

Overview...


Optimisation

Approaches to the firm's optimisation problem

## The setting

The optimisation problem
The optimisation problem

- We want to set up and solve a standard optimisation problem.
- Let's make a quick list of its components.
- ... and look ahead to the way we will do it for the firm.


## Construct the objective function

- Use the information on prices..

| $w_{i}$ | -price of input $i$ |
| :--- | :--- |
| $p$ | -price of output |

- ... and on quantities...

| $z_{i}$ | •amount of input $i$ |
| :--- | :--- |
| $q$ | •amount of output |

- ...to build the objective function


The firm's objective function

- Cost of inputs: $\quad \sum_{i=1}^{m} w_{i} z_{i} \quad$ •Summed over all $m$ inputs
- Revenue: pq •Subtract Cost from
- Profits: $p q-\sum_{i=1}^{m} w_{i} z_{i}$

Revenue to get

Optimisation: the standard approach

- Choose $q$ and $\mathbf{z}$ to maximise

$$
\Pi:=p q-\sum_{i=1}^{m} w_{i} z_{i}
$$

- ...subject to the production constraint...

$$
q \leq \phi(\mathbf{z})
$$

- Could also write this as $\mathbf{z} \in Z(q)$
- ..and some obvious constraints:
$q \geq 0 \quad \mathbf{z} \geq \mathbf{0}$ - You can't have negative
output or negative inputs


## A standard optimisation method

- If $\phi$ is differentiable...
- Set up a Lagrangean to take care of the constraints
- Write down the First Order necessity

Conditions (FOC)
sufficiency

- Check out second-order confitions $\frac{\partial^{2}}{\partial \mathbf{z}^{2}} \mathcal{L}(\ldots)$
- Use FOC to characterise solution $\quad \mathbf{z}^{*}=\ldots$


## Uses of FOC

- First order conditions are crucial
- They are used over and over again in optimisation problems.
- For example:
- Characterising efficiency.
- Analysing "Black box" problems.
- Describing the firm's reactions to its environment.
- More of that in the next presentation
- Right now a word of caution...


## A word of warning

- We've just argued that using FOC is useful.
- But sometimes it will yield ambiguous results.
- Sometimes it is undefined.
- Depends on the shape of the production function $\phi$.
- You have to check whether it's appropriate to apply the Lagrangean method
- You may need to use other ways of finding an optimum.
- Examples coming up...


## A way forward

- We could just go ahead and solve the maximisation problem
- But it makes sense to break it down into two stages
- The analysis is a bit easier
- You see how to apply optimisation techniques
- It gives some important concepts that we can re-use later
- The first stage is "minimise cost for a given output level"
- If you have fixed the output level $q$..
- ...then profit max is equivalent to cost min
- The second stage is "find the output level to maximise profits" - Follows the first stage naturally
- Uses the results from the first stage.
- We deal with stage each in turn


Overview...

A fundamental
multivariable
problem with a
brilliant solution

## Stage 1 optimisation

- Pick a target output level $q$
- Take as given the market prices of inputs $\mathbf{w}$
- Maximise profits...

■ ...by minimising costs $\sum_{i=1}^{m} w_{i} z_{i}$


## A useful tool

- For a given set of input prices $\mathbf{w}$...
- ...the isocost is the set of points $\mathbf{z}$ in input space...
- ...that yield a given level of factor cost.
- These form a hyperplane (straight line)...
- ...because of the simple expression for factor-cost structure.

Cost-minimisation


```
- The firm minimises cost..
- Subject to output constraint
- Defines the stage 1 problem.
- Solution to the problem
```

minimise
$\sum_{i=1}^{m} w_{i} z_{i}$
subject to $\phi(\mathbf{z}) \geq q$
-But the solution depends on the shape of the inputrequirement set $Z$.
-What would happen in other cases?


## Cost-minimisation: strictly

 convex $Z$- Minimise $\sum_{i=1}^{m} w_{i} z_{i}+$\begin{tabular}{l}

| Lagrange |
| :--- |
| multiplier | <br>

$\lambda[\boldsymbol{q} \leq \phi(\mathbf{z})]$
\end{tabular}

- Because of strict convexity we have an interior solution.
- Use the objective function
-... and output constraint
-...to build the Lagrangean
- Differentiate w.r.t. $\mathbf{z}_{1}, \ldots, z$ and set equal to 0 .
- ... and w.r.t $\lambda$
- Denote cost minimising values with a *

If isoquants can touch the axes...

- Minimise

- Now there is the possibility of corner solutions.
- A set of $m+1$ First-Order Conditions



## The solution...

- Solving the FOC, you get a cost-minimising value for each input..

$$
\mathbf{z}_{i}^{*}=H^{i}(\mathbf{w}, q)
$$

-...for the Lagrange multiplier

$$
\lambda^{*}=\lambda^{*}(\mathbf{w}, q)
$$

- ...and for the minimised value of cost itself
- The cost function is defined as



## Interpreting the Lagrange multiplier

- The solution function:
$C(\mathbf{w}, q)=\sum_{i} w_{i} z_{i}^{*}$
$=\sum_{i} w_{i} z_{i}^{*}-\lambda^{*}\left[\phi\left(\mathbf{z}^{*}\right)-q\right]$ At the optimum, either the constraint binds or the Lagrange multiplier is zero

Differentiate with respect to $q$ : Express demands in terms of $C_{q}(\mathbf{w}, q)=\sum_{i} w_{i} H_{q}^{i}(\mathbf{w}, q)$ $\qquad$ (w,q)
$-\lambda^{*}\left[\sum_{i} \phi_{i}\left(\mathbf{z}^{*}\right)\left\{\begin{array}{l}\text { Vanishes because of } \\ \text { FOC } \lambda^{*} \phi,\left(\mathbf{x}^{*}\right)=w_{i}\end{array}\right.\right.$

- Rearrange:
$C_{q}(\mathbf{w}, q)=\Sigma_{i}\left[w_{i}-\lambda^{*} \phi_{i}\left(\mathbf{z}^{*}\right)\right] H_{q}^{i}(\mathbf{w}, q)+\lambda^{*} \quad$ Lagrange multiplier in the stage
$C_{q}(\mathbf{w}, q)=\lambda^{*}$
This result - extremely important in economics - is just an applications of a general "envelope" theorem.

The cost function is an amazingly useful concept

- Because it is a solution function...
- ...it automatically has very nice properties.
- These are true for all production functions.
- And they carry over to applications other than the firm
- We'll investigate these graphically.


## What happens to cost if $\mathbf{w}$

 changes to $t \mathbf{w}$

## Cost Function: 5 things to remember

- Non-decreasing in every input price.
- Increasing in at least one input price.
- Increasing in output.
- Concave in prices.
- Homogeneous of degree 1 in prices.
- Shephard's Lemma.


## Example

Production function: $q \leq z_{1}^{0.1} z_{2}{ }^{0.4}$
Equivalent form: $\quad \log q \leq 0.1 \log z_{1}+0.4 \log z_{2}$
Lagrangean: $w_{1} z_{1}+w_{2} z_{2}+\lambda\left[\log q-0.1 \log z_{1}-0.4 \log z_{2}\right]$
FOCs for an interior solution
$w_{1}-0.1 \lambda / z_{1}=0$
$w_{2}-0.4 \lambda / z_{2}=0$
$\log q=0.1 \log z_{1}+0.4 \log z_{2}$

## From the FOCs

$\log q=0.1 \log \left(0.1 \lambda / w_{1}\right)+0.4 \log \left(0.4 \lambda / w_{2}\right)$
$\lambda=0.1^{-0.2} 0.4^{-0.8} w_{1}{ }^{0.2} w_{2}{ }^{0.8} q^{2}$
Therefore, from this and the FOCs:
$w_{1} z_{1}+w_{2} z_{2}=0.5 \lambda=1.649 w_{1}{ }^{0.2} w_{2}{ }^{0.8} q^{2}$


## Stage 2 optimisation

- Take the cost-minimisation problem as solved.
- Take output price $p$ as given.
- Use minimised costs $C(\mathbf{w}, q)$.
- Set up a 1-variable maximisation problem.
- Choose $q$ to maximise profits.
- First analyse the components of the solution graphically.
- Tie-in with properties of the firm introduced in the previous presentation.
- Then we come back to the formal solution.



## Profit maximisation

- Objective is to choose $q$ to
max:

$$
p q-C(\mathbf{w}, q)
$$

"Revenue minus minimised cost"

- From the First-Order

Conditions if $q^{*}>0$ :

$$
\begin{array}{ll}
p=C_{q}\left(\mathbf{w}, q^{*}\right) & \text { "Price equals marginal cost" } \\
p \geq \frac{C\left(\mathbf{w}, q^{*}\right)}{q^{*}} & \text { "Price covers average cost" }
\end{array}
$$

- In general:

| $p \leq C_{q}\left(\mathbf{w}, q^{*}\right)$ | covers both the cases: <br> $p q^{*} \geq C\left(\mathbf{w}, q^{*}\right)$ |
| :--- | :--- |
| $q^{*}>0$ and $q^{*}=0$ |  |

$p q^{*} \geq C\left(\mathbf{w}, q^{*}\right)$

## Example (continued)

Production function: $q \leq z_{1}{ }^{0.1} z_{2}{ }^{0.4}$
Resulting cost function: $C(\mathbf{w}, q)=1.649 w_{1}{ }^{0.2} w_{2}{ }^{0.8} q^{2}$

Profits:
$p q-C(\mathbf{w}, q)=p q-A q^{2}$
where $A:=1.649 w_{1}{ }^{0.2} w_{2}{ }^{0.8}$
FOC:
$p-2 A q=0$
Result:
$q=p / 2 A$.
$=0.3031 w_{1}^{-0.2} w_{2}^{-0.8} p$

## Summary

- Key point: Profit maximisation can be viewed in two stages:

Revew - Stage 1: choose inputs to minimise cost
Renew - Stage 2: choose output to maximise profit

- What next? Use these to predict firm's reactions

