MICROECONOMICS

Principles and Analysis

THE MULTI-OUTPUT FIRM

INTRODUCTION

* This presentation focuses on analysis of firm producing more than one good
+ modelling issues
+ production function
+ profit maximisation
* For the single-output firm, some things are obvious:
+ the direction of production
+ returns to scale
+ marginal products
\times But what of multi-product processes?
* Some rethinking required...?
+ nature of inputs and outputs?
+ tradeoffs between outputs?
+ counterpart to cost function?

OVERVIEW The Multi-Output Firm

A fundamental concept

Production
possibilities
Profit
maximisation

MULTI-PRODUCT FIRM: ISSUES

* "Direction" of production
+ Need a more general notation
* Ambiguity of some commodities
+ Is paper an input or an output?
* Aggregation over processes
+ How do we add firm 1's inputs and firm 2's outputs?

NET OUTPUT

* Net output, written as q_{i},
+ if positive denotes the amount of good i produced as output
+ if negative denotes the amount of good i used up as output
* Key concept
+ treat outputs and inputs symmetrically
+ offers a representation that is consistent
* Provides consistency
+ in aggregation
+ in "direction" of production

APPROACHES TO OUTPUTS AND INPUTS


```
-A standard "accounting" approach
"An approach using "net outputs"
-How the two are related
- A simple sign convention
```

Outputs:	+net additions to the stock of a good
Inputs:	-reductions in the stock of a good

AGGREGATION

* Consider an industry with two firms
+ Let q_{i}^{f} be net output for firm f of good $i, f=1,2$
+ Let q_{i} be net output for whole industry of good i
* How is total related to quantities for individual firms?
+ Just add up
$+q_{i}=q_{i}^{1}+q_{i}^{2}$
* Example 1: both firms produce i as output
$+q_{i}^{1}=100, q_{i}^{2}=100$
$+q_{i}=200$
- Example 2: both firms use i as input
$+q_{i}^{1}=-100, q_{i}^{2}=-100$
$+q_{i}=-200$
x Example 3: firm 1 produces i that is used by firm 2 as input
$+q_{i}^{1}=100, q_{i}^{2}=-100$
$+q_{i}=0$

NET OUTPUT: SUMMARY

* Sign convention is common sense
x If i is an output...
+ addition to overall supply of i
+ so sign is positive
x If i is an inputs
+ net reduction in overall supply of i
+ so sign is negative
* If i is a pure intermediate good
+ no change in overall supply of i
+ so assign it a zero in aggregate

REWRITING THE PRODUCTION FUNCTION...

* Reconsider single-output firm example given earlier
+ goods 1,..., m are inputs
+ good $m+1$ is output
$+n=m+1$
* Conventional way of writing feasibility condition:
$+q \leq \phi\left(z_{1}, z_{2}, \ldots ., z_{m}\right)$
+ where ϕ is the production function
\times Express this in net-output notation and rearrange:
$+q_{n} \leq \phi\left(-q_{1},-q_{2}, \ldots .,-q_{n-1}\right)$
$+q_{n}-\phi\left(-q_{1},-a_{2}, \ldots .,-a_{n-1}\right) \leq 0$
* Rewrite this relationship as
$+\Phi\left(q_{1}, q_{2}, \ldots ., q_{n-1}, q_{n}\right) \leq 0$
+ where Φ is the implicit production function
* Properties of Φ are implied by those of $\phi \ldots$

THE PRODUCTION FUNCTION Φ

* Recall equivalence for single output firm:
$+q_{n}-\phi\left(-q_{1},-q_{2}, \ldots,-q_{n-1}\right) \leq 0$
$+\Phi\left(q_{1}, q_{2}, \ldots ., a_{n-1}, a_{n}\right) \leq 0$
* So, for this case:
$+\Phi$ is increasing in $q_{1}, q_{2}, \ldots ., a_{n}$
+ if ϕ is homogeneous of degree $1, \Phi$ is homogeneous of degree 0
+ if ϕ is differentiable so is Φ
+ for any $i, j=1,2, \ldots, n-1 \mathrm{MRTS}_{i j}=\Phi_{j}(\mathbf{q}) / \Phi_{i}(\mathbf{q})$
\times It makes sense to generalise these...

THE PRODUCTION FUNCTION Φ (MORE)

* For a vector q of net outputs
$+q$ is feasible if $\Phi(q) \leq 0$
$+q$ is technically efficient if $\Phi(q)=0$
$+q$ is infeasible if $\Phi(q)>0$
\times For all feasible q:
$+\Phi(q)$ is increasing in $q_{1}, q_{2}, \ldots, q_{n}$
+ if there is CRTS then Φ is homogeneous of degree 0
+ if ϕ is differentiable so is Φ
+ for any two inputs i, j, MRTS $_{i j}=\Phi_{j}(\mathbf{q}) / \Phi_{i}(\mathbf{q})$
+ for any two outputs i, j, the marginal rate of transformation of i into j is $\mathrm{MRT}_{i j}=\Phi_{j}(\mathbf{q}) / \Phi_{i}(\mathbf{q})$
\times Illustrate the last concept using the transformation curve...

FIRM'S TRANSFORMATION CURVE

AN EXAMPLE WITH FIVE GOODS

* Goods 1 and 2 are outputs
* Goods 3, 4, 5 are inputs
* A linear technology
+ fixed proportions of each input needed for the production of each output:
$+\quad q_{1} a_{1 i}+q_{2} a_{2 i} \leq-q_{i}$
$+\quad$ where $a_{j i}$ is a constant $i=3,4,5, j=1,2$
+ given the sign convention $-q_{i}>0$
Take the case where inputs are fixed at some arbitrary values...

THE THREE INPUT CONSTRAINTS

THE RESULTING FEASIBLE SET

CHANGING QUANTITIES OF INPUTS

OVERVIEW The Multi-Output
 OVERVIEW.:.
 Firm

Integrated approach to optimisation

Production
possibilities

PROFITS

* The basic concept is (of course) the same
+ Revenue - Costs
* But we use the concept of net output
+ this simplifies the expression
+ exploits symmetry of inputs and outputs
* Consider an "accounting" presentation...

ACCOUNTING WITH NET OUTPUTS

- Suppose goods $1, \ldots, m$ are inputs and goods $m+1$ to n are outputs

$$
\begin{gathered}
\sum_{i=m+1}^{n} p_{i} q_{i} \quad \text { Revenu } \\
-\sum_{i=1}^{m} p_{i}\left[-q_{i}\right] \\
\sum_{i=1}^{n} p_{i} q_{i} \quad \text { Costs } \\
\hline
\end{gathered}
$$

ISO-PROFIT LINES...

PROFIT MAXIMISATION: MULTI-PRODUCT

FIRM (1)


```
- Feasible outputs
- Isoprofit line
- Maximise profits
- Profit-maximising output
-MRTS at profit-maximising
output
```

- Here $q_{1}{ }^{*}>0$
and $q_{2}{ }^{*}>0$
- \mathbf{q}^{*} is technically efficient
- Slope at \mathbf{q}^{*} equals price ratio

PROFIT MAXIMISATION: MULTI-PRODUCT

FIRM (2)

MAXIMISING PROFITS

- Problem is to choose \mathbf{q} so as to maximise

$$
\sum_{i=1}^{n} p_{i} q_{i} \text { subject to } \Phi(\mathbf{q}) \leq 0
$$

- Lagrangean is

$$
\sum_{i=1}^{n} p_{i} q_{i}-\lambda \Phi(\mathbf{q})
$$

* FOC for an interior maximum is

$$
+p_{i}-\lambda \Phi_{i}(q)=0
$$

MAXIMISED PROFITS

- Introduce the profit function
- the solution function for the profit maximisation problem

$$
\Pi(\mathbf{p})=\max _{\{\Phi(\mathbf{q}) \leq 0\}} \sum_{i=1}^{n} p_{i} q_{i}=\sum_{i=1}^{n} p_{i} q_{i}^{*}
$$

- Works like other solution functions:
- non-decreasing
- homogeneous of degree 1
continuous
convex
- Take derivative with respect to p_{i} :
$\Pi_{i}(\mathbf{p})=q_{i}^{*}$
write $q_{i}{ }^{*}$ as net supply function
$q_{i}^{*}=q_{i}(\mathbf{p})$

SUMMARY

* Three key concepts
* Net output
+ simplifies analysis
+ key to modelling multi-output firm
+ easy to rewrite production function in terms of net outputs
* Transformation curve
+ summarises tradeoffs between outputs
* Profit function
+ counterpart of cost function

