

A METHOD OF ANALYSIS

- Some treatments of micro-economics handle consumer analysis first.
- But we have gone through the theory of the firm first for a good reason:
- We can learn a lot from the ideas and techniques in the theory of the firm...
- ...and reuse them.

REUSING RESULTS FROM THE FIRM

- What could we learn from the way we analysed the firm...?
- * How to set up the description of the environment.
- * How to model optimization problems.
- How solutions may be carried over from one problem to the other
- × ...and more .

THINGS THAT SHAPE THE CONSUMER'S PROBLEM

- **★** The set *X* and the number *y* are both important.
- ★ But they are associated with two distinct types of constraint.
- **★** We'll save *y* for later and handle *X* now.
- ★ (And we haven't said anything yet about objectives...)

THE CONSUMPTION SET * The set X describes the basic entities of the consumption problem. * Not a description of the consumer's opportunities. + That comes later. * Use it to make clear the type of choice problem we are dealing with; for example: + Discrete versus continuous choice (refrigerators vs. contents of refrigerators) + Is negative consumption ruled out? * "X ∈ X" means "X belongs the set of logically feasible baskets."

▲ BASIC PROBLEM ★ In the case of the firm we have an observable constraint set (input requirement set)... ★ ...and we can reasonably assume an obvious objective function (profits) ★ But, for the consumer it is more difficult. ★ We have an observable constraint set (budget set)... ★ But what objective function?

THE AXIOMATIC APPROACH

- * We could "invent" an objective function.
- * This is more reasonable than it may sound:
 - + It is the standard approach.
 - + See later in this presentation.
- But some argue that we should only use what we can observe:
 - + Test from market data?
 - + The "revealed preference" approach.
 - + Deal with this now.
- ★ Could we develop a coherent theory on this basis alone?

USING OBSERVABLES ONLY

- * Model the opportunities faced by a consumer.
- * Observe the choices made.
- ★ Introduce some minimal "consistency" axioms.
- ★ Use them to derive testable predictions about consumer behaviour

REVEALED PREFERENCE: IS IT USEFUL?

- × You can get a lot from just a little:
 - + You can even work out substitution effects.
- ***** WARP provides a simple consistency test:
 - + Useful when considering consumers en masse.
 - + WARP will be used in this way later on.
- You do not need any special assumptions about consumer's motives:
 - + But that's what we're going to try right now.
 - + It's time to look at the mainstream modelling of preferences.

OVERVIEW... Consumption: Basics The setting Standard approach to modelling preferences Revealed Preference Axiomatic Approach

THE AXIOMATIC APPROACH

- ★ Useful for setting out a priori what we mean by consumer preferences.
- * But, be careful...
- * ...axioms can't be "right" or "wrong,"...
- ... although they could be inappropriate or over-restrictive.
- * That depends on what you want to model.
- x Let's start with the basic relation...

TRICKS WITH UTILITY FUNCTIONS

- ★ U-functions represent preference orderings.
- ★ So the utility scales don't matter.
- ★ And you can transform the *U*-function in any (monotonic) way you want...

IRRELEVANCE OF CARDINALISATION $U(x_1, x_2, ..., x_n)$ So take any utility function This transformation represents the same preferences... • $\log(U(x_1, x_2, ..., x_n))$...and so do both of these • And, for any monotone increasing φ, this represent the same preferences. • $\exp(U(x_1, x_2, ..., x_n))$ • $\sqrt{(U(x_1, x_2, ..., x_n))}$ • U is defined up to a monotonic transformation • $\varphi(U(x_1, x_2, ..., x_n))$ ■Each of these forms will generate the same contours. Let's view this graphically.

SUMMARY: WHY PREFERENCES CAN BE A PROBLEM

- Unlike firms there is no "obvious" objective function
- ★ Unlike firms there is no observable objective function.
- ★ And who is to say what constitutes a "good" assumption about preferences…?

REVIEW: BASIC CONCEPTS

- * Consumer's environment
- * How budget sets work
- * WARP and its meaning
- * Axioms that give you a utility function
- * Axioms that determine its shape

WHAT NEXT?

- **★** Setting up consumer's optimisation problem
- ★ Comparison with that of the firm
- ★ Solution concepts.