MICROECONOMICS

Principles and Analysis

THE FIRM: OPTIMISATION

OVERVIEW	Firm: Optimisation	
	The setting	
Approaches to		
the firm's	Stage 1: Cost	
optimisation	Minimisation	
problem		
	Stage 2: Profit	
	maximisation	

THE OPTIMISATION PROBLEM

- * We want to set up and solve a standard optimisation problem.
- × Let's make a quick list of its components.
- * ... and look ahead to the way we will do it for the firm.

THE OPTIMISATION PROBLEM

× Objectives -Profit maximisation?

× Constraints -Technology; other

***** Method - 2-stage optimisation

CONSTRUCT THE OBJECTIVE FUNCTION

• Use the information on prices...

 w_i •price of input ip•price of output

- ...and on quantities...
 - Z_i amount of input iq• amount of output

• ... to build the objective function

5

How it's done

THE FIRM'S OBJECTIVE FUNCTION

m

• Cost of inputs:

$$\sum_{i=1}^{m} w_i Z_i$$

•Summed over all *m* inputs

• Revenue: pq

•Subtract Cost from Revenue to get

• Profits:
$$pq - \sum_{i=1}^{m} w_i z_i$$

6

OPTIMISATION: THE STANDARD APPROACH

• Choose q and z to maximise

$$\Pi := pq - \sum_{i=1}^m w_i z_i$$

• ...subject to the production constraint...

 $q \le \phi(\mathbf{z})$

• Could also write this as $z \in Z(q)$

• ... and some obvious constraints: $q \ge 0 \quad \mathbf{z} \ge \mathbf{0}$

•You can't have negative output or negative inputs

A STANDARD OPTIMISATION METHOD

• If ϕ is differentiable...

• Set up a Lagrangean to take care of the constraints L(...)• Write down the First Order $\frac{\partial}{\partial z}L(...) = 0$ Conditions (FOC) $\frac{\partial}{\partial z}L(...) = 0$ • Check out second-order conditions $\frac{\partial^2}{\partial z^2}L(...)$

• Use FOC to characterise solution

USES OF FOC

- × First order conditions are crucial
- * They are used over and over again in optimisation problems.
- **×** For example:
 - + Characterising efficiency.
 - + Analysing "Black box" problems.
 - + Describing the firm's reactions to its environment.
- × More of that in the next presentation
- × Right now a word of caution...

A WORD OF WARNING

- × We've just argued that using FOC is useful.
 - + But sometimes it will yield ambiguous results.
 - + Sometimes it is undefined.
 - + Depends on the shape of the production function ϕ .
- × You have to check whether it's appropriate to apply the Lagrangean method
- × You may need to use other ways of finding an optimum.
- × Examples coming up...

A WAY FORWARD

- We could just go ahead and solve the maximisation problem
- × But it makes sense to break it down into two stages
 - + The analysis is a bit easier
 - + You see how to apply optimisation techniques
 - + It gives some important concepts that we can re-use later
- **×** The first stage is *"minimise cost for a given output level"*
 - + If you have fixed the output level q...
 - + ...then profit max is equivalent to cost min.
- The second stage is "find the output level to maximise profits"
 - + Follows the first stage naturally
 - + Uses the results from the first stage.
- × We deal with stage each in turn

OVERVIEW

Optimisation

Firm:

The setting

A fundamental multivariable problem with a brilliant solution

Stage 1: Cost Minimisation

Stage 2: Profit maximisation

STAGE 1 OPTIMISATION

- × Pick a target output level q
- **×** Take as given the market prices of inputs **w**
- × Maximise profits...
- × ...by minimising costs

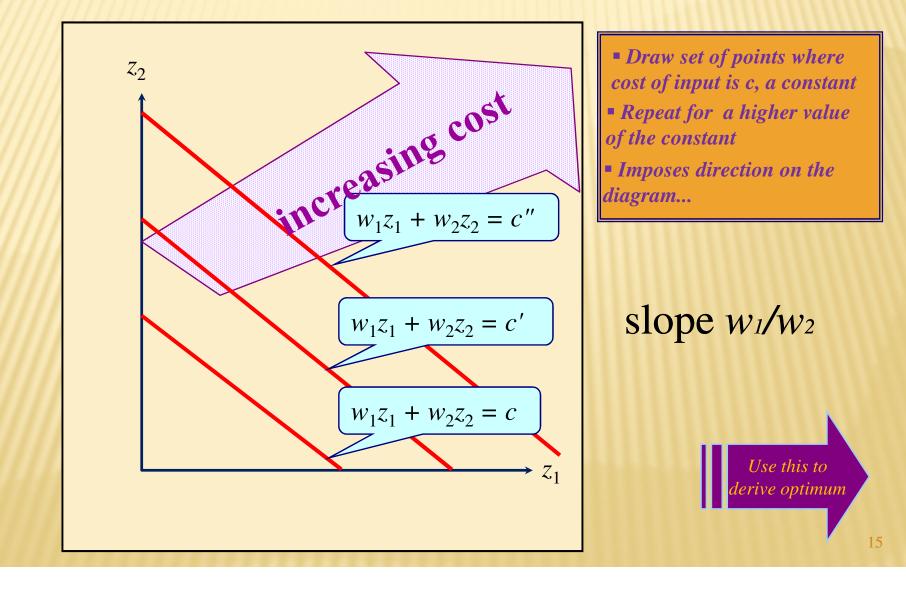
$$\sum_{i=1}^{m} W_i Z_i$$

A USEFUL TOOL

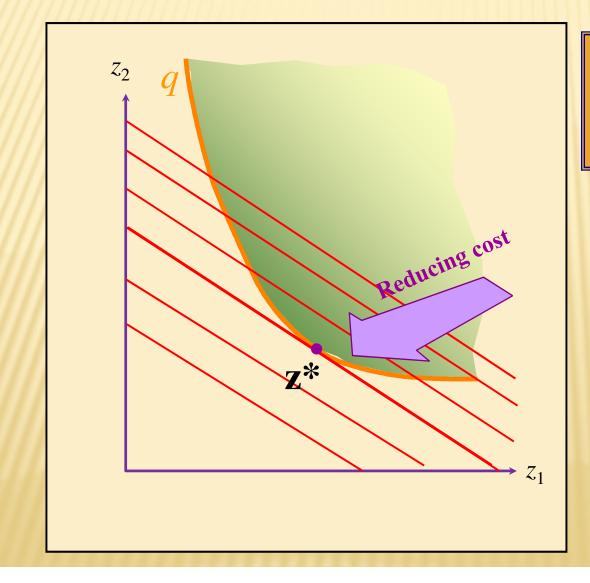
× For a given set of input prices **w**...

- **x**...the *isocost* is the set of points **z** in input space...
- ...that yield a given level of factor cost.
- **×** These form a hyperplane (straight line)...
- ...because of the simple expression for factor-cost structure.

ISO-COST LINES



COST-MINIMISATION

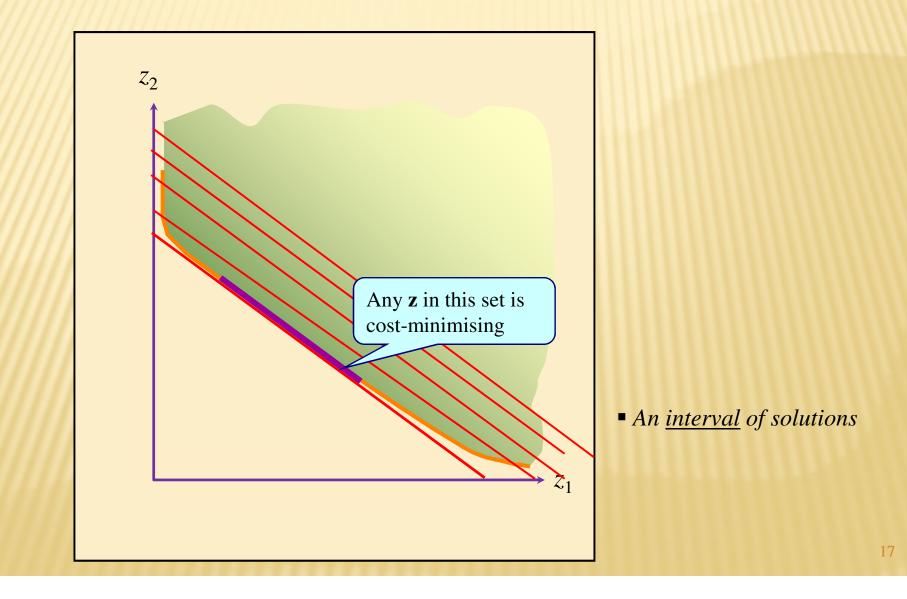


- The firm minimises cost...
- Subject to output constraint
- Defines the stage 1 problem.
- Solution to the problem

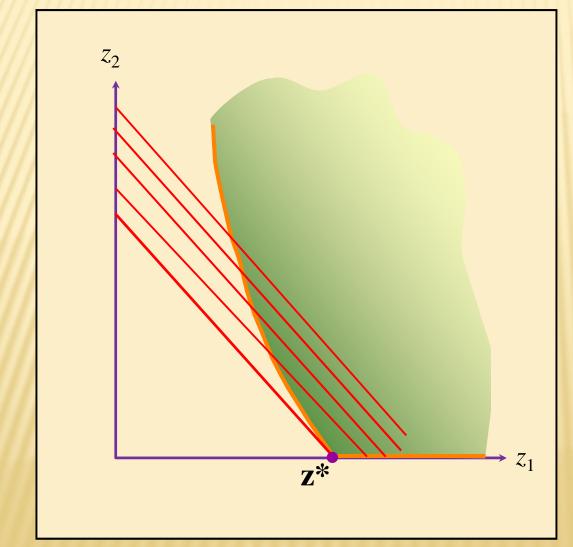
minimise $\sum_{i=1}^{m} w_i z_i$ subject to $\phi(\mathbf{z}) \ge q$ •But the solution depends on the shape of the inputrequirement set Z.

•What would happen in other cases?

CONVEX, BUT NOT STRICTLY CONVEX Z



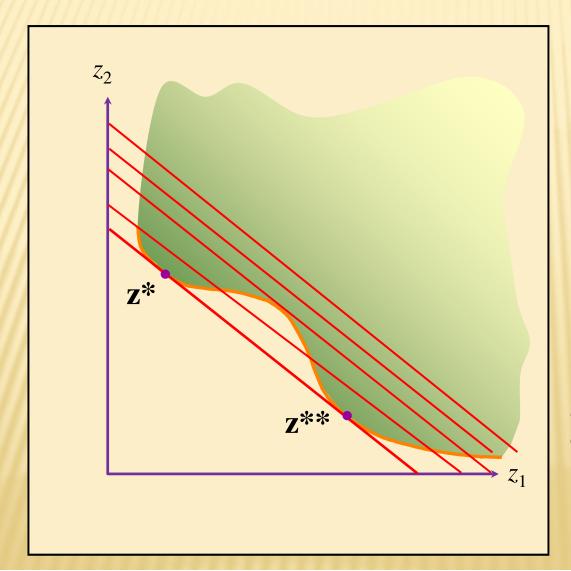
CONVEX Z, TOUCHING AXIS



• Here $MRTS_{21} > w_1 / w_2$ at the solution.

 Input 2 is "too expensive" and so isn't used: z₂*=0.

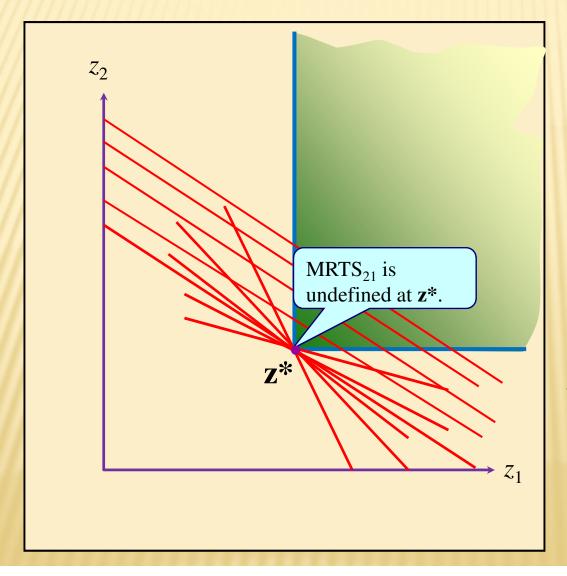
NON-CONVEX Z



•*There could be multiple solutions.*

•But note that there's no solution point between z^* and z^{**} .

NON-SMOOTH Z



 z* is unique costminimising point for q.

■*True for all positive finite values of w*₁, w₂

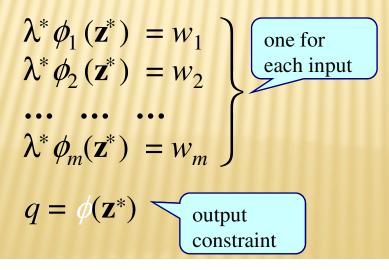
COST-MINIMISATION: STRICTLY CONVEX Z

• Minimise $\sum_{i=1}^{m} w_i z_i + \lambda [q \le \phi(\mathbf{z})]$

• Because of strict convexity we have an interior solution.

Use the objective function
...and output constraint
...to build the Lagrangean
Differentiate w.r.t. z₁, ..., z_m and set equal to 0.
... and w.r.t λ
Denote cost minimising values with a *.

• A set of m+1 First-Order Conditions



IF ISOQUANTS CAN TOUCH THE AXES...

• Minimise

$$\sum_{i=1}^{m} w_i z_i + \lambda [q - \phi(\mathbf{z})]$$

- Now there is the possibility of corner solutions.
- A set of m+1 First-Order Conditions

$\lambda^* \phi_1(\mathbf{z}^*) \leq w_1 \\ \lambda^* \phi_2(\mathbf{z}^*) \leq w_2$	
$\lambda^* \phi_m(\mathbf{z}^*) \leq \underline{w}_m$	
$q = \phi(\mathbf{z}^*)$	Can get "<" if optimal value of this input is 0

Interpretation

FROM THE FOC

• If both inputs *i* and *j* are used and MRTS is defined then...

$$\frac{\phi_i(\mathbf{z}^*)}{\phi_j(\mathbf{z}^*)} = \frac{W_i}{W_j}$$

• MRTS = input price ratio • "implicit" price = market price

• If input *i* could be zero then... $\frac{\phi_i(\mathbf{z}^*)}{\phi_j(\mathbf{z}^*)} \leq \frac{w_i}{w_j}$

• MRTS_{*ii*} \leq input price ratio

• "implicit" price \leq market price

Solution

PROPORTIES OF THE MINIMUM-COST SOLUTION

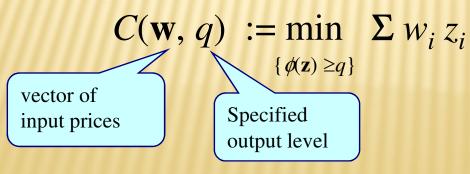
- (a) The cost-minimising output under perfect competition is technically efficient.
- * (b) For any two inputs, i, j purchased in positive amounts MRTSij must equal the input price ratio wj/wi.
- (c) If i is an input that is purchased, and j is an input that is not purchased then MRTS_{ij} will be less than or equal to the input price ratio w_j/w_i.

THE SOLUTION...

• Solving the FOC, you get a cost-minimising value for each input...

 $\mathbf{z}_i^* = H^i(\mathbf{w}, q)$

- ... for the Lagrange multiplier $\lambda^* = \lambda^*(\mathbf{w}, q)$
- ...and for the minimised value of cost itself.
- The *cost function* is defined as



INTERPRETING THE LAGRANGE MULTIPLIER

- The solution function: $C(\mathbf{w}, q) = \sum_{i} w_{i} z_{i}^{*}$ $= \sum_{i} w_{i} z_{i}^{*} - \lambda^{*} [\phi(\mathbf{z}^{*}) - q]$ • Differentiate with respect to q: $C_{q}(\mathbf{w}, q) = \sum_{i} w_{i} H^{i}_{q}(\mathbf{w}, q)$ $-\lambda^{*} [\sum_{i} \phi_{i}(\mathbf{z}^{*})] \quad \text{Vanishes because of FOC } \lambda^{*} \phi_{i}(\mathbf{x}^{*}) = 0$
- Rearrange:

 $C_q(\mathbf{w}, q) = \sum_i [w_i - \lambda^* \phi_i(\mathbf{z}^*)] H^i_q(\mathbf{w}, q) + \lambda^*$

Lagrange multiplier in the stage 1 problem is just marginal cost

At the optimum, either the

multiplier is zero

constraint binds or the Lagrange

Express demands in terms of (\mathbf{w},q)

 $C_q(\mathbf{w}, q) = \lambda^*$

This result – extremely important in economics – is just an applications of a general "envelope" theorem.

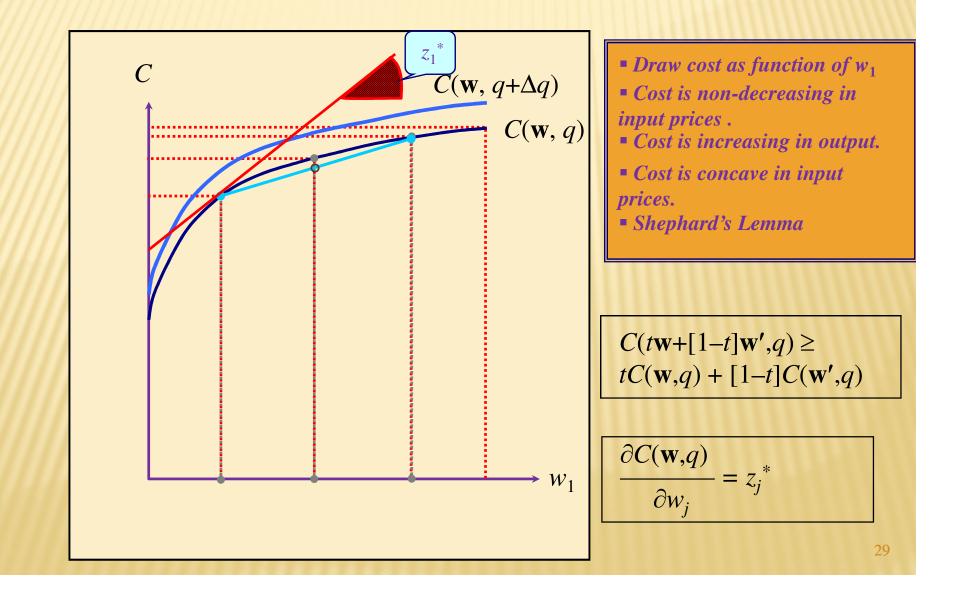
THE COST FUNCTION IS A USEFUL CONCEPT

- **×** Because it is a solution function...
- × ... it automatically has very nice properties.
- **×** These are true for *all* production functions.
- * And they carry over to applications other than the firm.
- × We'll investigate these graphically.

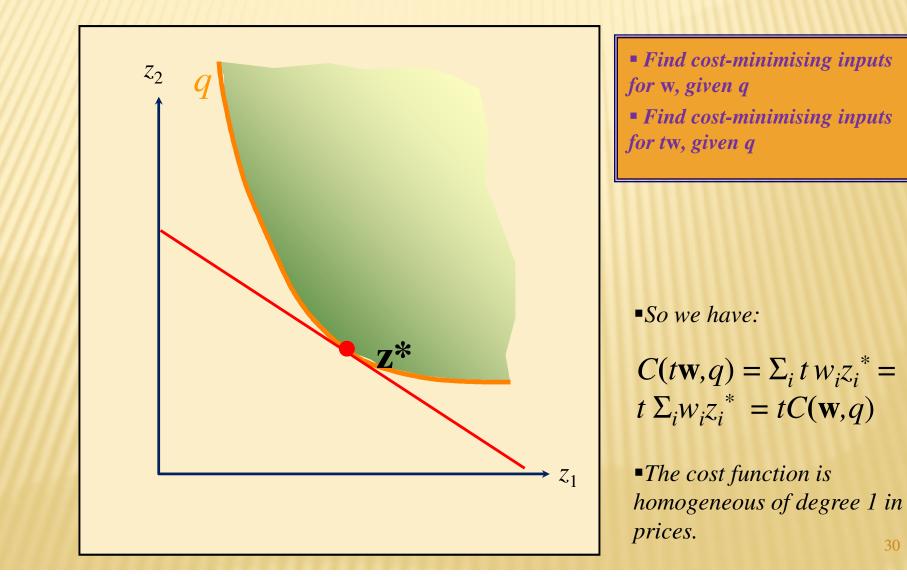
PROPERTIES OF THE MINIMUM-COST SOLUTION

- (a) The cost-minimising output under perfect competition is technically efficient.
- * (b) For any two inputs, i, j purchased in positive amounts MRTSij must equal the input price ratio wj/wi.
- (c) If i is an input that is purchased, and j is an input that is not purchased then MRTS_{ij} will be less than or equal to the input price ratio w_j/w_i.

PROPERTIES OF C



WHAT HAPPENS TO COST IF W CHANGES TO tW



COST FUNCTION: 5 THINGS TO REMEMBER

- Non-decreasing in every input price.
 + Increasing in at least one input price.
- × Increasing in output.
- × Concave in prices.
- **×** Homogeneous of degree 1 in prices.
- × Shephard's Lemma.

EXAMPLE

Production function: $q \le z_1^{0.1} z_2^{0.4}$ Equivalent form: $\log q \le 0.1 \log z_1 + 0.4 \log z_2$ Lagrangean: $w_1 z_1 + w_2 z_2 + \lambda [\log q - 0.1 \log z_1 - 0.4 \log z_2]$

FOCs for an interior solution: $w_1 - 0.1 \lambda / z_1 = 0$ $w_2 - 0.4 \lambda / z_2 = 0$ $\log q = 0.1 \log z_1 + 0.4 \log z_2$

From the FOCs: log $q = 0.1 \log (0.1 \lambda / w_1) + 0.4 \log (0.4 \lambda / w_2)$ $\lambda = 0.1^{-0.2} 0.4^{-0.8} w_1^{0.2} w_2^{0.8} q^2$

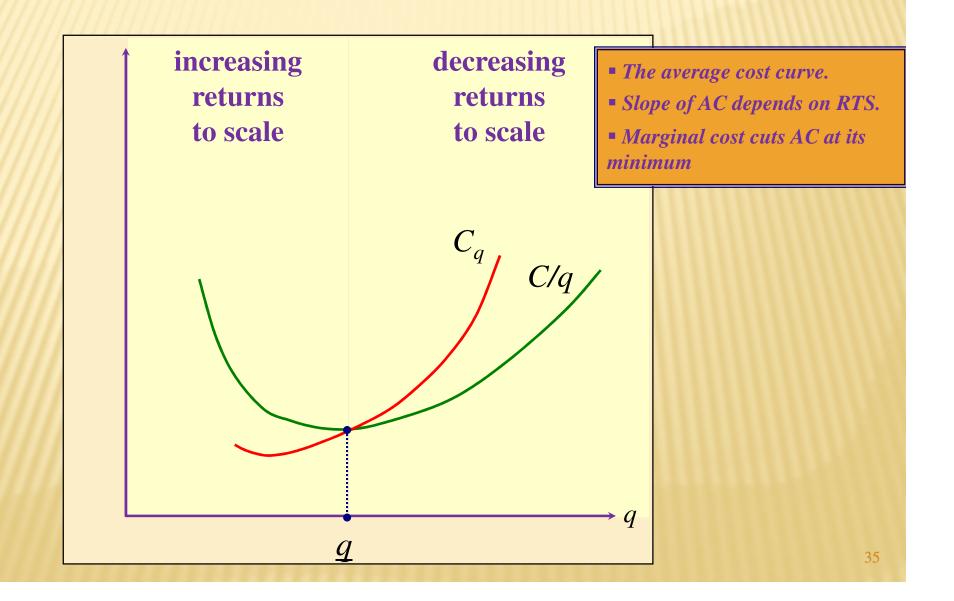
Therefore, from this and the FOCs: $w_1 z_1 + w_2 z_2 = 0.5\lambda = 1.649 w_1^{0.2} w_2^{0.8} q^2$

	Firm: Optimisation
using the results of stage 1	The setting Stage 1: Cost Minimisation
	Stage 2: Profit maximisation

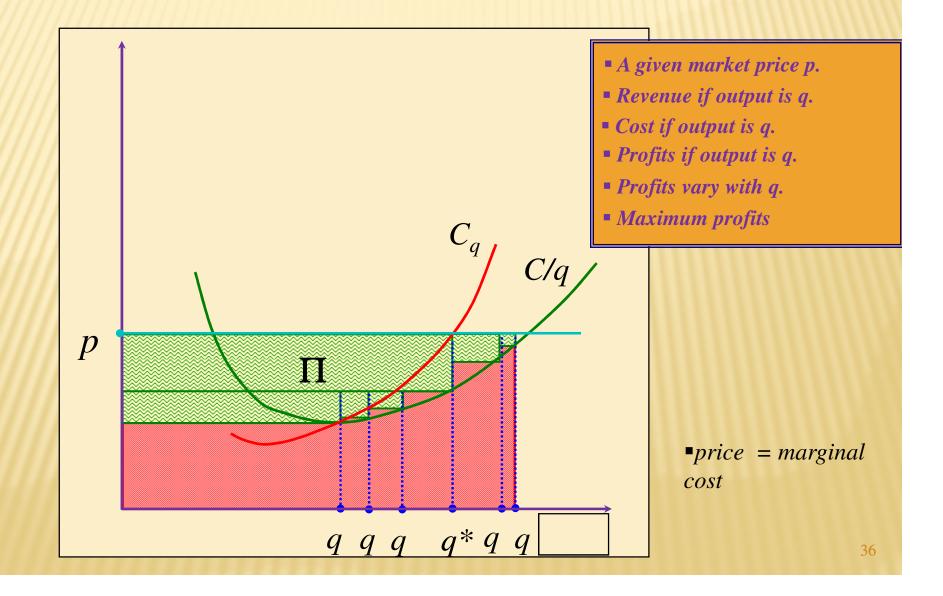
STAGE 2 OPTIMISATION

- **×** Take the cost-minimisation problem as solved.
- **×** Take output price *p* as given.
 - + Use minimised costs $C(\mathbf{w},q)$.
 - + Set up a 1-variable maximisation problem.
- \times Choose q to maximise profits.
- First analyse the components of the solution graphically.
 - + Tie-in with properties of the firm introduced in the previous presentation.
- × Then we come back to the formal solution.

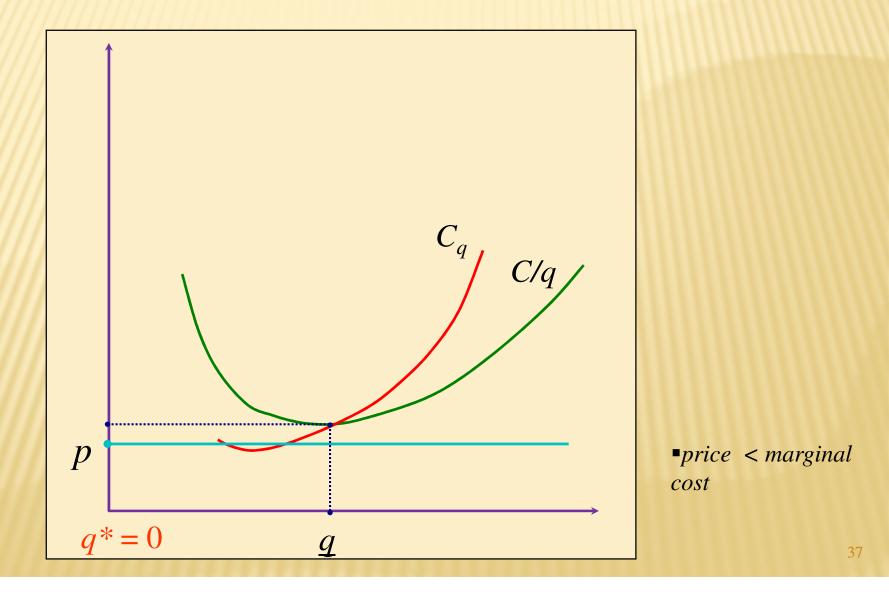
AVERAGE AND MARGINAL COST



REVENUE AND PROFITS



WHAT HAPPENS IF PRICE IS LOW ...



PROFIT MAXIMISATION

• Objective is to choose q to max:

 $pq - C(\mathbf{w}, q)$

• From the First-Order Conditions if $q^* > 0$: $p = C_q (\mathbf{w}, q^*)$ $C(\mathbf{w}, q^*)$

$$p \ge \frac{C(\mathbf{w}, q^*)}{q^*}$$

• In general:

$$p \le C_q (\mathbf{w}, q^*)$$
$$pq^* \ge C(\mathbf{w}, q^*)$$

"Revenue minus minimised cost"

"Price equals marginal cost"

"Price covers average cost"

covers both the cases: $q^* > 0$ and $q^* = 0$

EXAMPLE (CONTINUED)

Production function: $q \le z_1^{0.1} z_2^{0.4}$ Resulting cost function: $C(\mathbf{w}, q) = 1.649 w_1^{0.2} w_2^{0.8} q^2$

Profits:

 $pq - C(\mathbf{w}, q) = pq - A q^2$ where $A := 1.649 w_1^{0.2} w_2^{0.8}$

FOC: p - 2Aq = 0Result:

q = p / 2A.= 0.3031 w₁^{-0.2} w₂^{-0.8} p

SUMMARY

- Key point: Profit maximisation can be viewed in two stages:
 - + Stage 1: choose inputs to minimise cost
 - + Stage 2: choose output to maximise profit

× What next? Use these to predict firm's reactions