MICROECONOMICS

Principles and Analysis
CONSUMER: WELFARE

USING CONSUMER THEORY

* Consumer analysis is not just a matter of consumers' reactions to prices.
* We pick up the effect of prices on incomes on attainable utility - consumer's welfare.
* This is useful in the design of economic policy, for example. The tax structure?
* We can use a number of tools that have become standard in applied microeconomics price indices?

HOW TO MEASURE A PERSON'S
 "WELFARE"?

* We could use some concepts that we already have.
* Assume that people know what's best for them...
\times...So that the preference map can be used as a guide.
* We need to look more closely at the concept of "maximised utility"...
* ...the indirect utility function again.

THE TWO ASPECTS OF THE PROBLEM

- Primal: Max utility subject to
the budget constraint
- Dual: Min cost subject to a
utility constraint
an increase in budget?
- What effect on min-cost of
an increase in target utility?

Interpretation Interpretation
of Lagrange of Lagrange
multipliers

INTERPRETING THE LAGRANGE MULTIPLIER (1)

INTERPRETING THE LAGRANGE MULTIPLIER (2)

Once again, at the optimum either the constraint binds or the Lagrange multiplier is zero
(Make use of the conditional demand functions $\left.x_{i}{ }^{*}=H^{i}(\mathbf{p}, v)\right)$
Differentiate with resp
$C_{v}(\mathbf{p}, v)=\sum_{i} p_{i} H^{i}{ }_{v}(\mathbf{p}, v)$
\qquad

$$
-\lambda^{*}\left[\Sigma _ { i } U _ { i } (\mathbf { x } ^ { * }) \left[\begin{array}{l}
\text { Vanishes because of } \\
\text { FOC } \lambda^{*} U_{(}\left(\mathbf{x}^{*}\right)=p_{i}
\end{array}\right.\right.
$$

Rearrange:
$C_{\nu}(\mathbf{p}, v)=\Sigma_{i}\left[p_{i}-\lambda^{*} U_{i}\left(\mathbf{x}^{*}\right)\right] H_{u}^{i}(\mathbf{p}, v)+\lambda^{*}$
$C_{\nu}(\mathbf{p}, v)=\lambda^{*}$

Again we have an application of the general envelope theorem.

A USEFUL CONNECTION

UTILITY AND INCOME: LIMITATIONS

* This gives us some useful insights but is limited: marginal changes of income..
* ...and an interpretation of the Lagrange multipliers
* The Lagrange multiplier on the income constraint (primal problem) is the marginal utility of income.
* The Lagrange multiplier on the utility constraint (dual problem) is the marginal cost of utility.
× But does this give us all we need?

We have focused only on marginal effects - infinitesimal income changes.

We have dealt only with income not the effect of changes in prices

* We need a general method of characterising the impact of budget changes: valid for arbitrary price changes easily interpretable
\times For the essence of the problem re-examine the basic diagram.

THE PROBLEM...

APPROACHES TO VALUING UTILITY CHANGE

A more productive idea:
Use income not utility as a measuring rod
To do the transformation we use the V function
We can do this in (at least) two ways..

STORY NUMBER 1

\times Suppose p is the original price vector and \mathbf{p}^{\prime} is vector after good 1 becomes cheaper.
\times This causes utility to rise from v to v^{\prime}.

$$
\begin{aligned}
+v & =V(\mathbf{p}, y) \\
+v^{\prime} & =V\left(\mathbf{p}^{\prime}, y\right)
\end{aligned}
$$

\times Express this rise in money terms?
What hypothetical change in income would bring the person back to the starting point?
(and is this the right question to ask...?)

* Gives us a standard definition...

THE COMPENSATING VARIATION

HERE'S STORY NUMBER 2

\times Again suppose:
$+p$ is the original price vector
$+\mathbf{p}$ ' is the price vector after good 1 becomes cheaper.
\times This again causes utility to rise from v to v^{\prime}.
x But now, ask ourselves a different question:
Suppose the price fall had never happened
What hypothetical change in income would have been needed ...

+ ...to bring the person to the new utility level?

IN THIS VERSION OF THE STORY WE GET THE EQUIVALENT VARIATION

$v^{\prime}=V\left(\mathbf{p}^{\prime}, y\right)$	the utility level at new prices \mathbf{p} ' and income y
$v^{\prime}=V(\mathbf{p}, y+\mathrm{EV})$	the new utility level reached at original prices \mathbf{p}
	- The amount EV is just sufficient to "mimic" the effect of going from \boldsymbol{p} to \boldsymbol{p} '.

THE EQUIVALENT VARIATION

CV AND EV...

\times Both definitions have used the indirect utility function.

+ But this may not be the most intuitive approach So look for another standard tool..
\times As we have seen there is a close relationship between the functions V and C.
* So we can reinterpret CV and EV using C.
* The result will be a welfare measure the change in cost of hitting a welfare level.
remember: cost decreases mean welfare increases.

WELFARE CHANGE AS - Δ (COST)

$\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=C(\mathbf{p}, v)-C(\mathbf{p}, v) \quad(-)$ change in cost of hitting utility level v. If positive we have a welfare increase.

- Equivalent Variation as $-\Delta$ (cost):
$\operatorname{EV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=C\left(\mathbf{p}, v^{\prime}\right)-C\left(\mathbf{p}^{\prime}, v^{\prime}\right)$
- Using the above definitions we also have
$\mathrm{CV}\left(\mathbf{p}^{\prime} \rightarrow \mathbf{p}\right)=C\left(\mathbf{p}^{\prime}, v^{\prime}\right)-C\left(\mathbf{p}, v^{\prime}\right)$
$=-\operatorname{EV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)$
$(-)$ change in cost of hitting utility level v^{\prime}. If positive we have a welfare increase.

Looking at welfare change in the reverse direction, starting at \mathbf{p}^{\prime} and moving to \mathbf{p}.
$=-\operatorname{EV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)$

WELFARE MEASURES APPLIED...

* The concepts we have developed are regularly put to work in practice.
* Applied to issues such as:

Consumer welfare indices
Price indices
Cost-Benefit Analysis
\times Often this is done using some (acceptable?) approximations...

COST-OF-LIVING INDICES

COMPENSATED DEMAND AND THE VALUE OF A PRICE FALL (2)

ORDINARY DEMAND AND THE VALUE OF A PRICE FALL

THREE WAYS OF MEASURING THE BENEFITS OF A PRICE FALL

SUMMARY: KEY CONCEPTS
\times Interpretation of Lagrange multiplier
\times Compensating variation
\times Equivalent variation
\quad + CV and EV are measured in monetary units.
\quad In all cases: $\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=-\mathrm{EV}\left(\mathbf{p}^{\prime} \rightarrow \mathbf{p}\right)$.
\times Consumer's surplus
\quad + The CS is a convenient approximation

+ For normal goods: $\mathrm{CV} \leq \mathrm{CS} \leq \mathrm{EV}$.
+ For inferior goods: $\mathrm{CV}>\mathrm{CS}>\mathrm{EV}$.

