

3

Functional versus personal distribution of income
$\square$ Functional distribution of income (Ricardo):

- Wages
- Profits
- Rent
$\qquad$ NATIONAL INCOME

Perso
$\qquad$ -

Earnings of Giorgos

+ Earnings of Irini
+ Interest on savings
+ Pensions of Irini's mother
+ Rent on mother's house
typical household today has some capital (assets),
transfer payments from pension rights property


## Organization of the lecture

Why study income distribution?
Inequality of what among whom? Definitional issues
Measuring inequality
Charting inequality
Inequality measures
Rankings
Inequality measures based on welfare functions

2

## Why study income distribution?

$\square$ We've seen the welfare-economics basis for redistribution as a public-policy objective
$\square$ How to assess the impact and effectiveness of such policy?
$\square$ We need appropriate criteria for comparing distributions of income and personal welfare
$\square$ This requires a treatment of issues in distributional analysis.

4

Inequality of what,
among whom?

6


7


9


11
 п^oúбıouc...


8


10


12


13


15


17


14


16


18


19

## Income: Uniqueness?

$\square$ Should we use univariate or multivariate analysis?

- income and expenditure?
- income and wealth?
- income over time? Lifetime income? You can count this only if a person is dead! Alternative: anticipated lifetime income.
$\square$ Several definitions may be relevant?
- gross income?
- disposable income?
- other concepts? Value of goods provided by the state (e.g. public libraries, parks, healthcare)?

Income: Comparability?
Price adjustment

- Normalise by price indices
$\square$ Adjustment for needs and household size
- Usual approach is to introduce equivalence scales
$\square$ The equivalence transformation is

- Usually a simplifying assumption is made.
- Write transformation as an income-independent equivalence scale: $\quad \begin{aligned} & \text { Number of } \\ & \text { equivalent }\end{aligned}$ $x=y / v(a)$
- Where does the function $\chi$ come from?

22

## Example: the modified OECD equivalence scale

- 1 for head of household
- 0,5 for each additional adult
- 0,3 for each child
equivalence scales
$\square$ But there is a variety of possible sources of information for equivalence scales:
- From official government sources
- From international bodies such as OECD
- From econometric models of household budgets


## Ало́бт $\alpha \sigma \mu \alpha \alpha \pi$ ó то $\Sigma \chi$ ह́ठıo Nó $\mu$ ou $\pi$ ои廿nүiбтクหє бтŋ Bou入ウ่ бтıc 7／11／12

## 






 عוбобпиатікй катпүоріа．




 （ $о р о \lambda о ү \eta т \varepsilon ் о ~ \varepsilon ו \sigma o ́ \delta \eta \mu a) ~ \delta ı a ı \rho \varepsilon \mu \varepsilon ̇ v o ~ \mu \varepsilon ~ т \eta \vee ~ к \lambda і \mu а к а ~ а$ ıooduvapias．


27
 ठєкатпноріои тои плクӨибнои่

Global Income Distribution 1990



＇ApӨро 214 v．4512／17－1－2018
 пара́үрачо 15 єпІбо́ната．







 ı $\sigma$ oठuva



ß）ठદu่тعрос yov




 ठєкатпиоріои тои п $\lambda \eta$ Өиб $\mu$ ои


28

 бєкатпиоріои тои плnӨчб $\mu$ ои



31


33

## Measuring inequality: introduction

$\square$ Three methods of appraising the complicated information that is contained in an income distribution:

- Diagrams
- Inequality measures
- Rankings

These methods can be applied to any variable, whose distribution we want to appraise (e.g. per capita energy consumption)

32

## The Lorenz curve

Introduced by Lorenz in 1905.
$\square$ Again line up everybody in ascending order of income and let them parade by.
$\square$ Once point C is reached, everybody has passed by, so $F(y)=1$.

- As each person passes, hand him his share of the «cake», i.e. the proportion of total income that he receives.
$\square$ When the parade reaches people with income $y$, let us suppose that a proportion $\Phi(y)$ of the cake has gone. So of course when $F(y)=0$, $\Phi(y)$ is also 0 (no cake gone);
$\square$ and when $F(y)=1, \Phi(y)$ is also 1 (all the cake has been handed out).
$\square(y)$ is measured on the vertical scale in Figure 2.4, and the graph of $\Phi$ plotted against F is the Lorenz curve.

34

## Lorenz curve

Properties

- It is always convex toward the point C. Suppose that the first $10 \%$ $\left(\mathrm{F}\left(\mathrm{y}_{1}\right)=0.1\right)$ have been given $4 \%$ of the cake $\left(\Phi\left(\mathrm{y}_{1}\right)=0: 04\right)$. Then by he time the next $10 \%$ of the people go by ( $\mathrm{F}\left(\mathrm{y}_{2}\right)=0.2$ ), you must have handed out at least $8 \%$ of the cake $\left(\Phi\left(y_{2}\right)=0.08\right)$. Why? Because we arranged the parade in ascending order of cake-receivers.
- If the Lorenz curve lays along OD, we would have a state of perfect equality, for along that line the first $5 \%$ get $5 \%$ of the cake, the first $10 \%$ get $10 \% \ldots$ and so on.


## Inequality measures

$\square$ The graphical ways of presenting the income distribution are used to introduce some conventional inequality measures.

## Inequality measures - Range

## Inequality measures - Range

## Problems

- In large heterogeneous populations, minimum and maximum income can only be guessed.
- Highly sensitive to estimates of the two extreme values.
$\square$ Possible solution: $R=y_{\text {bottom } 5 \%}-y_{\text {top } 5 \%}$
$\square$ More serious problem: What happens to $R$ if $y_{\max }$ and $y_{\min }$ remains the same and everybody else's income is levelled to some equal intermediate income?

39
40

## Inequality measures - Relative mean deviation (M)

Relative mean deviation ( $M$ ): the average absolute distance of everyone's income from the mean, expressed as a proportion of the mean.

$$
M=\frac{1}{n} \sum_{i=1}^{n}\left|\frac{y_{i}}{\bar{y}}-1\right|
$$



43

## Inequality measures - Gini coefficient - Disadvantage

- Main Problem
- It places different relative value in transfers taking place in different parts of the distribution:
- An income transfer from a relatively rich person to a person with $£ x$ less has a much greater effect on $G$ if the two persons are near the middle rather than at either end of the parade.
- Transfer effect:

$$
\frac{F\left(y_{j}\right)-F\left(y_{i}\right)}{n \bar{y}}
$$

45

## Inequality measures - Variance ( $V$ )

$\square$ Consider the frequency distribution and its $\log$ transformation.
$\square$ Use tools from statistics: Measure inequality as the dispersion of the frequency distribution

## Inequality measures - Gini coefficient ( $G$ )

$\square$ In mathematical terms, $G$ is the average difference between all possible pairs of incomes in the population, expressed as a proportion of total income:

$$
\text { Gini } \quad \frac{1}{2 n^{2}=} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|y_{i}-y_{j}\right|
$$

## Inequality measures - Gini coefficient - Disadvantage

## - Main Problem

- So, consider transferring $\$ 1$ from a person with $\$ 10,100$ to a person with $\$ 10,000$. This has a much greater effect on reducing $G$ than transferring \$ 1 from a person with $\$ 1,100$ to one with $\$ 1,000$ or than transferring $£ 1$ from a person with $\$ 100,100$ to a person with $\$$ 100,000.
- This valuation may be desirable, but it is not obvious that it is desirable.


## Inequality measures - Variance ( $V$ )

$\square$ Assume there are n people. Define variance $(V)$ as :

$$
V=\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-\bar{y}\right]^{2}
$$

$\square$ Measure the distance between individual's income $y_{i}$ and mean income $y$-bar, square this (why?), and then find the average of the resulting quantity in the whole population.

## Inequality measures - Variance $(V)$ - Problem <br> $\square$ If we double everybody's income (so also double mean income and essentially leave the distribution unchanged), $V$ quadruples. <br> $\square$ Way out: Standardise $V$.

49

## Scalar inequality (use inequality indices)

$\square$ Inequality measure (simple definition): a scalar numerical representation of the interpersonal differences in income within a given population.
"scalar" means that all difference features of inequality are compressed into a single number


53

## Inequality measures - Coefficient of Variation (c)

## Coefficient of variation (c):

$$
c=\frac{\sqrt{V}}{\bar{y}} .
$$

## Scalar inequality

$\square$ Advantages:

- If we want a multi-number representation of inequality, we can do this by using different inequality indices $\left(\mathrm{I}_{1}, \mathrm{I}_{2}\right)$
- We can answer the question of "whether inequality has increased or decreased" with a straight "yes" or "no".

Problem: If we make the concept of inequality multidimensional, we may come up with ambiguous answers. See example below:

Starting off from point B, which reveals that we have an amount of $I_{1}$ of type-1 inequality and an amount of $I_{2}$ of type-2 inequality, how do I compare B and D , or B and E ?

52

## Rankings

$\square$ Ways of comparing whole distributions, even if we get ambiguous results:
■ e.g. Lorenz rankings (based on Lorenz curves)

## Lorenz comparisons

$\square$ What happens to the share of income accruing to different groups of the population over time (or as a result of the redistributive action of government policy)?

Straightforward case: Lorenz curves do not cross
$\square$ B: Before tax income distribution
A: After tax income distribution
$\square$ A lies everywhere inside B. What does this mean?
$\square$ E.g. people in the bottom 20 percent would have received a larger slice of the after-tax cake (curve A) than they used to get in B.
$\square$ Also those in the bottom 80 percent received a larger proportionate slice of the A-cake than their proportionate slice of the B-cake (which of course is equivalent to saying that the richest 20 percent gets a smaller proportionate slice in A than it received in B).

## Straightforward case: Lorenz curves do not cross



Figure 210. Ranking by Shares. UK 1984/S Incomes before and after tax Soevrece no for Figure 21

56

## Straightforward case: Lorenz curves do not cross

$\square$ Whatever "bottom proportion" of people $\mathrm{F}(y)$ is selected, this group gets a larger share of the cake (y) in A than in B .
$\square$ Thus, A dominates B, and leads to lower inequality by almost all inequality measures

58

## Lorenz curves (Morelli et al 2014)



## Lorenz curves (Morelli et al 2014)



61

## Inequality measures examined so far: basic problem

## $\square$ Essentially arbitrary

- Does not mean that CV or Gini is a bad index
- But what is the basis for it?
$\square$ What is the relationship with social welfare?
- Examine the welfare-inequality relationship directly


## Lorenz curves (Morelli et al 2014)



62

## Inequality indices based on Social welfare functions

Basic tool is a social welfare function (SWF)

- Maps set of distributions into the real line
- I.e. for each distribution we get one specific number
- All distributions can be ranked
$\square$ Use a simple framework to list some of the basic axioms
- Assume a fixed population of size $n$.
- Assume that individual utility can be measured by $x$
- Income normalised by equivalence scales
- Rules out utility interdependence
- Welfare is just a function of the vector $\mathbf{x}:=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$


## Social welfare functions: properties

$\square$ This property simply states that the welfare numbers should be related to individual incomes (or wealth, etc.) so that if any person's income goes up social welfare cannot go down.
$\square$ The idea that welfare is non-decreasing in income is perhaps not very innocent: it rules out for example the idea that if one disgustingly rich person gets richer still whilst everyone else's income stays the same, the effect on inequality is so awful that social welfare actually goes down.

## Social welfare functions: properties

2. The SWF is symmetric if it is true that, for any state,
$\mathrm{W}\left(y_{1}, y_{2}, \ldots, y_{\mathrm{n}}\right)=W\left(y_{2} ; y_{1}, \ldots, y_{\mathrm{n}}\right)=\ldots=W\left(y_{\mathrm{n}}, y_{2}, \ldots, y_{1}\right)$;
This means that the function $W$ treats individual incomes anonymously: the value of $W$ does not depend on the particular assignment of labels to members of the population.

## Social welfare functions: properties

$\square$ The SWF is additive if it can be written

$$
W\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\sum_{i=1}^{n} U_{i}\left(y_{1}\right)=U_{1}\left(y_{1}\right)+U_{2}\left(y_{2}\right)+\ldots+U_{n}\left(y_{n}\right) .
$$

where $U_{1}$ is a function of $y_{1}$ alone, and so on.
If the above properties are satisfied, we can write the SWF as:

$$
W\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\sum_{i=1}^{n} U\left(y_{i}\right)=U\left(y_{1}\right)+U\left(y_{2}\right)+\ldots+U\left(y_{n}\right),
$$

Where U is the same function for each person and where $U\left(y_{i}\right)$ increases with $y_{i}$.

## Social welfare functions: properties

## $\square$ Example:

$\square$ Suppose the only change is an increase in person 1 's income from $\$ 20,000$ to $\$ 21,000$. Then the additivity assumption states that the effect of this change alone (increasing person 1's income from $\$ 20,000$ to $\$ 21,000)$ is $\mid\left(W_{\mathrm{B}}-W_{\mathrm{A}}\right)$ and is just the same for this particular change, regardless of whether everyone else had \$1 or \$100,000.

## Social welfare functions: properties

$\square$ Given that we treat these standardised incomes $y_{i}$ as a measure that puts everyone in the population on an equal footing as regards needs and desert, the second property (symmetry) naturally follows.
$\square$ There is no reason why welfare should be higher or lower if any two people simply swapped incomes.

68

## Social welfare functions: properties

$\square$ This is a very strong assumption and is independent from assumptions 1 and 2.
$\square$ It implies that if we want to measure the increase in welfare between states A and B (and so by calculating the difference $W_{\mathrm{B}}-W_{\mathrm{A}}$ ), what matters is only the incomes that have changed, not what the rest of the income distribution looks like.

## Social welfare functions: properties

$\square$ Let us call $U\left(y_{1}\right)$ the social utility of person 1. The rate at which this index increases is

$$
U^{\prime}\left(y_{1}\right)=\frac{d U\left(y_{1}\right)}{d y_{1}},
$$

which can be thought of as the social marginal utility of, or the welfare weight, for person 1 . This tells me how much social welfare increases if I give one more euro to person 1 .

Because of the first property, none of the welfare weights can be negative.

## Social welfare functions: properties

$\square$ 4. The SWF is strictly concave if the welfare weight always decreases as $y_{i}$ increases.
$\square$ The notion of social marginal utility (or welfare weight is very useful). Consider a government programme which brings about a (small) change in everyone's income: $\Delta y_{1}, \Delta y_{2}, \ldots, \Delta y_{\mathrm{n}}$. What is the change in social welfare?

$$
d W=U^{\prime}\left(y_{1}\right) \Delta y_{1}+U^{\prime}\left(y_{2}\right) \Delta y_{2}+\ldots+U^{\prime}\left(y_{n}\right) \Delta y_{n}
$$

$\square$ So U' act as a system of weights when summing the effects of the programme over the whole population.

## Social welfare functions: properties

5. The SWF has constant elasticity, or constant relative inequality aversion if $U\left(y_{i}\right)$ can be written

$$
U\left(y_{i}\right)=\frac{y_{i}^{1-\varepsilon}-1}{1-\varepsilon}
$$

(or in a cardinally equivalent form), where $\varepsilon$ is the inequality aversion parameter, which is non-negative

75

## SWF-based inequality measures

$\square$ In the isoelastic case, this becomes

$$
A I=1-\left[\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i} / \bar{Y}\right)^{1-e}\right]^{1 / 1-e}
$$

$\square$ If $A I=0.3$, we can say that, if income were equally distributed, we would need only $(100-30) \%=70 \%$ of present national income to achieve the same level of total welfare.

## Social welfare functions: properties

$\square$ How should the weights be fixed? The strict concavity assumption tells us that the higher a person's income, the lower the social weight he is given.
$\square$ If we are averse to inequality this seems reasonable: a small redistribution from rich to poor should lead to a socially- preferred state.

## SWF-based inequality measures

Introduce the concept of equally distributed equivalent level of income $\left(\mathrm{Y}_{\mathrm{e}}\right)$ as the per capita mount of the smallest total income which if equally distributed offers
the same level of welfare as the original distribution, so that
$W\left[U_{1}\left(Y_{\mathrm{e}}\right), U_{2}\left(Y_{\mathrm{e}}\right), \ldots, U_{\mathrm{n}}\left(Y_{\mathrm{e}}\right)\right]=W\left[U_{1}\left(Y_{1}\right), U_{2}\left(Y_{2}\right), \ldots\right.$,
$\left.U_{\mathrm{n}}\left(Y_{\mathrm{n}}\right)\right]$
Then the Atkinson index is

$$
A I=1-\left(Y_{e} / \overline{\boldsymbol{Y}}\right)
$$

where $Y_{e}<\overline{\boldsymbol{Y}}$

Additional statistical data, poverty and inequality


79


81


83


80

## Numbers of absolutely poor and relatively poor



82


84


