MICROECONOMICS

Principles and Analysis
THE FIRM: OPTIMISATION

THE OPTIMISATION PROBLEM

THE OPTIMISATION PROBLEM

\times Objectives -Profit maximisation?
\times Let's make a quick list of its components.
$\times \ldots$ and look ahead to the way we will do it for the firm.

\times Constraints	- Technology; other
\times Method	-2 -stage optimisation

THE FIRM'S OBJECTIVE FUNCTION
 - Cost of inputs: $\quad \sum_{i=1}^{m} w_{i} z_{i} \quad$-Summed over all m inputs

OPTIMISATION: THE STANDARD APPROACH

- Choose q and \mathbf{z} to maximise

$$
\Pi:=p q-\sum_{i=1}^{m} w_{i} z_{i}
$$

- ...subject to the production constraint...

$$
\begin{array}{ll}
\text { constraint... } & \begin{array}{l}
\cdot \text { Could also write this as } \\
\mathbf{z} \in Z(q)
\end{array} \\
\begin{array}{ll}
\text {-.and some obvious constraints: } & \\
q \geq 0 \quad \mathbf{z} \geq \mathbf{0} & \text { output or negative inputs }
\end{array}
\end{array}
$$

A STANDARD OPTIMISATION METHOD

- If ϕ is differentiable...
- Set up a Lagrangean to take care of the constraints

A WORD OF WARNING

\times We've just argued that using FOC is useful.

+ But sometimes it will yield ambiguous results.
+ Sometimes it is undefined.
+ Depends on the shape of the production function ϕ.
* You have to check whether it's appropriate to apply the Lagrangean method
\times You may need to use other ways of finding an optimum.
\times Examples coming up...

A WAY FORWARD

\times We could just go ahead and solve the maximisation problem
x But it makes sense to break it down into two stages
The analysis is a bit easier

+ You see how to apply optimisation techniques
It gives some important concepts that we can re-use later
* The first stage is "minimise cost for a given output level" If you have fixed the output level q.
...then profit max is equivalent to co
.. then profit max is equivalent to cost min.
\times The second stage is "find the output level to maximise profits"

Follows the first stage naturally
Uses the results from the first stage.
We deal with stage each in turn

STAGE 1 OPTIMISATION

\times Pick a target output level q
\times Take as given the market prices of inputs \mathbf{w}

* Maximise profits...
\times...by minimising costs

$$
\sum_{i=1}^{m} w_{i} z_{i}
$$

A USEFUL TOOL

* For a given set of input prices w...
$\times \ldots$..the isocost is the set of points \mathbf{z} in input space...
* ...that yield a given level of factor cost.
* These form a hyperplane (straight line)...
x ...because of the simple expression for factor-cost structure.

CONVEX Z, TOUCHING AXIS

IF ISOQUANTS CAN TOUCH THE AXES...

$$
\begin{aligned}
& \text { - Minimise } \\
& \qquad \sum_{i=1}^{m} w_{i} z_{i}+\lambda[q-\phi(\mathbf{z})]
\end{aligned}
$$

- Now there is the possibility of corner solutions.
- A set of $m+1$ First-Order Conditions

PROPORTIES OF THE MINIMUM-COST SOLUTION

* (a) The cost-minimising output under perfect competition is technically efficient.
(b) For any two inputs, i, j purchased in positive amounts MRTSij must equal the input price ratio $\mathrm{w}_{\mathrm{j}} / \mathrm{w}_{\mathrm{i}}$.
(c) If i is an input that is purchased, and j is an input that is not purchased then MRTS $\mathrm{Mi}_{\mathrm{ij}}$ will be less than or equal to the input price ratio $\mathrm{w}_{\mathrm{j}} / \mathrm{w}_{\mathrm{i}}$.

THE SOLUTION.

- Solving the FOC, you get a cost-minimising value for each input..
$\mathbf{z}_{i}^{*}=H^{i}(\mathbf{w}, q)$
- ...for the Lagrange multiplier

$$
\lambda^{*}=\lambda^{*}(\mathbf{w}, q)
$$

- ...and for the minimised value of cost itself.
- The cost function is defined as $C(\mathbf{w}, q):=\min \boldsymbol{\Sigma} w_{i} z_{i}$

THE COST FUNCTION IS A USEFUL CONCEPT

\times Because it is a solution function...

* ...it automatically has very nice properties.
x These are true for all production functions.
* And they carry over to applications other than the firm.
* We'll investigate these graphically.

INTERPRETING THE LAGRANGE MULTIPLIER

- The solution function:

$C(\mathbf{w}, q)=\Sigma_{i} w_{i} z_{i}{ }^{*}$

$$
=\Sigma_{i} w_{i} z_{i}^{*}-\lambda^{*}\left[\phi\left(\mathbf{z}^{*}\right)-q\right]
$$

- Differentiate with respect to q :
$C_{q}(\mathbf{w}, q)=\Sigma_{i} w_{i} H_{q}^{i}(\mathbf{w}, q)$ \qquad
$-\lambda^{*}\left[\Sigma_{i} \phi_{i}\left(\mathbf{z}^{*}\right) \begin{array}{l}\text { Vanishes because of } \\ \text { FOC } \lambda^{*} \phi_{i}\left(\mathbf{x}^{*}\right)=\end{array}\right.$
- Rearrange:
$C_{q}(\mathbf{w}, q)=\Sigma_{i}\left[w_{i}-\lambda^{*} \phi_{i}\left(\mathbf{Z}^{*}\right)\right] H_{q}^{i}(\mathbf{w}, q)+\lambda^{*} \quad$ Lagrange multiplier in the stage 1 problem is just marginal cost
$C_{q}(\mathbf{w}, q)=\lambda^{*}$
This result - extremely important in economics - is just an applications of a general "envelope" theorem.

PROPERTIES OF THE MINIMUM-COST SOLUTION

(a) The cost-minimising output under perfect competition is technically efficient.
(b) For any two inputs, i, j purchased in positive amounts MRTSij must equal the input price ratio $\mathrm{w}_{\mathrm{i}} / \mathrm{w}_{\mathrm{i}}$.
(c) If i is an input that is purchased, and j is an input that is not purchased then $\mathrm{MRTS}_{\mathrm{ij}}$ will be less than or equal to the input price ratio $\mathrm{w}_{\mathrm{j}} / \mathrm{w}_{\mathrm{i}}$.

WHAT HAPPENS TO COST IF W CHANGES TO $t \mathbf{W}$

COST FUNCTION: 5 THINGS TO REMEMBER

\times Non-decreasing in every input price.
Increasing in at least one input price.

* Increasing in output.
\times Concave in prices.
\times Homogeneous of degree 1 in prices.
* Shephard's Lemma.

EXAMPLE

```
Production function: }q\leq\mp@subsup{z}{1}{0.1}\quad\mp@subsup{z}{2}{0.4
```

Equivalent form: $\quad \log q \leq 0.1 \log z_{1}+0.4 \log z_{2}$
Lagrangean: $w_{1} z_{1}+w_{2} z_{2}+\lambda\left[\log q-0.1 \log z_{1}-0.4 \log z_{2}\right]$
FOCs for an interior solution:
$w_{1}-0.1 \lambda / z_{1}=0$
$w_{2}-0.4 \lambda / z_{2}=0$
$\log q=0.1 \log z_{1}+0.4 \log z_{2}$
From the FOCs:
$\log q=0.1 \log \left(0.1 \lambda / w_{1}\right)+0.4 \log \left(0.4 \lambda / w_{2}\right)$
$\lambda=0.1^{-0.2} 0.4^{-0.8} w_{1}{ }^{0.2} w_{2}^{0.8} q^{2}$
Therefore, from this and the FOCs:
$w_{1} z_{1}+w_{2} z_{2}=0.5 \lambda=1.649 w_{1}^{0.2} w_{2}^{0.8} q^{2}$

STAGE 2 OPTIMISATION

\times Take the cost-minimisation problem as solved.
\times Take output price p as given.

+ Use minimised costs $C(\mathbf{w}, q)$.
+ Set up a 1-variable maximisation problem.
\times Choose q to maximise profits.
\times First analyse the components of the solution graphically.

Tie-in with properties of the firm introduced in the previous presentation.

* Then we come back to the formal solution.

PROFIT MAXIMISATION

- Objective is to choose q to
max:
$p q-C(\mathbf{w}, q)$
"Revenue minus minimised cost"
- From the First-Order

Conditions if $q^{*}>0$:
$p=C_{q}\left(\mathbf{w}, q^{*}\right)$
"Price equals marginal cost"
$p \geq \frac{C\left(\mathbf{w}, q^{*}\right)}{q^{*}}$
"Price covers average cost"

- In general:
$p \leq C_{q}\left(\mathbf{w}, q^{*}\right)$
$p q^{*} \geq C\left(\mathbf{w}, q^{*}\right)$
covers both the cases: $q^{*}>0$ and $q^{*}=0$

SUMMARY

\times Key point: Profit maximisation can be viewed in two stages:

+ Stage 1: choose inputs to minimise cost
+ Stage 2: choose output to maximise profit
\times What next? Use these to predict firm's reactions

