MICROECONOMICS
Principles and Analysis

HOUSEHOLD DEMAND AND SUPPLY

WORKING OUT CONSUMER RESPONSES

* The analysis of consumer optimisation gives us some powerful tools:
+ The primal problem of the consumer is what we are really interested in.
+ Related dual problem can help us understand it.
+ The analogy with the firm helps solve the dual.
x The work we have done can map out the consumer's responses
+ to changes in prices
+ to changes in income

SOLVING THE MAX-UTILITY PROBLEM

- The primal problem and its solution

$$
\left.\begin{array}{c}
\max U(\mathbf{x})+\mu\left[y-\sum_{i=1}^{n} p_{i} x_{i}\right] \\
U_{1}\left(\mathbf{x}^{*}\right)=\mu p_{1} \\
U_{2}\left(\mathbf{x}^{*}\right)=\mu p_{2} \\
\cdots(\cdots \cdots \\
U_{n}\left(\mathbf{x}^{*}\right)=\mu p_{n} \\
\sum_{i=1} p_{i} x_{i}^{*}=y
\end{array}\right\}
$$

- Solve this set of equations:

$$
\begin{aligned}
& x_{1}{ }^{*}=D^{1}(\mathbf{p}, y) \\
& x_{2}{ }^{*}=D^{2}(\mathbf{p}, y) \\
& \left.\begin{array}{ccc}
\cdots & \cdots & \ldots \\
x_{n} & =D^{n}(\mathbf{p}, y)
\end{array}\right\} \\
& \sum_{i=1}^{n} p_{i} D^{i}(\mathbf{p}, y)=y
\end{aligned}
$$

- The Lagrangean for the max U problem
- The n+1 first-order conditions, assuming all goods purchased.
- Gives a set of demand functions, one for each good. Functions of prices and incomes.
- A restriction on the n equations.

Follows from the budget constraint

THE RESPONSE FUNCTION

- The response function for the primal problem is demand for good i :

$$
x_{i}^{*}=D^{i}(\mathbf{p}, y)
$$

- The system of equations must have an "adding-up" property:

$$
\sum_{i=1}^{n} p_{i} D^{i}(\mathbf{p}, y)=y
$$

- Each equation in the system must be homogeneous of degree 0 in prices and income. For any $t>0$:

$$
x_{i}^{*}=D^{i}(\mathbf{p}, y)=D^{i}(t \mathbf{p}, t y)
$$

To make more progress we need to exploit the relationship between primal and dual approaches again...

HOW YOU WOULD USE THIS IN PRACTICE...

* Consumer surveys give data on expenditure for each household over a number of categories...
* ...and perhaps income, hours worked etc as well.
x Market data are available on prices.
\times Given some assumptions about the structure of preferences...
x ...we can estimate household demand functions for commodities.
* From this we can recover information about utility functions.

OVERVIEW...
 Household Demand \& Supply

Response
Response
functions
functions
A fundamental decomposition of the effects of a price change.

Slutsky equation

Supply of factors

Examples

CONSUMER'S DEMAND RESPONSES

\times What's the effect of a budget change on demand?
\times Depends on the type of budget constraint.

+ Fixed income?
+ Income endogenously determined?
x And on the type of budget change.
+ Income alone?
+ Price in primal type problem?
+ Price in dual type problem?
\times So let's tackle the question in stages.
× Begin with a type 1 (exogenous income) budget constraint.

EFFECT OF A CHANGE IN INCOME

AN "INFERIOR" GOOD

A GLIMPSE AHEAD...

* We can use the idea of an "income effect" in many applications.
x Basic to an understanding of the effects of prices on the consumer.
* Because a price cut makes a person better off, as would an income increase...

EFFECT OF A CHANGE IN PRICE

AND NOW LET'S LOOK AT IT IN MATHS

* We want to take both primal and dual aspects of the problem...
x ...and work out the relationship between the response functions...
$\times \ldots$ using properties of the solution functions.
* (Yes, it's time for Shephard's lemma again...)

A FUNDAMENTAL DECOMPOSITION

compensated demand

 e the two metho $\begin{gathered}\begin{array}{c}\text { ordinary } \\ \text { demand }\end{array} \\ \text { diting } x_{i}^{*} \text { : }\end{gathered}$ $H^{i}(\mathbf{p}, v)=D^{i}(\mathbf{p}, y)$- Remember: they are two ways of representing the same thing
- Use cost function to substitute for y : $H^{i}(\mathbf{p}, v)=D^{i}(\mathbf{p}, C(\mathbf{p}, v))$
- Gives us an implicit relation in prices and utility.
- Differentiate with respect to p_{j} :
$H_{j}^{i}(\mathbf{p}, \mathbf{v})=D_{j}^{i}(\mathbf{p}, y)+D_{y}^{i}(\mathbf{p}, y) C_{j}(\mathbf{p}, \mathbf{v})$
- Uses function-of-a-function rule again. Remember $y=C(\mathbf{p}, u)$
- Simplify :

$$
\begin{aligned}
H_{j}^{i}(\mathbf{p}, v) & =D_{j}^{i}(\mathbf{p}, y)+D_{y}^{i}(\mathbf{p}, y) H^{j}(\mathbf{p}, v) \\
& =D_{j}^{i}(\mathbf{p}, y)+D_{y}^{i}(\mathbf{p}, y) x_{j}^{*}
\end{aligned}
$$

- Using cost function and Shephard's Lemma again
- From the comp. demand function
- And so we get:
$D_{j}^{i}(\mathbf{p}, y)=H_{j}^{i}(\mathbf{p}, v)-x_{j}^{*} D_{y}^{i}(\mathbf{p}, y)$ " This is the Slutsky equation

THE SLUTSKY EQUATION

$$
D_{j}^{i}(\mathbf{p}, y)=H_{j}^{i}(\mathbf{p}, v)-x_{j}^{*} D_{y}^{i}(\mathbf{p}, y)
$$

- Gives fundamental breakdown of effects of a price change
- Income effect: "I'm better off if the price of elly falls, so I buy more things, including cecream"
- "Substitution effect: When the price of elly falls and l'm kept on the same utility level, I prefer to switch from cecream for dessert"

SLUTSKY: POINTS TO WATCH

x Income effects for some goods may be negative

+ inferior goods.
* For $n>2$ the substitution effect for some pairs of goods could be positive...
+ net substitutes
+ Apples and bananas?
x ... while that for others could be negative
+ net complements
+ Gin and tonic?
\times A neat result is available if we look at the special case where $j=i$.

THE SLUTSKY EQUATION: OWN-PRICE

- Set $j=i$ to get the effect of the price of icecream on the demand for icecream

$$
D_{i}^{i}(\mathbf{p}, y)=H_{i}^{i}(\mathbf{p}, v)-x_{i}^{*} D_{y}^{i}(\mathbf{p}, y)
$$

- Own-price substitution effect must be negative
- Follows from the results on the firm
- Price increase means less disposable income
- So, if the demand for i does not decrease when y rises, then it must decrease when p_{i} rises.

PRICE FALL: NORMAL GOOD

PRICE FALL: INFERIOR GOOD

FEATURES OF DEMAND FUNCTIONS

x Homogeneous of degree zero.

* Satisfy the "adding-up" constraint.
× Symmetric substitution effects.
* Negative own-price substitution effects.
x Income effects could be positive or negative:
+ in fact they are nearly always a pain.

OVERVIEW..:

Household Demand \& Supply

```
Response
functions
```

Extending the
Slutsky analysis.

Slutsky
equation

Supply of
factors

Examples

CONSUMER DEMAND: ALTERNATIVE APPROACH

* Now for an alternative way of modelling consumer responses.
* Take a type-2 budget constraint (endogenous income).
× Analyse the effect of price changes...
x ...allowing for the impact of price on the valuation of income

CONSUMER EQUILIBRIUM: ANOTHER VIEW

- Equilibrium is familiar: same FOCs as before.

TWO USEFUL CONCEPTS

x From the analysis of the endogenous-income case derive two other tools:

1. The offer curve:

+ The path of equilibrium bundles mapped out by price variation
+ Depends on "pivot point" - the endowment vector R

2. The household's supply curve:

+ The "mirror image" of household demand.
+ Again the role of R is crucial.

THE OFFER CURVE

HOUSEHOLD SUPPLY

DECOMPOSITION - ANOTHER LOOK

- Take ordinary demand for good i :
- Function of prices and income

$$
x_{i}^{*}=D^{i}(\mathbf{p}, y)
$$

- Substitute in for y :

$$
x_{i}^{*}=D^{i}(\mathbf{p} . \Sigma . n . R .)
$$ direct effect of

- Differenti p_{i} on demand ect to $p /$

$$
\begin{aligned}
\frac{\mathrm{d} x_{i}^{*}}{\mathrm{~d} p_{j}} & =D_{j}^{i}(\mathbf{p}, y)+D_{y}^{i}(\mathbf{p}, y) \frac{\mathrm{d} y}{\mathrm{~d} p_{j}} \\
& =D_{j}^{i}(\mathbf{p}, y)+D_{y}^{i}(\mathbf{p}, y) R_{j}
\end{aligned}
$$

- Now recall the Slutsky relation:

$$
D_{j}^{i}(\mathbf{p}, y)=H_{j}^{i}(\mathbf{p}, v)-x_{j}^{*} D_{y}^{i}(\mathbf{p}, y)
$$

- Just the same as on earlier slide
- Use this to substitute for D_{j}^{i} in the above;

$$
\frac{\mathrm{d} x_{i}^{*}}{\mathrm{~d} p_{j}}=H_{j}^{i}(\mathbf{p}, v)+\left[R_{j}-x_{j}^{*}\right] D_{y}^{i}(\mathbf{p}, y)
$$

This is the modified Slutsky equation

THE MODIFIED SLUTSKY EQUATION:

$$
\frac{\mathrm{d} x_{i}^{*}}{\mathrm{~d} p_{j}}=H_{j}^{i}(\mathbf{p}, \mathrm{v})+\left[R_{j}-x_{j}^{*}\right] D_{y}^{i}(\mathbf{p}, y)
$$

- Substitution effect has same interpretation as before.
- Income effect has two terms.
- This term is just the same as before.
- This term makes all the difference: oNegative if the person is a net demander. oPositive if he is a net supplier.
OVERVIEW.:: $\begin{aligned} & \text { Household } \\ & \text { Demand \& Supply }\end{aligned}$

Response
functions

Labour supply, savings...

```
Slutsky equation
```

Supply of factors

Examples

SOME EXAMPLES

* Many important economic issues fit this type of model :
+ Subsistence farming.
+ Saving.
+ Labour supply.
x It's important to identify the components of the model.
+ How are the goods to be interpreted?
+ How are prices to be interpreted?
+ What fixes the resource endowment?
* To see how key questions can be addressed.
+ How does the agent respond to a price change?
+ Does this depend on the type of resource endowment?

SUBSISTENCE AGRICULTURE...

THE SAVINGS PROBLEM...

LABOUR SUPPLY...

MODIFIED SLUTSKY: LABOUR SUPPLY

- Take the modified Slutsky:

$$
\frac{\mathrm{d} x_{i}^{*}}{\mathrm{~d} p_{j}}=H_{j}^{i}(\mathbf{p}, \mathrm{v})+\left[R_{j}-x_{j}^{*}\right] D_{y}^{i}(\mathbf{p}, y)
$$

- Assume that supply of good i is the only source of income (so $y=p_{i}\left[R_{i}-x_{i}\right]$). Then, for the effect of p_{i} on $x_{i}{ }^{*}$ we get:

$$
\frac{\mathrm{d} x_{i}^{*}}{\mathrm{~d} p_{i}}=H_{i}^{i}(\mathbf{p}, \mathrm{v})+\frac{y}{p_{i}} D_{y}^{i}(\mathbf{p}, y)
$$

- The general form. We are going to make a further simplifying assumption
- Suppose good i is labour time; then $R_{i}-x_{i}$ is the labour you sell in the market (l.e. leisure time not consumed); p_{i} is the wage rate
- Divide by labour supply;

Estimate the whole demand system from family expenditure data...

SIMPLE FACTS ABOUT LABOUR SUPPLY

Source: Blundell and Walker (Economic Journal, 1982)

- The estimated elasticities...
- Men's labour supply is backward bending!
- Leisure is a "normal good" for everyone
- Children tie down women's substitution effect...

SUMMARY

x How it all fits together:

* Compensated (H) and ordinary (D) demand functions can be hooked together.
\times Slutsky equation breaks down effect of price i on demand for j.
x Endogenous income introduces a new twist when prices change.

WHAT NEXT?

* The welfare of the consumer.
* How to aggregate consumer behaviour in the market.

