MICROECONOMICS

Principles and Analysis

GENERAL EQUILIBRIUM: EXCESS DEMAND AND THE RÔLE OF PRICES

SOME UNSETTLED QUESTIONS

- Under what circumstances can we be sure that an equilibrium exists?
- Will the economy somehow "tend" to this equilibrium?
- * And will this determine the price system for us?
- We will address these using the standard model of a general-equilibrium system
- × To do this we need just one more new concept.

OVERVIEW...

General Equilibrium: Excess Demand+

Definition and properties

Excess Demand Functions

Equilibrium Issues

Prices and Decentralisation

INGREDIENTS OF THE EXCESS DEMAND FUNCTION

- Aggregate demands (the sum of individual households' demands).
- Aggregate net-outputs (the sum of individual firms' net outputs).
- * Resources.
- × Incomes determined by prices.

AGGREGATE CONSUMPTION, NET OUTPUT

From household's demand function

$$x_i^h = D^{ih}(\mathbf{p}, y^h)$$

= $D^{ih}(\mathbf{p}, y^h(\mathbf{p}))$

- So demands are just functions of \mathbf{p} $x_i^h = x_i^h(\mathbf{p})$
- If all goods are private (rival) then aggregate demands can be written:

$$x_i(\mathbf{p}) = \Sigma_h \, x_i^{\,h}(\mathbf{p})$$

• From firm's supply of net output $q_i^f = q_i^f(\mathbf{p})$

• Aggregate:

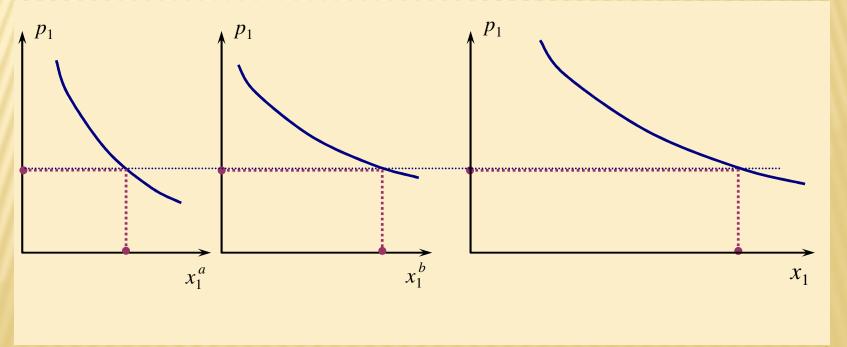
$$q_i = \sum_f q_i^f(\mathbf{p})$$

Because incomes depend on prices

- $x_i^h(\bullet)$ depends on holdings of resources and shares
- "Rival": extra consumers require additional resources.
 Same as in "consumer: aggregation"
- standard supply functions/ demand for inputs
- aggregation is valid if there are no externalities. Just as in "Firm and the market")

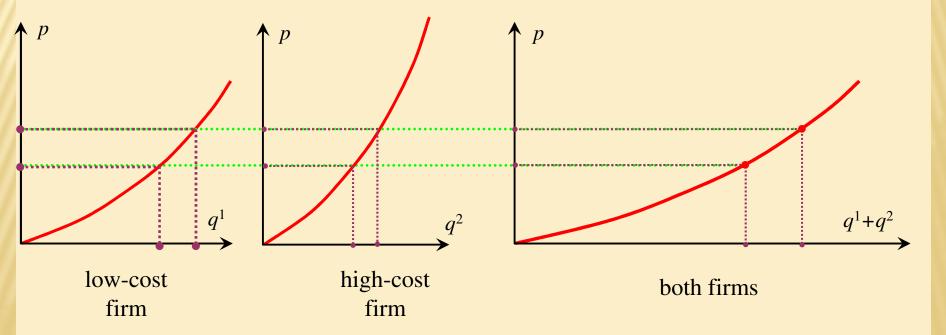
DERIVATION OF $X_{l}(P)$

- Alf's demand curve for good 1.
- Bill's demand curve for good 1.
- Pick any price
- Sum of consumers' demand
- Repeat to get the market demand curve

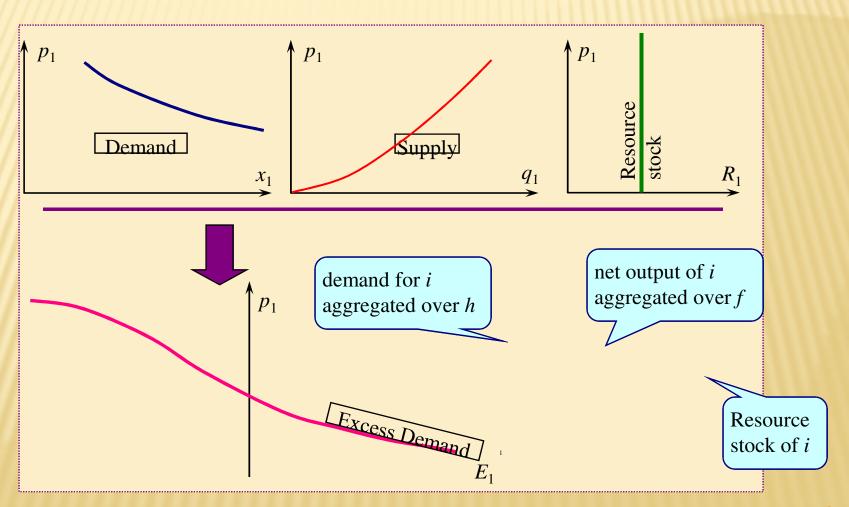


DERIVATION OF $Q_i(P)$

- Supply curve firm 1 (from MC).
- Supply curve firm 2.
- Pick any price
- Sum of individual firms' supply
- Repeat...
- The market supply curve



SUBTRACT Q AND R FROM X TO GET E:



EQUILIBRIUM IN TERMS OF EXCESS DEMAND

Equilibrium is characterised by a price vector $\mathbf{p}^* \ge \mathbf{0}$ such that:

• For every good *i*:

$$E_i(\mathbf{p}^*) \leq 0$$

• For each good i that has a positive price in equilibrium (i.e. if $p_i^* > 0$):

$$E_i(\mathbf{p*}) = 0$$

The materials balance condition (dressed up a bit)

If this is violated, then somebody, somewhere isn't maximising...

You can only have excess supply of a good in equilibrium if the price of that good is 0.

USING E TO FIND THE EQUILIBRIUM

- Five steps to the equilibrium allocation
 - 1. From technology compute firms' net output functions and profits.
 - From property rights compute household incomes and thus household demands.
 - 3. Aggregate the xs and qs and use x, q, R to compute E
 - 4. Find p* as a solution to the system of E functions
 - 5. Plug p* into demand functions and net output functions to get the allocation
- But this begs some questions about step 4

ISSUES IN EQUILIBRIUM ANALYSIS

- **×** Existence
 - + Is there any such p*?
- * Uniqueness
 - + Is there only one p*?
- Stability
 - + Will p "tend to" p*?
- For answers we use some fundamental properties of E.

TWO FUNDAMENTAL PROPERTIES...

• Walras' Law. For *any* price **p**:

n

You only have to work with n-1 (rather than n) equations

$$\sum_{i=1} p_i E_i(\mathbf{p}) = 0$$

Hint #1: think about the "adding-up" property of demand functions...

• Homogeneity of degree 0. For any price \mathbf{p} and any t > 0:

You can normalise the prices by any positive number

$$E_i(t\mathbf{p}) = E_i(\mathbf{p})$$

Hint #2: think about the homogeneity property of demand functions...

Link to consumer demand

Can you explain why they are true? Reminder: these hold for any competitive allocation, not just equilibrium

PRICE NORMALISATION

- * We may need to convert from n numbers $p_1, p_2,...p_n$ to n-1 relative prices.
- * The precise method is essentially arbitrary.
- The choice of method depends on the purpose of your model.
- It can be done in a variety of ways:

You could divide by

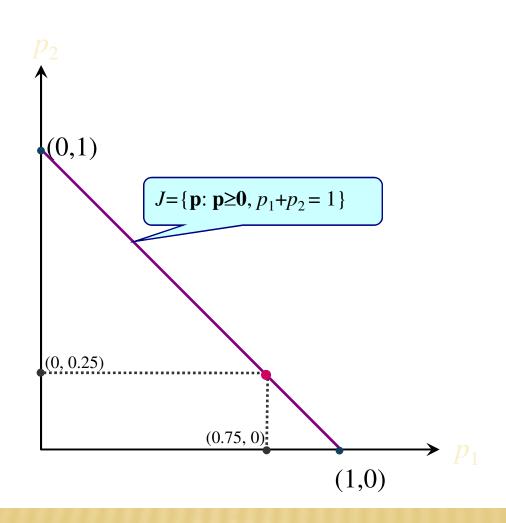
set of prices that sum to 1 $\sum_{i=1}^{n} p_i$

to give a

Mars bar theory of value

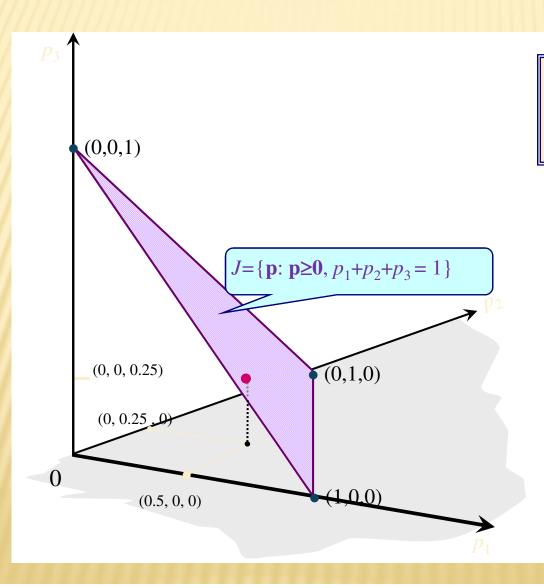
- This method might seem weird
- But it has a nice property.
- The set of all normalised prices is convex and compact.

NORMALISED PRICES, N=2



- The set of normalised prices
- The price vector (0,75, 0.25)

NORMALISED PRICES, N=3



- The set of normalised prices
- The price vector (0,5, 0.25, 0.25)

OVERVIEW...

General Equilibrium: Excess Demand+

Is there any p*?

Excess Demand Functions

Equilibrium Issues

•Existence

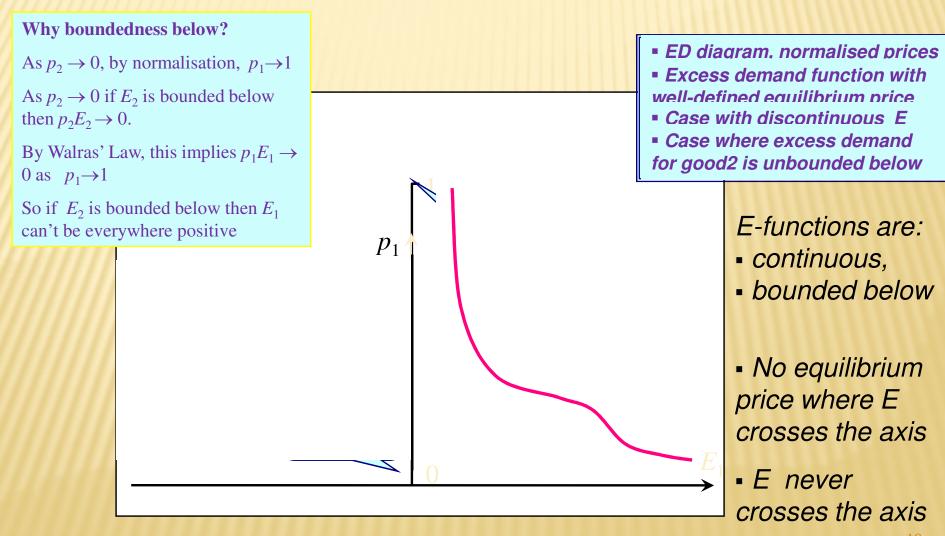
•<u>Uniqueness</u> •<u>Stability</u>

Prices and Decentralisation

APPROACH TO THE EXISTENCE PROBLEM

- Imagine a rule that moves prices in the direction of excess demand:
 - + "if $E_i > 0$, increase p_i "
 - + "if E_i < 0 and p_i > 0, decrease p_i "
 - + An example of this under "stability" below.
- * This rule uses the *E*-functions to map the set of prices into itself.
- * An equilibrium exists if this map has a "fixed point."
 - + a p* that is mapped into itself?
- * To find the conditions for this, use normalised prices
 - + p ∈ *J*.
 - + *J* is a compact, convex set.
- × We can examine this in the special case n = 2.
 - + In this case normalisation implies that $p_2 = 1 p_1$.

EXISTENCE OF EQUILIBRIUM?



EXISTENCE: A BASIC RESULT

- An equilibrium price vector must exist if:
 - 1. excess demand functions are continuous and
 - 2. bounded from below.
 - + ("continuity" can be weakened to "upper-hemi-continuity").
- Boundedness is no big deal.
 - + Can you have infinite excess supply...?
- However continuity might be tricky.
 - + Let's put it on hold.
 - + We examine it under "the rôle of prices"

OVERVIEW...

General Equilibrium: Excess Demand+

Is there just one p*?

Excess Demand Functions

Equilibrium Issues

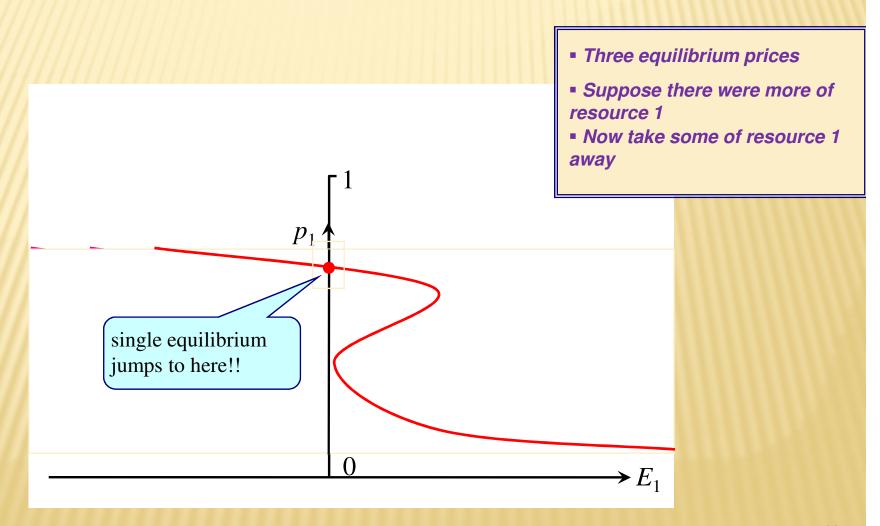
- •Existence
- •Uniqueness
- •Stability

Prices and Decentralisation

THE UNIQUENESS PROBLEM

- Multiple equilibria imply multiple allocations, at normalised prices...
- ...with reference to a given property distribution.
- * Will not arise if the E-functions satisfy WARP.
- If WARP is not satisfied this can lead to some startling behaviour...

MULTIPLE EQUILIBRIA



OVERVIEW...

General Equilibrium: Excess Demand+

Will the system tend to p*?

Excess Demand Functions

Equilibrium Issues

- •Existence
- <u>Uniqueness</u> • Stability
- ı

Prices and Decentralisation

STABILITY ANALYSIS

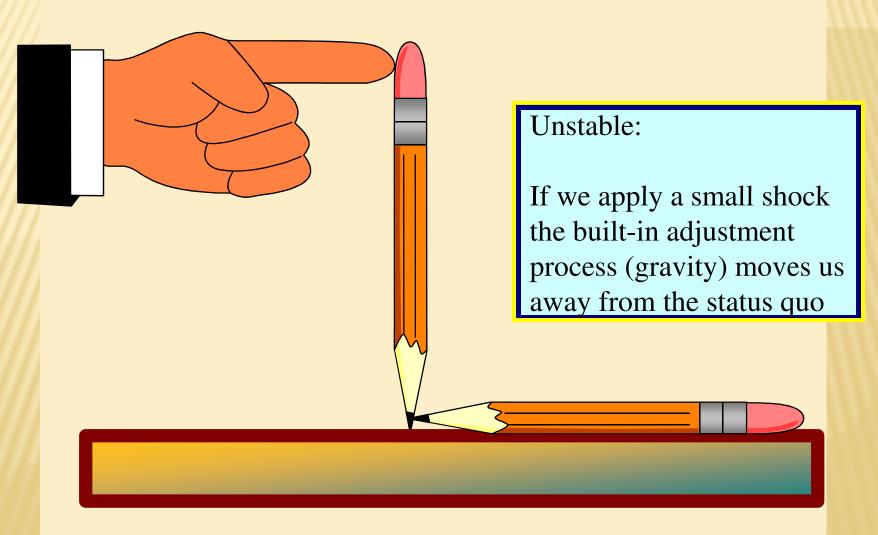
- * We need...
- * A definition of equilibrium
- × A process
- * Initial conditions

A STABLE EQUILIBRIUM

Stable:

If we apply a small shock the built-in adjustment process (gravity) restores the status quo

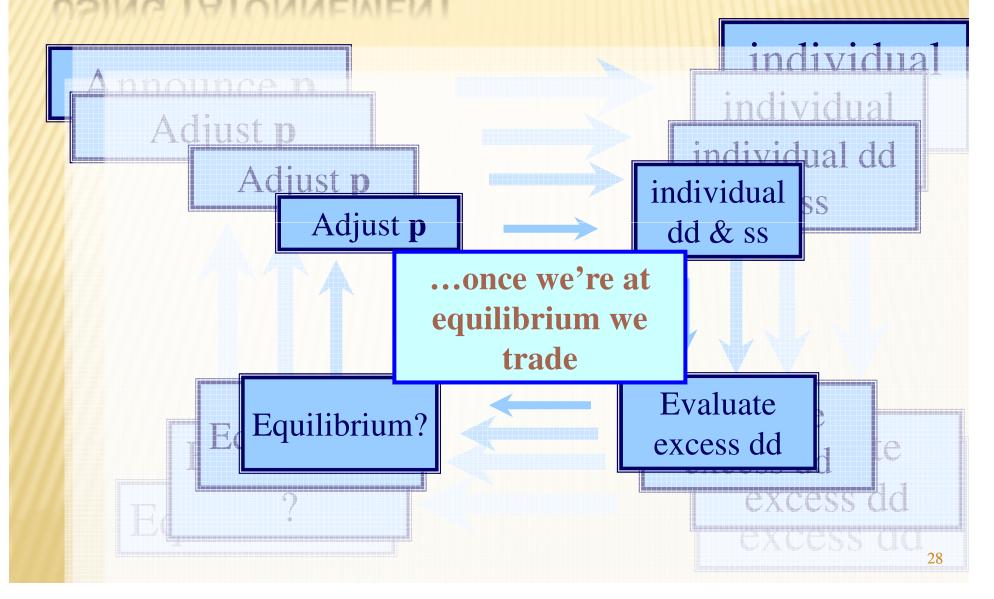
AN UNSTABLE EQUILIBRIUM



"GRAVITY" IN THE CE MODEL

- Imagine there is an auctioneer to announce prices, and to adjust if necessary.
- * If good *i* is in excess demand, increase its price.
- * If good *i* is in excess supply, decrease its price (if it hasn't already reached zero).
- × Nobody trades till the auctioneer has finished.

"GRAVITY" IN THE CE MODEL: THE AUCTIONEER USING TÂTONNEMENT



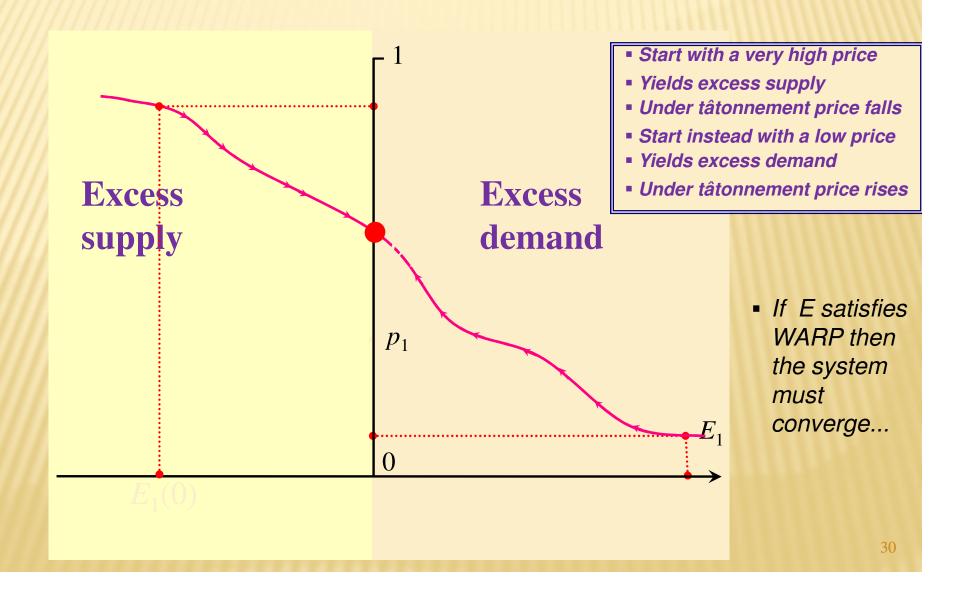
ADJUSTMENT AND STABILITY

- \times Adjust prices according to sign of E_i :
 - + If $E_i > 0$ then increase p_i
 - + If E_i < 0 and p_i > 0 then decrease p_i
- * A linear tâtonnement adjustment mechanism:

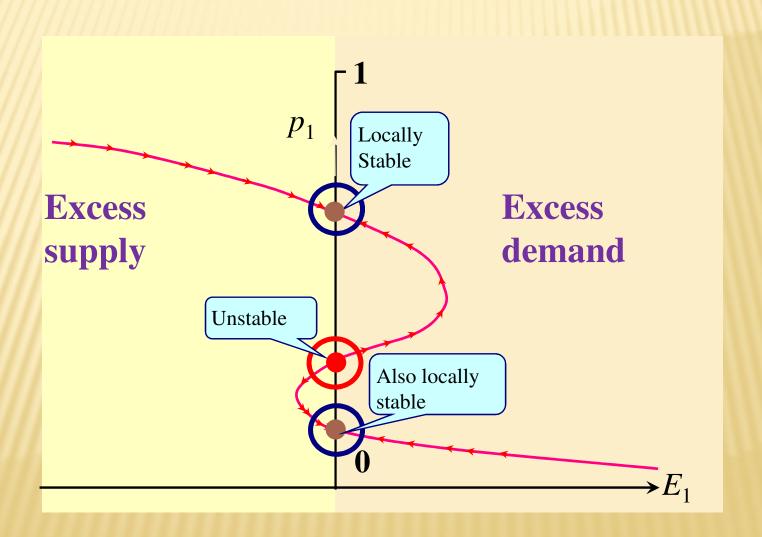
$$\frac{dp_i(t)}{dt} = \left\{ \begin{array}{l} \alpha_i E_i\left(\mathbf{p}(t)\right) & if \ p_i(t) \ge 0 \\ 0 & otherwise \end{array} \right\}$$

- Define distance between $\mathbf{p}(t)$ and equilibrium \mathbf{p}^* .
- Given WARP, then under tâtonnement distance must fall with *t*.

GLOBALLY STABLE...



NOT GLOBALLY STABLE...



OVERVIEW...

General Equilibrium: Excess Demand+

The separation theorem and the role of large numbers

Excess Demand Functions

Equilibrium Issues

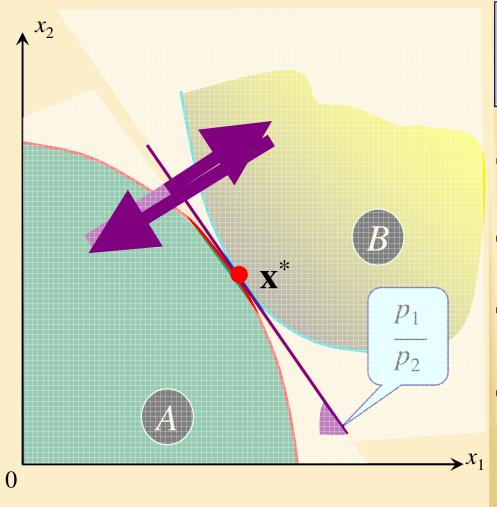
Prices and Decentralisation

DECENTRALISATION

- Recall the important result on decentralisation that we discussed in the case of Crusoe's island.
- rusoe: ne counterpart is true for this multi-person world.
- Requires assumptions about convexity of two sets, defined at the aggregate level:
 - + the "attainable set": $A := \{x: x \le q+R, \Phi(q) \le 0 \}$
 - + the "better-than" set: $B(\mathbf{x}^*) := \{ \Sigma_h \mathbf{x}^h : U^h(\mathbf{x}^h) \ge U^h(\mathbf{x}^{*h}) \}$
- To see the power of the result we can appeal to an "averaging" result we used in lecture for the firm

Link to Firm and market

DECENTRALISATION AGAIN

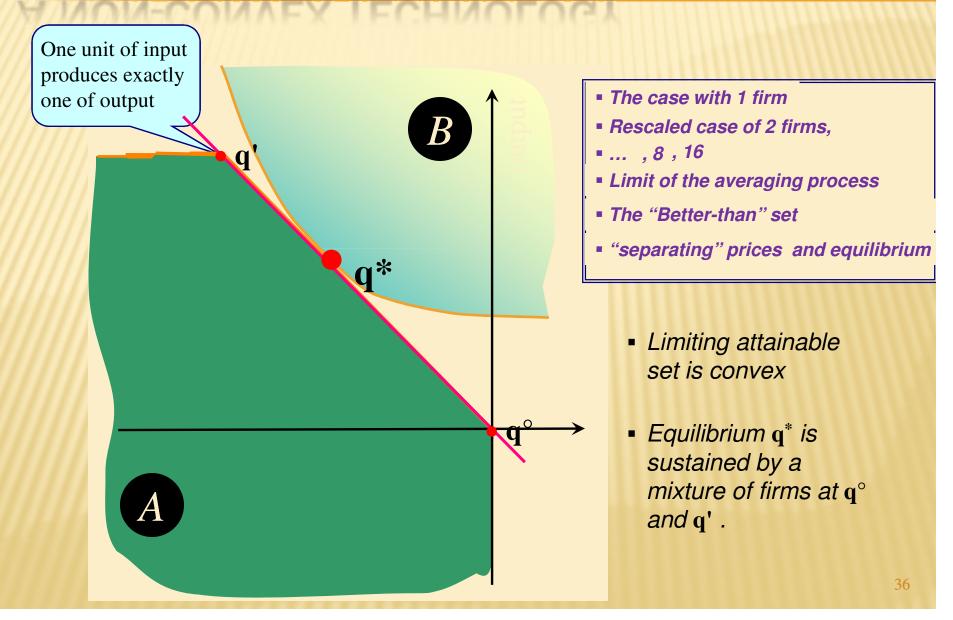


- The attainable set
- The "Better-than-x*" set
- The price line
- Decentralisation
- $A = \{\mathbf{x}: \mathbf{x} \le \mathbf{q} + \mathbf{R}, \Phi(\mathbf{q}) \le 0\}$
- $B = \{ \sum_{h} \mathbf{x}^h : U^h(\mathbf{x}^h) \ge U^h(\mathbf{x}^{*h}) \}$
- x* maximises income over A
- x* minimises expenditure over B

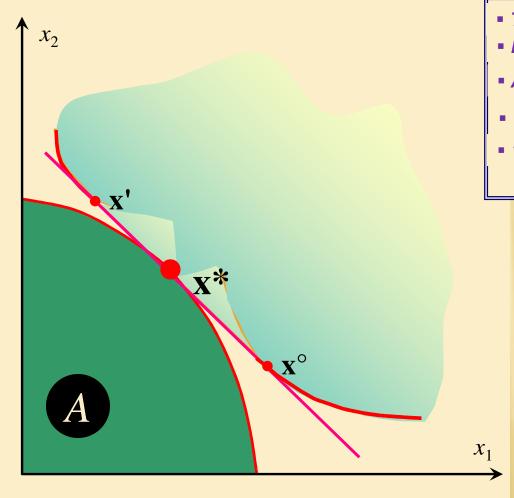
PROBLEMS WITH PRICES

- Either non-convex technology (increasing returns or other indivisibilities) for some firms, or...
- ...non-convexity of B-set (non-concavecontoured preferences) for some households...
- ...may imply discontinuous excess demand function and so...
- ...absence of equilibrium.
- But if there are are large numbers of agents everything may be OK.

A NON-CONVEX TECHNOLOGY



NON-CONVEX PREFERENCES



- The case with 1 person
- Rescaled case of 2 persons,
- A continuum of consumers
- The attainable set
- "separating" prices and equilibrium

- Limiting better-than set is convex
- Equilibrium x* is sustained by a mixture of consumers at x° and x'.

SUMMARY

- Excess demand functions are handy tools for esting results.
- Continuity and boundedness ensure existence fequilibrium.
- WARP ensures uniqueness and stability.
- ut requirements of continuity may be
- emanding.