MICROECONOMICS

Principles and Analysis

CONSUMER OPTIMISATION

WHAT WE'RE GOING TO DO:

- We'll solve the consumer's optimisation problem...
- ...using methods that we've already introduced.
- This enables us to re-cycle old techniques and results.
- **×** A tip:
 - + Run the presentation for firm optimisation...
 - + look for the points of comparison...
 - + and try to find as many reinterpretations as possible.

THE PROBLEM

Maximise consumer's utility
 U(x)

U assumed to satisfy the standard "shape" axioms

• Subject to feasibility constraint $\mathbf{x} \in X$

Assume consumption set X is the non-negative orthant.

• and to the budget constraint

 $\sum_{i=1}^{n} p_i x_i \le y$

The version with fixed money income

OVERVIEW...

Consumer: Optimisation

Two fundamental views of consumer optimisation

Primal and Dual problems

Lessons from the Firm

Primal and Dual again

AN OBVIOUS APPROACH?

- We now have the elements of a standard constrained optimisation problem:
 - + the constraints on the consumer.
 - + the objective function.
- **×** The next steps might seem obvious:
 - + set up a standard Lagrangean.
 - + solve it.
 - + interpret the solution.
- But the obvious approach is not always the most insightful.
- **×** We're going to try something a little sneakier...

THINK LATERALLY...

- In microeconomics an optimisation problem can often be represented in more than one form.
- Which form you use depends on the information you want to get from the solution.
- **×** This applies here.
- The same consumer optimisation problem can be seen in two different ways.
- I've used the labels "primal" and "dual" that have become standard in the literature.

A FIVE-POINT PLAN

THE PRIMAL PROBLEM

- The consumer aims to maximise utility...
- Subject to budget constraint
- Defines the primal problem.
- Solution to primal problem

$$\max U(\mathbf{x}) \text{ subject to}$$
$$\sum_{i=1}^{n} p_i x_i \le y$$

 But there's another way at looking at this

THE DUAL PROBLEM

- Alternatively the consumer could aim to minimise cost...
- Subject to utility constraint
- Defines the dual problem.
- Solution to the problem

• Cost minimisation by the firm

minimise

 $\sum_{i=1}^{n} p_i x_i$

subject to $U(\mathbf{x}) \geq v$

But where have we seen the dual problem before?

TWO TYPES OF COST MINIMISATION

- The similarity between the two problems is not just a curiosity.
- **×** We can use it to save ourselves work.
- All the results that we had for the firm's "stage 1" problem can be used.
- **×** We just need to "translate" them intelligently
 - + Swap over the symbols
 - + Swap over the terminology
 - + Relabel the theorems

OVERVIEW...

Consumer: Optimisation

Reusing results on optimisation

	Primal and		
	Dual problems		
	Lessons from		
	the Firm		
	Primal and		
	Dual again		

A LESSON FROM THE FIRM

• Compare costminimisation for the firm...

>and for the consumer

 The difference is only in notation

 So their solution functions and response functions must be the same

COST-MINIMISATION: STRICTLY QUASICONCAVE U

• Minimise $\sum_{i=1}^{n} p_i x_i + \lambda [\boldsymbol{v} \leq \boldsymbol{U}(\mathbf{x})]$

• Because of strict quasiconcavity we have an interior solution.

• A set of n+1 First-Order Conditions

 $\lambda^* U_1(\mathbf{x}^*) = p_1$ $\lambda^* U_2(\mathbf{x}^*) = p_2$ $\lambda^* U_n(\mathbf{x}^*) = p_n$ $v = U(\mathbf{x}^*)$ utility constraint • Use the objective function

- ...and output constraint
-to build the Lagrangean
- Differentiate w.r.t. x₁, ..., x_n and set equal to 0.
- ... and w.r.t λ
- Denote cost minimising values with a *.

IF ICS CAN TOUCH THE AXES...

• Minimise

$$\sum_{i=1}^{n} p_i x_i + \lambda [v - U(\mathbf{x})]$$

- Now there is the possibility of corner solutions.
- A set of n+1 First-Order Conditions

 $\lambda^* U_1(\mathbf{x}^*) \leq p_1$ $\lambda^* U_2(\mathbf{x}^*) \leq p_2$ $\lambda^* U_n(\mathbf{x}^*) \leq p_n$ $\mathcal{V} = U(\mathbf{x}^*)$ Can get "<" if optimal value of this good is 0

FROM THE FOC

If both goods *i* and *j* are purchased and MRS is defined then...

 ^U_i(**x**^{*}) = p_i

MRS = price ratio

If good *i* could be zero then...

 $\frac{U_i(\mathbf{x}^*)}{U_j(\mathbf{x}^*)} \le \frac{p_i}{p_j}$

• MRS_{*ji*} \leq price ratio

"implicit" price = market price

■ "implicit" price ≤ market price

THE SOLUTION...

• Solving the FOC, you get a cost-minimising value for each good...

 $\mathbf{x}_i^* = H^i(\mathbf{p}, v)$

• ...for the Lagrange multiplier

 $\lambda^* = \lambda^*(p, v)$

- ...and for the minimised value of cost itself.
- The consumer's cost function or expenditure function is defined as

THE COST FUNCTION HAS THE SAME PROPERTIES AS FOR THE FIRM

- Non-decreasing in every price. Increasing in at least one price
- × Increasing in utility υ .
- × Concave in p
- **×** Homogeneous of degree 1 in all prices **p**.
- × Shephard's lemma.

OTHER RESULTS FOLLOW

• Shephard's Lemma gives demand as a function of prices and utility $H^i(\mathbf{p}, v) = C_i(\mathbf{p}, v)$

H is the "*compensated*" or conditional demand function.

• Properties of the solution function determine behaviour of response functions. Downward-sloping with respect to its own price, etc...

• "Short-run" results can be used to model side constraints For example rationing.

COMPARING FIRM AND CONSUMER

Cost-minimisation by the firm...

- ...and expenditure-minimisation by the consumer
- ...are effectively identical problems.
- So the solution and response functions are the same:

	<u>Firm</u>	<u>Consumer</u>
Problem:	$\min_{\mathbf{z}} \sum_{i=1}^{m} w_i z_i + \lambda [q - \phi(\mathbf{z})]$	$\min_{\mathbf{x}} \sum_{i=1}^{n} p_i x_i + \lambda [\upsilon - U(\mathbf{x})]$
 Solution function: 	$C(\mathbf{w}, q)$	$C(\mathbf{p}, v)$
 Response function: 	$z_i^* = H^i(\mathbf{w}, q)$	$x_i^* = H^i(\mathbf{p}, \ v)$

OVERVIEW...

Consumer: Optimisation

Exploiting the two approaches

Primal and Dual problems

Lessons from the Firm

Primal and Dual again

THE PRIMAL AND THE DUAL...

• There's an attractive symmetry about the two approaches to the problem

• In both cases the *p*s are given and you choose the *x*s. But...

• ...constraint in the primal becomes objective in the dual...

• ...and vice versa.

A NEAT CONNECTION

- Compare the primal problem of the consumer...
-with the dual problem

 The two are equivalent

 So we can link up their solution functions and response functions

UTILITY MAXIMISATION

• Maximise Lagrange multiplier $U(\mathbf{x}) + \mu \left[\begin{array}{c} \mathbf{y} \ge \sum_{i=1}^{n} p_i \mathbf{x}_i \end{array} \right]$

• If *U* is strictly quasiconcave we have an interior solution.

• A set of n+1 First-Order Conditions $U_1(\mathbf{x}^*) = \mu^* p_1$ $U_2(\mathbf{x}^*) = \mu^* p_2$ budget $U_n(\mathbf{x}^*) = \mu^* p_n$ $U_n(\mathbf{x}^*) = \mu^* p_n$

- Use the objective function
- ...and budget constraint
- •...to build the Lagrangean
- Differentiate w.r.t. x₁, ..., x_n and set equal to 0.
- ... and w.r.t μ
- Denote utility maximising values with a *.

FROM THE FOC

• If both goods *i* and *j* are purchased and MRS is defined then...

$$\frac{U_i(\mathbf{x}^*)}{U_j(\mathbf{x}^*)} = \frac{p_i}{p_j}$$

• MRS = price ratio

(same as before)

- "implicit" price = market price
- If good *i* could be zero then... $\frac{U_i(\mathbf{x}^*)}{U_j(\mathbf{x}^*)} \leq \frac{p_i}{p_j}$
- $MRS_{ji} \leq price ratio$

■ "implicit" price ≤ market price

THE SOLUTION...

• Solving the FOC, you get a utility-maximising value for each good...

 $\mathbf{x}_i^* = D^i(\mathbf{p}, y)$

• ...for the Lagrange multiplier

 $\mu^* = \mu^*(\mathbf{p}, y)$

- ...and for the maximised value of utility itself.
- The indirect utility function is defined as

A USEFUL CONNECTION

• The indirect utility function maps prices and budget into maximal utility $v = V(\mathbf{p}, y)$

The indirect utility function works like an "inverse" to the cost function

• The cost function maps prices and utility into minimal budget $y = C(\mathbf{p}, \ v)$ The two solution functions have to be consistent with each other. Two sides of the same coin

• Therefore we have: $v = V(\mathbf{p}, C(\mathbf{p}, v))$ $y = C(\mathbf{p}, V(\mathbf{p}, y))$

Odd-looking identities like these can be useful

THE INDIRECT UTILITY FUNCTION HAS SOME FAMILIAR PROPERTIES...

(All of these can be established using the known properties of the cost function)

- Non-increasing in every price. Decreasing in at least one price
- × Increasing in income y.
- × quasi-convex in prices p
- **×** Homogeneous of degree zero in (**p**, *y*)

ROY'S IDENTITY

UTILITY AND EXPENDITURE

- Utility maximisation
- ...and expenditure-minimisation by the consumer
- ...are effectively two aspects of the same problem.
- So their solution and response functions are closely connected:

PrimalDual• Problem:
$$\max_{\mathbf{x}} U(\mathbf{x}) + \mu \left[y - \sum_{i=1}^{n} p_i x_i \right]$$
 $\min_{\mathbf{x}} \sum_{i=1}^{n} p_i x_i + \lambda [v - U(\mathbf{x})]$ • Solution
function: $V(\mathbf{p}, y)$ $C(\mathbf{p}, v)$ • Response
function: $x_i^* = D^i(\mathbf{p}, y)$ $x_i^* = H^i(\mathbf{p}, v)$

SUMMARY

A lot of the basic results of the consumer theory can be found without too much hard work. We need two "tricks":

A simple relabelling exercise:

- cost minimisation is reinterpreted from output targets to utility targets.
- The primal-dual insight:
 - utility maximisation subject to budget is equivalent to cost minimisation subject to utility.

1. COST MINIMISATION: TWO APPLICATIONS

THE FIRM

THE CONSUMER

- min cost of inputs
- subject to output target
- Solution is of the form C(w,q)

- min budget
- subject to utility target

Solution is of the form C(p, v)

2. CONSUMER: EQUIVALENT APPROACHES

- PRIMAL
- max utility
- subject to budget constraint
- Solution is a function of (p,y)

- DUAL
- min budget
- subject to utility constraint
- Solution is a function of (p, v)

BASIC FUNCTIONAL RELATIONS

WHAT NEXT?

- ***** Examine the <u>response of consumer demand</u> to changes in prices and incomes.
- **×** Household supply of goods to the market.
- ★ Develop the concept of <u>consumer welfare</u>