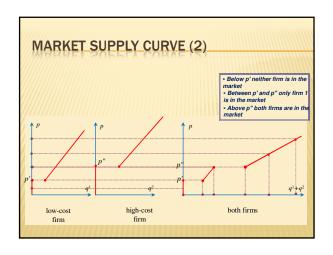
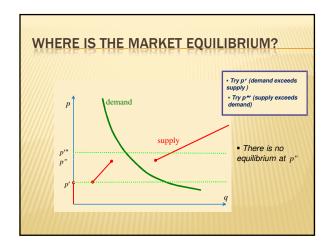

INTRODUCTION

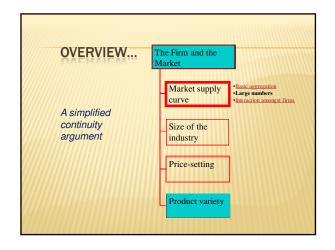
- In previous presentations we've seen how an optimising agent reacts to the market.
 - Use the comparative statics method
- * We could now extend this to other similar problems.
- But first a useful exercise in microeconomics:
 - Relax the special assumptions
 - We will do this in two stages:
 - Move from one price-taking firm to many
 - Drop the assumption of price-taking behaviour.

AGGREGATION OVER FIRMS

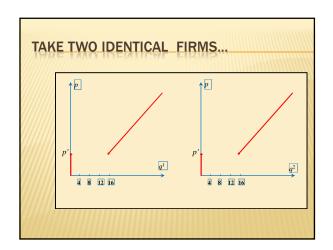

- * We begin with a very simple model.
- * Two firms with similar cost structures.
- * But using a very special assumption.
- * First we look at the method of getting the market supply curve.
- Then note the shortcomings of our particular example.

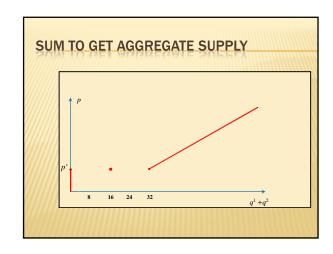


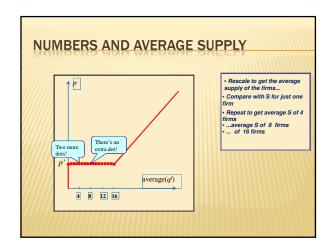
SIMPLE AGGREGATION

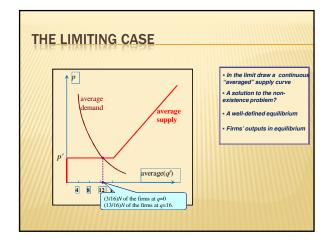

- Individual firm supply curves derived from MC curves
- "Horizontal summation" of supply curves
- Market supply curve is flatter than supply curve for each firm See presentation on duopoly
- But the story is a little strange:
 - Each firm act as a price taker even though there is just one other firm in the market. Later in this
 - Number of firms is fixed (in this case at 2)
 - Firms' supply curve is different from that in previous presentations

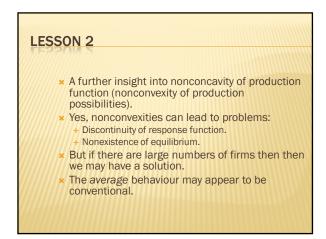
X Two price-taking firms. X Similar "piecewise linear" MC curves: + Each firm has a fixed cost. + Marginal cost rises at the same constant rate. + Firm 1 is the low-cost firm. X Analyse the supply of these firms over three price ranges.

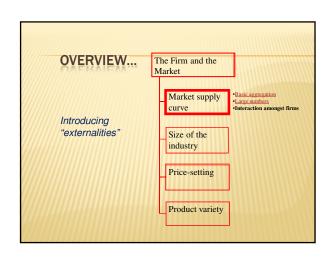


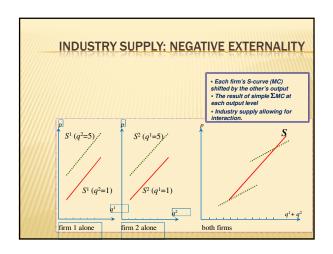


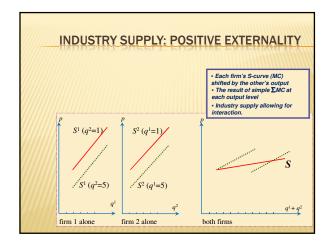

X Nonconcave production function can lead to discontinuity in supply function. Discontinuity in supply functions may mean that there is no equilibrium.

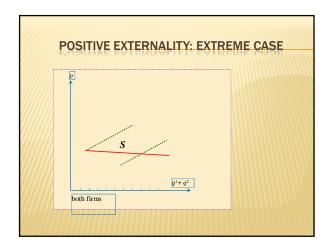


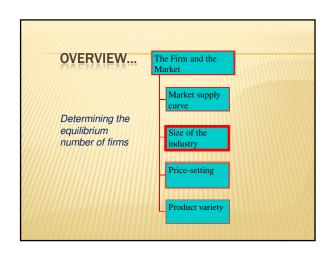

★ The problem of nonexistent equilibrium arose from discontinuity in supply. ★ But is discontinuity likely to be a serious problem? ★ Let's go through another example. + Similar cost function to previous case + This time – identical firms + (Not essential – but it's easier to follow)



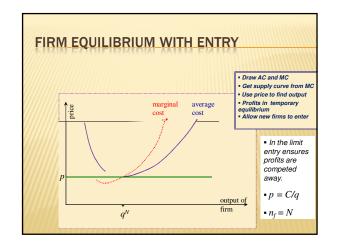


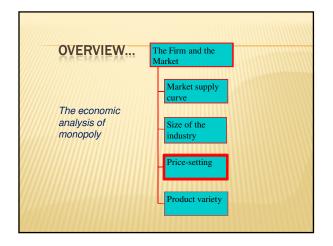





INTERACTION AMONGST FIRMS * Consider two main types of interaction * Negative externalities + Pollution + Congestion + ... * Positive externalities + Training + Networking + Infrastructure * Other interactions? + For example, effects of one firm on input prices of other firms + Normal multimarket equilibrium + Not relevant here

THE ISSUE


- * Previous argument has taken given number of firms.
- * This is unsatisfactory:
 - How is the number to be fixed?
 - Should be determined within the model
 - ...by economic behaviour of firms
 - ...by conditions in the market.
- Look at the "entry mechanism." Base this on previous model
- Must be consistent with equilibrium behaviour
- So, begin with equilibrium conditions for a single firm...


ANALYSING FIRMS' EQUILIBRIUM

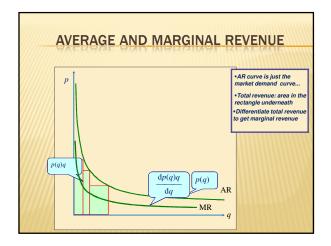
- * price = marginal cost
 - determines output of any one firm.
- **x** price ≥ average cost
 - determines number of firms.
- * An entry mechanism:
 - If the p C/q gap is large enough then this may permit another firm to enter.
 - Applying this rule iteratively enables us to determine the size of the industry.

OUTLINE OF THE PROCESS

- x (0) Assume that firm 1 makes a positive profit
- \star (1) Is pq C ≤ set-up costs of a new firm?
- ...if YES then stop. We've got the eqm # of firms
 - ...otherwise continue:
- x (2) Number of firms goes up by 1
- (3) Industry output goes up
- (4) Price falls (D-curve) and individual firms adjust output (individual firm's S-curve)
- (5) Back to step 1

THE ISSUES

- * We've taken for granted a firm's environment.
- * What basis for the given price assumption?
- * What if we relax it for a single firm?
- * Get the classic model of monopoly:
 - An elementary story of market power A bit strange – what ensures there is only one firm?
 - The basis for many other models of the firm.

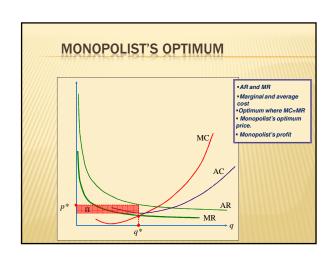

A SIMPLE PRICE-SETTING FIRM

- × Compare with the price-taking firm.
- * Output price is no longer exogenous.
- * We assume a determinate demand curve.
- × No other firm's actions are relevant.
- * Profit maximisation is still the objective.

MONOPOLY - MODEL STRUCTURE

- * We are given the inverse demand function:
 - p = p(q)
 - Gives the price that rules if the monopolist delivers q to the market.
 - For obvious reasons, consider it as the average revenue curve
- Total revenue is:
 - p(q)q
- Differentiate to get monopolist's marginal revenue (MR):

 - $p_q(\bullet)$ means $dp(\bullet)/dq$
- Clearly, if $p_q(q)$ is negative (demand curve is downward sloping), then MR < AR.


MONOPOLY - OPTIMISATION PROBLEM

- * Introduce the firm's cost function C(q).
 - Same basic properties as for the competitive firm.
- From C we derive marginal and average cost:

 - MC: $C_q(q)$. AC: C(q)/q.
- **\times** Given C(q) and total revenue p(q)q profits are:
 - $\Pi(q) = p(q)q C(q).$
- ★ The shape of II is important:
 - We assume it to be differentiable
 - Whether it is concave depends on both $C(\bullet)$ and $p(\bullet)$.
 - Of course $\Pi(0) = 0$.
- Firm maximises $\Pi(q)$ subject to $q \ge 0$.

MONOPOLY - SOLVING THE PROBLEM **x** Problem is "max $\Pi(q)$ s.t. $q \ge 0$," where: $\Pi(q) = p(q)q - C(q).$ * First- and second-order conditions for interior maximum: $\Pi_{q}\left(q\right) =0.$ $\Pi_{qq}\left(q\right) <0.$ Evaluating the FOC: $p(q) + p_q(q)q - C_q(q) = 0.$ Rearrange this: + p(q) + $p_q(q)q = C_q(q)$ + "Marginal Revenue = Marginal Cost" This condition gives the solution. From above get optimal output q^* . Put q^* in $p(\bullet)$ to get monopolist's price:

 $p^* = p(q^*).$

MONOPOLY - PRICING RULE

Introduce the elasticity of demand η:

$$+ \eta := d(\log q) / d(\log p)$$

$$+ = p(q) / qp_q(q)$$

$$+ \eta < 0$$

* First-order condition for an interior maximum

$$+ p(q) + p_q(q)q = C_q(q)$$

...can be rewritten as

+
$$p(q) [1+1/\eta] = C_q(q)$$

This gives the monopolist's pricing rule:

$$+ p(q) = \frac{C_q(q)}{1 + 1/\eta}$$

MONOPOLY - THE ROLE OF DEMAND

× Suppose demand were changed to

$$+a+bp(q)$$

a and b are constants.

Marginal revenue and demand elasticity are now:

 $MR(q) = bp_q(q) \ q + [a + bp(q)]$ $\eta = [a/b + p(q)] / qp_q(q)$

Rotate the demand curve around (p^*,q^*) . + db>0 and $da = -p(q^*)$ db < 0. + Price at q^* remains the same. + Marginal revenue at q^* increases – $dMR(q^*) > 0$.

Abs value of elasticity at q^* decreases – $d|\eta| < 0$. But what happens to optimal output?

Differentiate FOC in the neighbourhood of q^* :

 $dMR(q^*)db + \Pi_{qq} dq^* = 0$

So $dq^* > 0$ if db > 0.

MONOPOLY - ANALYSING THE OPTIMUM

* Take the basic pricing rule

$$+ p(q) = \frac{C_q(q)}{1 + 1/\eta}$$

Use the definition of demand elasticity

•
$$p(q) \ge C_q(q)$$

 $p(q) \ge C_q(q)$ $p(q) > C_q(q) \text{ if } |\eta| < \infty.$

"price > marginal cost"

Clearly as |η| decreases:

output decreases.

gap between price and marginal cost increases.

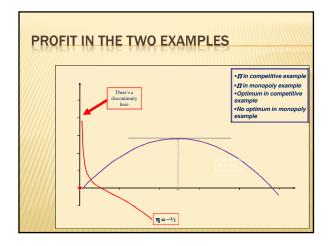
■ What happens if $|\eta| \le 1$ $(\eta \ge -1)$?

WHAT IS GOING ON?

* To understand why there may be no solution consider two examples.

x A firm in a competitive market: $\eta = -\infty$

$$+p(q) = p$$


***** A monopoly with inelastic demand: $\eta = -\frac{1}{2}$

$$+ p(q) = aq^{-2}$$

Same quadratic cost structure for both:

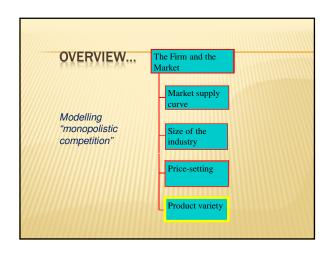
$$+ C(q) = c_0 + c_1 q + c_2 q^2$$

Examine the behaviour of $\Pi(q)$.

THE RESULT OF SIMPLE MARKET POWER

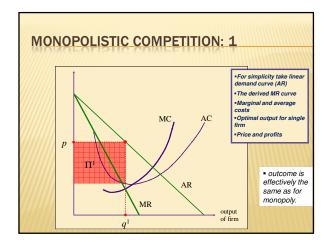
* There's no supply curve: + For competitive firm market price is sufficient to determine output.

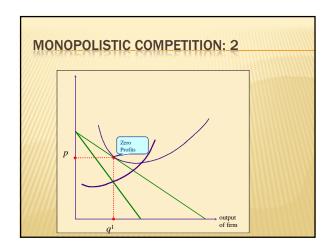
Here output depends on shape of market demand curve.


Price is artificially high:

Price is above marginal cost

Price/MC gap is larger if demand is inelastic


There may be no solution:


What if demand is very inelastic?

MARKET POWER AND PRODUCT DIVERSITY

- Each firm has a downward-sloping demand curve:
 + Like the case of monopoly.
- * Firms' products may differ one from another.
- New firms can enter with new products.
- Diversity may depend on size of market.
- Introduces the concept of "monopolistic competition."
- Follow the method competitive firm:
 - + Start with the analysis of a single firm.
 - Entry of new firms competes away profits.

REVIEW

- Individual supply curves are discontinuous: a problem for market equilibrium?
- × A large-numbers argument may help.
- The size of the industry can be determined by a simple "entry" model
- With monopoly equilibrium conditions depend on demand elasticity
- Monopoly + entry model yield monopolistic competition.

WHAT NEXT?

- We could move on to more complex issues of industrial organisation.
- Or apply the insights from the firm to the consumer.