

CONVEX SETS

\times Ideas of convexity used throughout microeconomics
\times Restrict attention to real space R^{n}
\times I.e. sets of vectors $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

* Use the concept of convexity to define
+ Convex functions
+ Concave functions
+ Quasiconcave functions

QUASICONCAVITY

* In mathematics, a quasiconvex function is a real-valued function defined on an interval or on a convex subset of a real vector space such that the inverse image of any set of the form is a convex set.
* Equivalently, a function defined on a convex subset S of a real vector space is quasiconvex if whenever $x, y \in S$ and $\lambda \in[0,1]$ then

QUASICONCAVITY

* A quasiconcave function is a function whose negative is quasiconvex, and a strictly quasiconcave function is a function whose negative is strictly quasiconvex.
A (strictly) quasiconvex function has (strictly) convex lower contour sets, while a (strictly) quasiconcave function has (strictly) convex upper contour sets.

QUASICONCAVITY, EXAMPLE

* A quasiconvex function which is not convex.

