The Firm: Demand and Supply

MICROECONOMICS
 Principles and Analysis
 Frank Cowell

Moving on from the optimum...

- We derive the firm's reactions to changes in its environment.
- These are the response functions.
- We will examine three types of them
- Responses to different types of market events.
- In effect we treat the firm as a Black Box.

The firm as a "black box"

- Behaviour can be predicted by necessary and sufficient conditions for optimum.
- The FOC can be solved to yield behavioural response functions.
- Their properties derive from the solution function.
- We need the solution function's properties...
- ...again and again.

Overview...

Firm: Comparative Statics

Conditional
Input Demand
Response function for stage 1 optimisation

Output
Supply

Ordinary Input Demand

Short-run problem

The first response function

- Review the cost-minimisation problem and its solution
- Choose z to minimise

$$
\sum_{i=1}^{m} w_{i} z_{i} \text { subject to } q \leq \phi(\mathbf{z}), \mathbf{z} \geq \mathbf{0}
$$

- The firm's cost function:

$$
C(\mathbf{w}, q):=\min _{\{\phi(\mathbf{z}) \geq q\}} \Sigma w_{i} z_{i}
$$

- Cost-minimising value for each input:

$$
\mathbf{Z}_{i}^{*}=H^{i}(\mathbf{w}, q), i=1,2, \ldots, m
$$

- The "stage 1" problem
-The solution function
- H^{i} is the conditional input demand function.
- Demand for input i, conditional on given output leve $\left|\left\lvert\, \begin{array}{|c}\text { A graphical } \\ \text { approach }\end{array}\right.\right.$

Mapping into $\left(z_{1}, w_{1}\right)$-space

Another map into $\left(z_{1}, w_{1}\right)$-space

Conditional input demand function

- Assume that single-valued input-demand functions exist.
- How are they related to the cost function?
- What are their properties?
- How are they related to properties of the cost function?

Us The slope: ${ }^{\text {P1 }}$ Ost function

- Recall

$$
C_{i}(\mathrm{w}, q)=z_{i}^{*}
$$

Optimal demand for input i
conditional input
demand function

- So we have:

$$
C_{i}(\mathbf{w}, q)=H^{i}(\mathbf{w}, q)
$$

Second

- Differe derivative with respect to w_{j}

$$
C_{i j}(\mathbf{w}, q)=H_{j}^{i}(\mathbf{w}, q)
$$

-...yes, it's Shephard's lemma
-Link between conditional input demand and cost functions

- Slope of input demand function

Simple result 1

- Use a standard property

$$
\frac{\partial^{2}(\bullet)}{\partial w_{i} \partial w_{j}} \stackrel{\partial}{ }^{2} \frac{(\bullet)}{\partial w_{j} \partial w_{i}}
$$

- So in this case

$$
\text { - } C_{i j}(\mathbf{w}, q)=C_{j i}(\mathbf{w}, q)
$$

- Therefore we have:

$$
H_{j}^{i}(\mathbf{w}, q)=H_{i}^{j}(\mathbf{w}, q)
$$

- second derivatives of a function "commute"
-The order of differentiation is irrelevant
- The effect of the price of input i on conditional demand for input j equals the effect of the price of input j on conditional demand for input i.

Simple result 2

- Use the standard relationship:

$$
C_{i j}(\mathbf{w}, q)=H_{j}^{i}(\mathbf{w}, q)
$$

- We can get the special case:

$$
C_{i i}(\mathbf{w}, q)=H_{i}^{i}(\mathbf{w}, q)
$$

- Because cost function is concave:

$$
C_{i i}(\mathbf{w}, q) \leq 0
$$

- Therefore:

$$
H_{i}^{i}(\mathbf{w}, q) \leq 0
$$

- Slope of conditional input demand function derived from second derivative of cost function
- We've just put j=i
- A general property
-The relationship of conditional demand for an input with its own price cannot be positive.

Conditional input demand curve

- Consider the demand for input 1
 - Consequence of result 2 ?

- "Downward-sloping" conditional demand
- In some cases it is also possible that $H_{i}^{i=0}$

$$
H_{1}{ }^{1}(\mathbf{w}, q)<0
$$

For the conditional demand function...

- Nonconvex Z yields discontinuous H
- Cross-price effects are symmetric
- Own-price demand slopes downward.
- (exceptional case: own-price demand could be constant)

Overview...

Firm: Comparative Statics

Conditional
Input Demand
Response function for stage 2 optimisation

Ordinary

Input Demand

Short-run problem

The second response function

- Review the profit-maximisation problem and its solution
-Choose q to maximise:

$$
p q-C(\mathbf{w}, q)
$$

- From the FOC:

$$
\begin{aligned}
& p \leq C_{q}\left(\mathbf{w}, q^{*}\right) \\
& p q^{*} \geq C\left(\mathbf{w}, q^{*}\right)
\end{aligned}
$$

- profit-maximising value for output:

-The "stage 2" problem
- "Price equals marginal cost"
- "Price covers average cost"
- S is the supply function
-(again it may actually be a correspondence)

Supply of output and output price

- Use the FOC:
-"marginal cost equals price"
$C_{q}(\mathbf{w}, q)=p$
- Use the supply function for q :
$C_{q}(\mathbf{w}, S(\mathbf{w}, p))=p$
- Gives an equation in w and p

> Differential of S
> with respect to p

- Differentiate with respect P-Use the "function of a
$C_{q q}(\mathbf{w}, S(\mathbf{w}, p)) S_{p}(\mathbf{w}, p)=1 \quad$ function" rule
- Rearrange:

$$
S_{p}(\mathbf{w}, p)=\frac{1}{C_{q q}(\mathbf{w}, q)}
$$

The firm's supply curve

Supply of output and price of input j

- Use the FOC:
$C_{q}(\mathbf{w}, S(\mathbf{w}, p))=p$
- Differentiate with respect to w_{j}
$C_{q j}\left(\mathbf{w}, q^{*}\right)+C_{q q}\left(\mathbf{w}, q^{*}\right) S_{j}(\mathbf{w}, p)=0$
- Rearrange:

$$
S_{j}(\mathbf{w}, p)=-\frac{C_{q j}\left(\mathbf{w}, q^{*}\right)}{C_{q q}\left(\mathbf{w}, q^{*}\right)}
$$

Remember, this is positive

- Same as before: "price equals marginal cost"
- Use the "function of a function" rule again
- Supply of output must fall with w_{j} if marginal cost increases with w_{j}.

For the supply function...

- Supply curve slopes upward.
- Supply decreases with the price of an input, if MC increases with the price of that input.
- Nonconcave ϕ yields discontinuous S.
- IRTS means ϕ is nonconcave and so S is discontinuous.

Overview...

Firm: Comparative Statics

Conditional
Input Demand
Response function for combined optimisation problem

```
Output
Supply
```

Ordinary
Input Demand

Short-run problem

The third response function

- Recall the first two response functions:

$$
\begin{aligned}
& z_{i}^{*}=H^{i}(\mathbf{w}, q) \\
& q^{*}=S(\mathbf{w}, p)
\end{aligned}
$$

- Demand for input i, conditional on output q
- Supply of output
- Now substitute for q^{*} :

$$
z_{i}^{*}=H^{i}(\mathbf{w}, S(\mathbf{w}, p))
$$

- Stages 1 \& 2 combined...
- Use this to define a new function:

$$
D^{i}(\mathbf{w}, p):=H^{i}(\mathbf{w}, S(\mathbf{w}, p))
$$

- Demand for input i (unconditional)
- Use this relationship to analyse further the firm's response to price changes

Demand for i and the price of output

- Take the relationship

$$
D^{i}(\mathbf{w}, p)=H^{i}\left(\mathbf{w}, \begin{array}{l}
\text { "function of a } \\
\text { function" rule again }
\end{array}\right.
$$

- Differentiate with respect ${ }^{\prime \prime}$

$$
D_{p}^{i}(\mathbf{w}, p)=H_{q}^{i}\left(\mathbf{w}, q^{*}\right) S_{p}(\mathbf{w}, p)
$$

- But we also have, for any q :

$$
\begin{aligned}
& H^{i}(\mathbf{w}, q)=C_{i}(\mathbf{w}, q) \\
& H_{q}^{i}(\mathbf{w}, q)=C_{i q}(\mathbf{w}, q)
\end{aligned}
$$

- Shephard's Lemma again
- Substitute in the above:

$$
D_{p}^{i}(\mathbf{w}, p)=C_{q i}\left(\mathbf{w}, q^{*}\right) S_{p}(\mathbf{w}, p)
$$

- Demand for input i (Di) increases with p iff marginal cost $\left(C_{q}\right)$ increases with w_{i}.

Demand for i and the price of j

- Again take the relationship

$$
D^{i}(\mathbf{w}, p)=H^{i}(\mathbf{w}, S(\mathbf{w}, p)) .
$$

- Differentiate with respect to w_{j} :

```
"function of a
                                function" rule yet
                                again
```

$D_{j}^{i}(\mathbf{w}, p)=H_{j}^{i}\left(\mathbf{w}, q^{*}\right)+H_{q}^{i}\left(\mathbf{w}, q^{*}\right) S_{j}(\mathbf{w}, p)$

- Use Shephard's Lemma again:

$$
H_{q}^{i}(\mathbf{w}, q)=C_{i q}(\mathbf{w}, q)=C_{q i}(\mathbf{w}, q)
$$

- Use this and the previous re "substitution
p) to give a decomposi
"output effect" into a "substitution effect" anty vurpur effect":

$$
D_{j}^{i}(\mathbf{w}, p)=H_{j}^{i}\left(\mathbf{w}, q^{*}\right)-\frac{C_{i q}\left(\mathbf{w}, q^{*}\right) C_{j q}\left(\mathbf{w}, q^{*}\right)}{C_{q q}\left(\mathbf{w}, q^{*}\right)} 23
$$

Results from decomposition formula

- Take the general relationship:

- Now take the special case where $j=i$:

Input-price fall: substitution effect

Input-price fall: total effect

The ordinary demand function...

- Nonconvex Z may yield a discontinuous D
- Cross-price effects are symmetric
- Own-price demand slopes downward
- Same basic properties as for H function

Overview...

Firm: Comparative Statics

Optimisation subject to sideconstraint

```
Output
Supply
```

Ordinary Input Demand

Short-run
 problem

The short run...

- This is not a moment in time but...
- ... is defined by additional constraints within the model
- Counterparts in other economic applications where we sometimes need to introduce side constraints

The short-run problem

- We build on the firm's standard optimisation problem
- Choose q and \mathbf{z} to maximise

$$
\Pi:=p q-\sum_{i=1}^{m} w_{i} z_{i}
$$

- subject to the standara ${ }^{\frac{1}{1}}$ constraints:

$$
\begin{aligned}
& q \leq \phi(\mathbf{z}) \\
& q \geq 0, \mathbf{z} \geq \mathbf{0}
\end{aligned}
$$

- But we add a side condition to this problem:

$$
z_{m}=z_{m}
$$

- Let \bar{q} be the value of q for which $z_{m}=\bar{z}_{m}$ would have been freely chosen in the unrestricted cost-min problem...

The short-run cost function

$$
C\left(\mathbf{w}, q, \bar{z}_{m}\right):=\min _{\left\{z_{m}=\bar{z}_{m}\right\}} \Sigma w_{i} z_{i}
$$

- Short-run demand for input i :

$$
H^{i}\left(\mathbf{w}, q, \bar{z}_{m}\right)=C_{i}\left(\mathbf{w}, q, \bar{z}_{m}\right)
$$

-Compare with the ordinary cost function

$$
C(\mathbf{w}, q) \leq C\left(\mathbf{w}, q, \bar{z}_{m}\right)
$$

- So, dividing by q :
$\frac{C(\mathbf{w}, q)}{q} \leq \frac{\tilde{C}\left(\mathbf{w}, q, \bar{z}_{m}\right)}{q}$
-The solution function with the side constraint.
-Follows from Shephard's Lemma
- By definition of the cost function. We have "=" if $q=\bar{q}$.
- Short-run $A C \geq$ long-run $A C$.
$S R A C=L R A C$ at $\alpha=\bar{\alpha}$ Supply curves

MC, AC and supply in the short and long run

AC if all inputs are variable MC if all inputs are variable Fix an output level.
 AC if input m is now kept fixed MC if input m is now kept fixed
 Supply curve in long run
 Supply curve in short run

- SRAC touches LRAC at the given output
-SRMC cuts LRMC at the given output
- The supply curve is steeper in the short run

Conditional input demand

- The original demand curve fo input 1
- The demand curve from the problem with the side
constraint.
- "Downward-sloping" conditional demand
- Conditional demand curve is steeper in the short run.

Key concepts

- Basic functional relations
- price signals $\rightarrow \underline{\text { firm }} \rightarrow$ input/output responses
- $H^{i}(\mathbf{w}, q)$

Review

- ${ }^{\prime}(\mathbf{w}, p)$

Reme (\mathbf{w}, p)

Review
demand for input i, conditional on output
supply of output
demand for input i
(unconditional)
And they all hook together like this:

- $H^{i}(\mathbf{w}, S(\mathbf{w}, p))=D^{i}(\mathbf{w}, p)$

What next?

- Analyse the firm under a variety of market conditions.
- Apply the analysis to the consumer's optimisation problem.

