if ϕ is differentiable so is Φ
 - for any two inputs *i*, *j*, MRTS_{*ij*} = $\Phi_i(\mathbf{q})/\Phi_i(\mathbf{q})$
 - for any two outputs *i*, *j*, the marginal rate of transformation of *i* into *j* is $MRT_{ij} = \Phi_j(\mathbf{q})/\Phi_i(\mathbf{q})$
- Illustrate the last concept using the *transformation curve*...

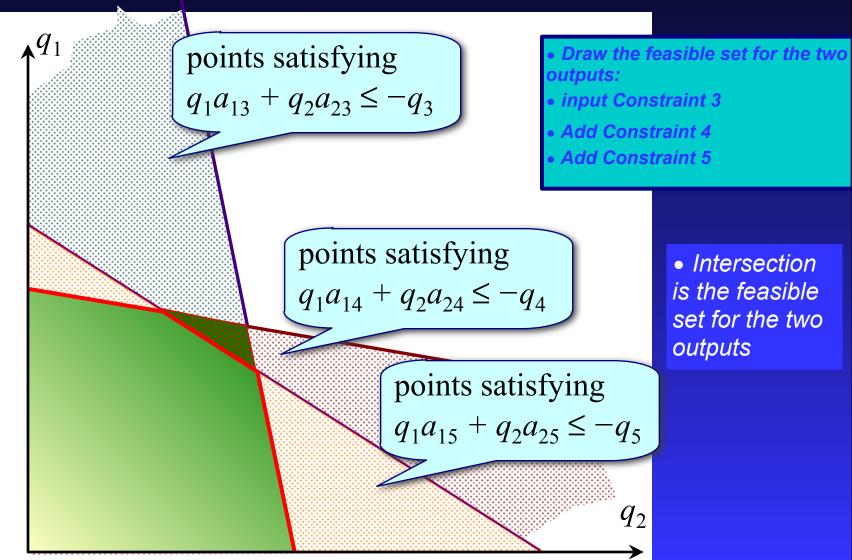
Firm's transformation curve



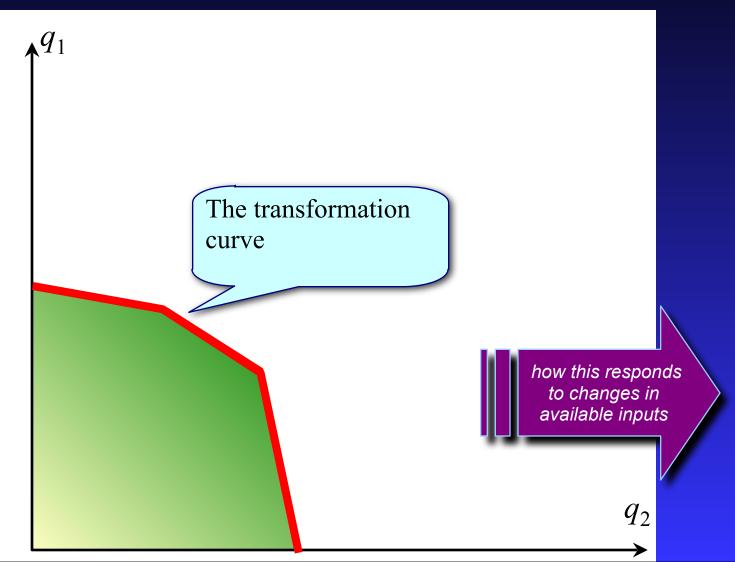
An example with five goods

- Goods 1 and 2 are outputs
- Goods 3, 4, 5 are inputs
- A linear technology
 - fixed proportions of each input needed for the production of each output:
 - $q_1 a_{1i} + q_2 a_{2i} \leq -q_i$
 - where a_{ji} is a constant i = 3, 4, 5, j = 1, 2
 - given the sign convention $-q_i > 0$
- Take the case where inputs are fixed at some arbitrary values...

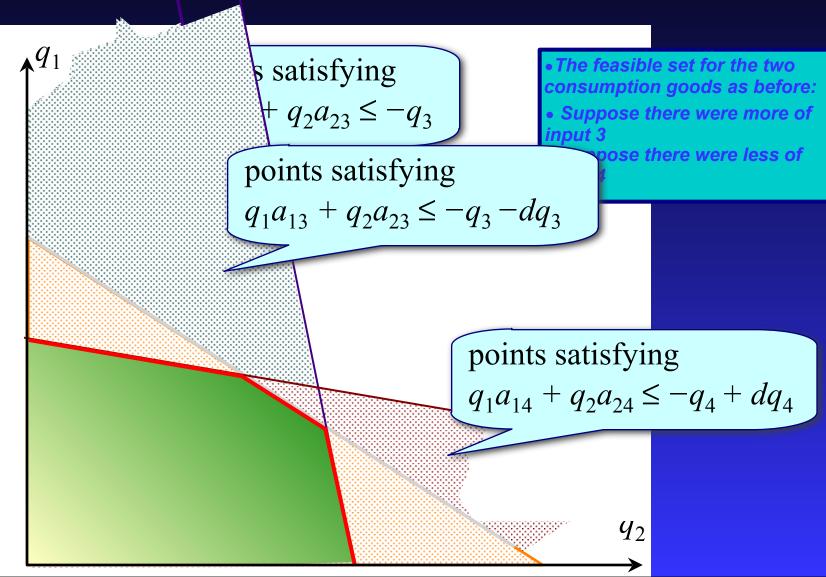
The three input constraints



The resulting feasible set



Changing quantities of inputs



Overview...

The Multi-Output Firm

Integrated approach to optimisation Net outputs

Production possibilities

Profit maximisation

Profits

- The basic concept is (of course) the same
 - Revenue Costs
- But we use the concept of net output
 - this simplifies the expression
 - exploits symmetry of inputs and outputs
- Consider an "accounting" presentation...

Accounting with net outputs

• Suppose goods 1,...,*m* are inputs and goods *m*+1 to *n* are outputs

• Cost of inputs (goods 1,...,m)

Revenue from outputs (goods m+1,...,n)

 Subtract cost from revenue to get profits

n

 $\sum_{i=m+1} p_i q_i$

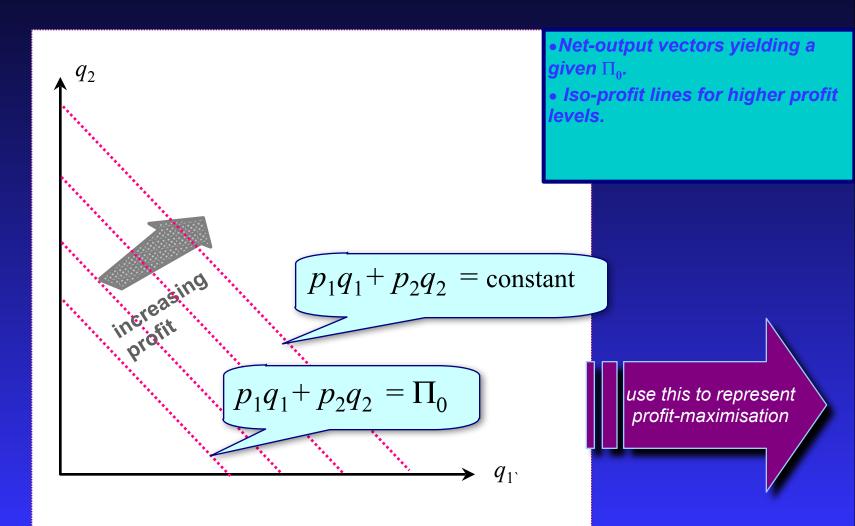
– Costs

Revenue

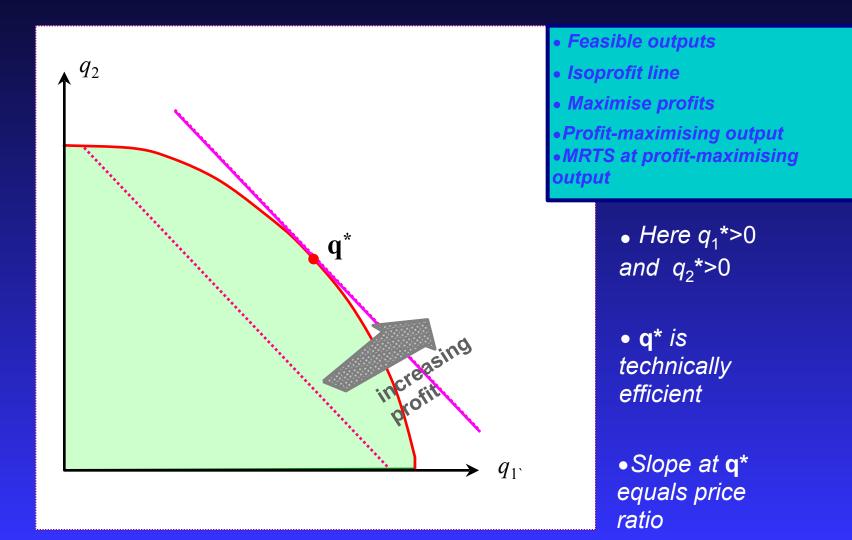
$$\sum_{i=1}^{n} p_i q_i$$

= **Profits**

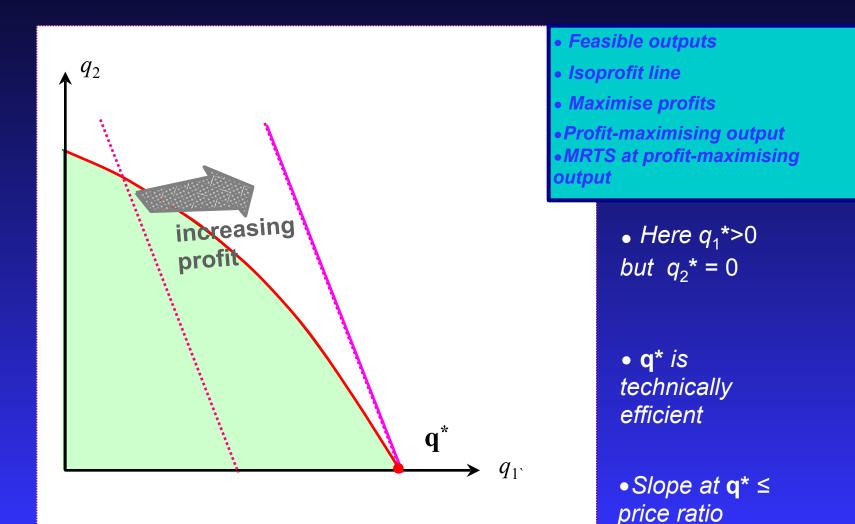
Iso-profit lines...



Profit maximisation: multi-product firm (1)



Profit maximisation: multi-product firm (2)



Maximising profits

• Problem is to choose **q** so as to maximise

$$\sum p_i q_i$$
 subject to $\Phi(\mathbf{q}) \leq 0$

n

Lagrangean is

$$\sum p_i q_i - \sum_{i=1}^n \lambda \Phi(\mathbf{q})$$

• FOC for an interior maximum is

•
$$p_i - \lambda \Phi_i(\mathbf{q}) = 0$$

Maximised profits

- Introduce the *profit function*
 - the solution function for the profit maximisation problem

$$\Pi(\mathbf{p}) = \max_{\{\Phi(\mathbf{q}) \le 0\}} \sum_{i=1}^{n} p_i q_i = \sum_{i=1}^{n} p_i q_i^{*}$$

- Works like other solution functions:
 - non-decreasing
 - homogeneous of degree 1
 - continuous
 - convex
- Take derivative with respect to p_i :
 - $\Pi_i(\mathbf{p}) = q_i^*$
 - write q_i^* as net supply function
 - $q_i^* = q_i(\mathbf{p})$

Summary

- Three key concepts
- Net output
 - simplifies analysis
 - key to modelling multi-output firm
 - easy to rewrite production function in terms of net outputs
- Transformation curve
 - summarises tradeoffs between outputs
- Profit function
 - counterpart of cost function