
BT Technology Journal • Vol 22 No 1 • January 2004 87

Giving legs to the legacy — Web Services
integration within the enterprise

J Calladine

Behind the hype of Web Services (WS) is the reality of a sound and functional set of technologies for integration. This paper
describes how the pragmatic use of WS technology has resulted in better, cheaper and faster integration for BT in its core
operational support systems (OSS) system interfaces. BT has embarked upon a programme of enabling key components
and middleware layers in its customer handling stack to leverage the benefits of Web Services in addressing the challenge
of real-time heterogeneous interworking. It is believed that the WS-enabling of these legacy systems has helped add years
to their productive use and protected the huge investment already made in these systems. As well as giving ‘legs’ to such
legacy systems, Web Services support the drive to implement a service-oriented architecture inside BT and this paper
investigates the ways in which this is being achieved. In order to exploit Web Services on BT’s mission-critical platforms we
have had to understand and work with WS issues on a wide range of platforms, proving the interoperability, performance
and security of the new technologies in large-scale enterprise integration projects. Integration has been the first ‘killer
application’ for Web Services and this paper will describe some of the business areas that have benefited from the cleaner
integration that Web Services offer.

1. Introduction
Web Services technology represents the latest step on
an evolutionary path for the integration of BT’s major
systems using a common middleware infrastructure.
This section briefly describes how Web Services
integration has come to be the current strategy
direction for enterprise integration.

An earlier paper [1] described the various ways in
which BT’s highly heterogeneous OSS estate had been
integrated using a selection of middleware
infrastructure products. This work has continued,
leading to even greater exploitation of these large
mission-critical systems via programmatic interfaces
within the extended enterprise.

With some of these major ‘legacy’ systems
approaching 15—20 years of operational use, the range
of middleware used to access them has itself grown
diverse (see Fig 1). At the time of writing, BT’s legacy
systems are accessed via a range of protocols and mid-
tier technologies including:

• DCE/RPC,

• CORBA/IIOP,

• J2EE/RMI/HTTP,

• SNA LU2/LU6.2,

• ‘raw’ TCP/IP sockets,

• MQSeries.

Apart from the native data representation of RPC-
based technologies such as DCE/CORBA, data has been
represented in a number of ways including:

• name value pairs,

• ASN1 encoding,

• comma-separated variables,

• tag length value,

• fixed format ‘copybook’.

DCE CORBA J2EE
EAI
hub

client/front end applications:
Unix/Java/.Net/Oracle/CRM/Portals

legacy applications: CICS DB2 IDMS/DC COBOL

R
P

C

IIO
P

JM
S/

R
M

I data formats
name value pairs
fixed format, CSV,
ASN1, TLV, RPC, etc

H
T

T
P

legacy bus:
MQSeries
TCP
LU6.2, etc

Fig 1 The range of access technologies in use.

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 200488

The ultimate aim of each generation of integration
technologies has been to provide a near-universal
access solution for all clients and this has largely failed
due to the highly heterogeneous nature of BT’s
systems. Often the mid-tier or middleware solution used
was tied to a particular language or set of languages
which themselves were not universally available on all
client platforms. Sometimes the vendors would only
support a restricted range of platforms (it was quite
common to only support three or four major Unix
platforms) and sometimes the solution could not be cost
justified for deployment on thousands of desktop
systems. Even where platforms and languages were
supported, the use of some solutions involved an
invasive tight coupling and embedding of stub code in
each client that presented an ‘unnatural’ style of
interface to the client developer.

Ideally we would have a common technology that
was not tied to a particular set of languages or platforms
and the invocation of which could be performed
naturally in each environment present in the BT
architecture. Such a technology would allow us to wrap
our existing services as well as deploy new ones and
facilitate a migration of services on to the new
technology in a way that was acceptable to the base of
client systems already integrated.

In 2000 we made a strategy decision that all new
services would be made available over HTTP and
MQSeries and offer an XML data representation. This
was irrespective of any other ‘native’ interface that the
service might offer, e.g. RMI or IIOP. The ambition was
to provide a lowest common denominator access
protocol that would serve all platforms in BT and offer
both a synchronous and asynchronous mode of inter-
working. This strategy was implemented on new
systems and at the same time we began to re-engineer
our middleware infrastructure to enable our existing
legacy systems to be driven in this way.

From this position we then moved to adopt the
emerging SOAP standard to add some formal rigour to
the XML documents that were being exchanged and we
tracked the emergence of the WSDL standard and its
growing support across the industry. It was this
overwhelming industry support that led us to become
an early adopter of the Web Services model in 2001 to
facilitate improved integration with a wide range of
client systems.

2. Benefits of Web Services for enterprise
integration

As mentioned above, a key factor in adopting Web
Services was the wide industry support that Web
Services attracted. Web Services tool-kits were
becoming available for every imaginable platform and

language combination. Key suppliers to the BT
infrastructure (such as BEA, IBM, Microsoft and Oracle)
were moving to support the standard and so there was
the promise that our existing platforms would be WS-
enabled natively. For all other systems there appeared
to be solutions available either from open source
packages (Apache, gSOAP, SOAP:Lite, etc) or from
specialist suppliers (Cape Clear, Systinet, The Mind
Electric, etc).

This industry support meant that we were confident
that, if we provided a Web Services interface to our
major systems, anyone would be able to invoke these
services using a native interface style. This could be
done without the tight coupling of certain vendors’
stacks and in a cost-effective fashion using one of the
many tool-kits available on the market.

One of the advantages of the Web Services model is
that developers do not build a ‘Web Service’. Instead
they code a Java bean or a C++ module or a script that
in turn gets rendered as a Web Service — the
complexities of the XML, SOAP and WSDL are hidden
from them. Likewise developers of client systems do not
know they are invoking a Web Service but instead see a
native function call in their own environment.

We also found that the XML language and the
schema component of WSDL were rich enough to
represent and describe the structure of any of our
existing interfaces1. Furthermore, as the conversion of
existing services into Web Services in the middleware
layer (i.e. not rewriting the service itself) has proved
relatively straightforward, a large number of Web
Services can be made available at little cost.

In effect, what we have been able to achieve with the
use of Web Services technology is a consistency of
interface at both the transport and data levels. We say
that we are ‘homogenising’ the application’s
integration space2. The result of this we believe is that
we are extending the useful life of these core systems by
bringing them up to date and enabling better, cheaper
and faster integration with them and reducing time to
market for new products that exploit these systems.

Web Services enabling of these legacy systems is a
cost-effective way of giving them the ‘legs’ they need to
continue as an available and attractive source of the
mission-critical data and functions that they host. We
have found that the provision of a WS interface allows
us to communicate directly with these legacy

1 It is not, however, comprehensive enough to easily describe the
data content of the interface. The strong typing of data as exhibited
by, say, DCE is not easily possible and this level of validation within
the integration middleware has been sacrificed.
2 Websters dictionary definition: ‘To render uniform and consistent.’

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 2004 89

applications from front-end systems avoiding the need
for costly mid-tier developments.

3. Enabling the infrastructure
A large amount of work on many systems has been done
in BT but here we shall focus on some of the large ‘core’
applications and middleware products that have been
Web Services enabled.

• CSS (Customer Service Systems)

CSS is a COBOL/CICS/IDMS-based application
running on 29 mainframe MVS images. Serving
40 000 BT users, it holds data on 23 million
customers and bills for 60+% of BT’s revenue. CSS
has 5000 distinct screens (maps) and 2000+
program modules and executes 240 million CICS
transactions a day. This application supports over a
thousand system interfaces including 600 services
offering a ‘tag length value’ interface to scripts that
run multiple COBOL transactions in sequence
giving a course-grained business service interface.

• COSMOSS (Customer-Oriented Service Manage-
ment of Special Services)

COSMOSS is a single image CICS/COBOL/DB2
system handling the majority of order entry and
order handling tasks for private circuits. Running
3m transactions a day, it is a key resource with a
user population of 6000.

• CAMSS (Computer Aided Maintenance of Special
Services)

CAMSS is a single image IDMS/DC COBOL/ADSO
system. It is the primary trouble ticketing system
for private circuits. It can handle up to 4000 faults
per hour and is available 24/7/365 with a hot stand-
by fall-back machine. An outage of 1 hr can cost BT
up to £1m in penalties paid to customers for non-
resolution of faults within the service-level
agreement. CAMSS holds data on more than 2m
private circuits together with 500k pieces of
customer equipment. It currently offers on-line
access to some 50 services.

• STAA (Single Transaction Automation Architecture)

STAA is a ‘mid-tier’ deployment platform for value-
add services sitting on top of BT’s legacy systems.
It is a J2EE platform designed for the
implementation of complex business rules/
processes that can be reused across the enterprise.
It is currently a low-volume, high-value platform
offering.

3.1 CSS
To WS-enable CSS we provided a middleware solution
that interfaced to the existing middleware message-

based interface (MMBI) [1] scripting layer. The existing
scripts produced an internal data model aimed at
producing and consuming a tag length value string of
data, for example:

RUN-OBJ;6;WS007A;CORRELID;10;0123456789;
TRACE;3;OFF;LOCN;2;LS;CTL-END;1;*;ACCT-NR;
10;01234567890; TEL-NR;11;01732464444;
FOLLOW-UP-REQD;2;NO;SUSPEND-END-DATE;
6;260603;END;1;*;

There is nothing in this format that would prevent it
being represented as XML and so this is done in a non-
invasive way and the necessary SOAP headers/
envelopes and encoding attributes can be added in or
stripped off, producing the following XML string as the
Web Services equivalent:

<soap:Body>
<n:suspendDirectDebit xmlns:n="http://
www.bt.comcss/mmbi/WS007A/">
<mmbi>
<correlId>0123456789</correlId>
<trace>OFF</trace>
<location>LS</location>
</mmbi>
<acctNr>01234567890</acctNr>
<telNr>01732464444</telNr>
<followUpReqd>No</followUpReqd>
<suspendEndDate>string</suspendEndDate>
</n:suspendDirectDebit>
</soap:Body>

 By comparison this new facility is called MXBI
(middleware XML-based interface). The CSS mainframe
accepts requests over MQSeries or TCP/IP sockets but
not HTTP/HTTPS. It is necessary therefore to
implement a simple protocol converter in the logical
mid-tier to enable clients that only talk HTTP to invoke
the range of services. The majority of access is via the
WS-proxy in Fig 2. Security is also applied at this level.

In this way we are able to provide a Web Services
interface to 600 scripts covering a large subset of CSS
functionality without re-coding or changing the current
services. The most obvious limitation of this approach is
that the data returned is ‘flat’, i.e. it does not have
logical groupings of related data elements in nested
structures. In practice, therefore, we commonly take
some time to re-engineer the scripts so that data can be
represented more naturally, and to a more standard
data model, than the existing scripts allow. This is a
quick, low-risk activity because the business logic
remains unchanged in the COBOL transactions.

3.2 COSMOSS
COSMOSS is a large CICS/COBOL system with a DB2
database and was engineered around the OO principle
of encapsulation. COSMOSS has over 2000 database

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 200490

methods implemented as COBOL programs that the
business transactions call. Some of these methods are
large, course-grained services implementing complex
rules and reusable business logic. This encapsulation
software is called XCALL.

To drive COSMOSS as a Web Service we have the
same MXBI capability as for CSS, but for historical
reasons there is nowhere near the number of existing
scripts on which to base a WS capability. In addition to
MXBI, therefore, we expose the database methods
themselves as Web Services. Like the MXBI scripts, this
can be done at a purely middleware level because we
have a formal specification of what the interface is (via
the schema and data dictionary). We can thus convert
the data into XML according to a WSDL file that is itself
automatically generated from the database method.

The COSMOSS processing is depicted in Fig 3.

Although there are 2000 potential Web Services on
COSMOSS, we have converted less than 200 of these to
a Web Services format and only anticipate circa 100
being used by more than one project. That said, the
business case for implementing ‘only’ 200 interfaces,
for little development/test/deployment cost in a fashion
that makes it attractive and easy to use by a wide range
of clients, is very compelling.

Challenges for Web Services-enabling of XCALL/
COSMOSS have included making the Web Services

interface ‘pretty’ and natural looking, given that the
underlying method was designed to return rows/
columns of segmented data. The techniques used to
address this have included translating field names to
meaningful data tags and restructuring repeated data
into SOAP/XML arrays.

The Web Services proxy is again acting as a protocol
converter with the majority of the Web Services-specific
processing being performed on CICS by the COSMOSS
middleware.

3.3 CAMSS
The existing on-line access to CAMSS was implemented
over TCP/IP sockets interface with data being returned
in the internal EBCDIC fixed-format copybooks that
CAMSS uses internally. This is an unattractive interface
for client systems to use and as a result CAMSS was
normally hidden behind a mid-tier component that
exposed a (slightly) more friendly access using DCE,
CORBA or RMI. The problem with this centres around
the fact that not everyone can call these APIs, as well as
the extra cost of writing and deploying a mid-tier
process to perform the translation.

Unlike CSS and COSMOSS, it was decided that we
would not be able to make major changes to the CAMSS
platform. Instead we invested time in building an
infrastructure component that would automatically
generate the WSDL from the internal COBOL copybook
definitions. This was used to generate the translation

Web Services clients

WS proxy

common Middleware

MXBI scripts (* 600)

CICS transaction

IDMS/DB

T
C

P

H
T

T
P

S

JM
S/

M
Q

M
Q

pr
ot

oc
ol

co
nv

er
si

on

CSS

Fig 2 CSS access.

Web Services clients

WS proxy

XCALL DB2 methods (*2000)

DB2

T
C

P

H
T

T
P

S

JM
S/

M
Q

M
Q

pr
ot

oc
ol

co
nv

er
si

on

COSMOSS

common Middleware

CICS transactions

Fig 3 COSMOSS XCALL access.

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 2004 91

code on the mid-tier, that manipulates the fixed format
data, into the correct SOAP XML structure to match the
WSDL description (see Fig 4).

In this way the current set of existing transactions
have been exposed as Web Services up front and,
although a functional mid-tier component is required, it
is not a hand-coded delivery and the service itself does
not need to be re-tested since it has not changed.

3.4 The Web Services landscape
We have also worked on providing Web Services
interfaces to DCE and CORBA platforms in BT utilising
the same J2EE WS capability as is used for STAA above.
There is also the capability (not yet in production) to
drive our classic EAI hubs as Web Services in their own
right. Together with an emergent use of Microsoft .Net
as an integration platform, a considerable portion of the
BT applications architecture is capable of both con-
suming and offering Web Services interfaces.

 Figure 5 shows a range of the different platforms
and technologies we have enabled with Web Services.

The key elements of our work in this regard have
been to address the integration problem at a
middleware level rather than at the application level.
We try to hide the complexity of XML from the
developers wherever possible and even in XML-aware
applications we employ the concept of the ‘SOAP
bubble’, a thin transparent layer of processing that
performs all SOAP-specific processing required by a
message.

The landscape (Fig 5) shows a common interface
style to both legacy systems and mid-tier processes.
This homogeneous style of interfacing allows us to best
use each layer as appropriate. EAI hubs do not need to
be used for every single exchange between two
platforms, if it does not add value to the architecture.
Neither do simple read-only or straightforward update
processes need to be mediated by traditional mid-tier

Web Services clients

IDMS/DB

H
T

T
P

S

JM
S

pr
ot

oc
ol

co
nv

er
si

on

CAMSS

mainframe interface gateway

T
C

P

IDMS/DC

COBOL modules

WS proxy

COBOL - XML translation

Fig 4 CAMSS WS access.

Fig 5 The Web Services landscape (unless explicitly detailed otherwise all data exchanges are WS enabled,
SOAP over HTTP, and described by WSDL).

DCE CORBA EAI .NET

CRM/ERP/legacy/tactical/portal/B2B

JM
S/

M
Q

M
Q

/T
C

P

WSDL
SOAP/XML

EJB router

WLIWLSWLS

W ebLogic Enterprise

W ebLogic Server

EJB

Complex

mid-tier

business logic

Oracle

CSS

Versata Logic Server

JMSRMI

CSS

W LE ServicesWLE ServicesCORSICACORSICA

CORSICA CONNECTORCORSICA CONNECTOR

Enterprise JavaBeans – “public API”

RMI

Enterprise JavaBeans – “public API”

MMBI XDA
XML

MMBI XDA
XML

DATA

EJB Router

EJB

Versata Object Model
Generic Data Objects
Versata Object Model
Generic Data Objects

“Handlers”
Generic Process Objects

“Handlers”
Generic Process Objects

HTTP

EJB Router

DATA

W ebLogic Enterprise

W ebLogic Server

EJB

Complex

mid-tier

business logic

Oracle

CSS

Versata Logic Server

JMSRMI

CSS

W LE ServicesWLE ServicesCORSICACORSICA

CORSICA CONNECTORCORSICA CONNECTOR

Enterprise JavaBeans – “public API”

RMI

Enterprise JavaBeans – “public API”

MMBI XDA
XML

MMBI XDA
XML

DATA

EJB Router

EJB

Versata Object Model
Generic Data Objects
Versata Object Model
Generic Data Objects

“Handlers”
Generic Process Objects

“Handlers”
Generic Process Objects

HTTP

EJB Router

DATA

STAA/J2EE
WS proxy

H
T

T
P

MMBI/XML

XCALL

MIGCSS

COSMOSS

500+ objects

2000+ methods

CAMSS 50 services

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 200492

integration developments if no logic or business rules
need to be implemented.

4. Interoperability
We selected Web Services for the heterogeneous inter-
working we required to address the range of BT’s
current applications estate. At an early stage we were
made aware of the shortcomings of both the SOAP
standard and the diverging interpretations of it by
different vendors. Initially this was not widely
recognised in the industry as a problem; the technology
was immature and most people were only playing with
Web Services, quite possibly in a totally homogeneous
environment. The heterogeneous nature of our
architecture meant that early on we recognised
interoperability was going to be the most important
issue for us to resolve, outweighing the more publicised
concerns about security and performance.

To date we have implemented or evaluated over 20
distinct Web Services technologies and platform
solutions — Apache SOAP, Axis, BEA WLS 6.1, WLS 7,
WLP8, Cape Connect, Cape Studio v3/v4, MS .Net (c#,
vb, C++), MS SOAP, Silverstream, SOAP:Lite, WASP
(Systinet), WASP C++, GLUE (The Mind Electric), Sun
JWSDP, gSOAP, PocketSOAP, Leif (Rogue Wave),
Websphere (IBM).

This is only a small subset of the WS tool-kits
available; for a more comprehensive list see the
XMethods Web site [2].

As we have progressed we have tested these tool-
kits against each other and against the services that we
had already exposed. The result of this testing is that we
have identified many interoperability issues associated
with the SOAP implementations where each vendor has
perhaps only implemented a subset of the standard. In
an environment where their technology is used
exclusively you will see no problems but trying to call
such a service from a different technology may present
difficulties.

To address this situation we have done two things.
Firstly we have captured and publicised internally a list
of ‘Top Tips’ for interoperability and used this to ensure
that the Web Services we build or expose conform to a
‘lowest common denominator’ standard to ensure
interoperability. Even conforming to this standard, it is
considered necessary to validate a service against a
representative range of tool-kits as well as validating
any new technology or tool-kit that is brought in against
the existing body of Web Services within the company.
Secondly, therefore, we have evolved a facility called the
‘Interoperability TestBench’ which will perform both of
these functions (Fig 6). Typically the process can be
described as follows:

• the customer presents the TestBench with a valid
WSDL file describing their Web Service together
with some test data that constitutes valid input/
output values of the Web Service,

• the user selects a shopping basket of technologies
against which they would like to test their service,

• the WSDL is imported into the TestBench and a
data model constructed, mapping on to the input/
output data structures as described by the WSDL,

• the TestBench then runs the WSDL through the
range of tool-kits/technologies selected and
produces the native stub code ready for use by
client systems (any tool-kits that fail to process the
WSDL file are flagged at this stage and are not
processed any more),

• the TestBench then builds a client in the native
language of the tool-kits that have been selected —
this stage could very easily see clients being
generated in Java, C#, C++ and Perl, etc (any client
code generation failures are captured at this stage),

• the TestBench then feeds the client code with the
test data and runs the Web Service for every tool-
kit/technology that has successfully reached this
stage (any data returned is stored),

• the test data is then finally compared with the real
data returned and any discrepancies are
highlighted,

WSDL

VS .Net,
Apache Axis,
Cape Studio,
SOAP:Lite,
etc

TestBench

test data
client code

generate report run Web Service

Fig 6 TestBench usecase.

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 2004 93

• a report is produced detailing, for each tool-kit,
whether the client could be generated, built and
executed against the submitted WSDL —
elementary performance statistics are also
captured.

The other main use of the TestBench is to certify a
particular technology against a set of Web Services. In
this scenario the same tool-kit is used every time to
generate, build and execute client code against a
selection of Web Services that we know to exhibit
interoperability issues with other technologies. These
problem Web Services are called ‘feature tests’ and we
continue to accumulate these feature tests as new
services and tool-kits are put through the TestBench.

To the casual reader this may seem like a lot of
effort, but we contend that this level of testing is
necessary until the industry as a whole rigorously adopts
all aspects of the SOAP standard or alternatively unites
behind the Web Services Interoperability Forum [3]. To
be WS-I compliant vendors must only implement those
aspects of the SOAP standard that conform to the WS-I
‘Basic Profile’.

BT has found the TestBench to be key to validating
its own SOAP stacks/proxies, as well as aiding
understanding of the reality behind Web Services
standards. Within the enterprise we can restrict the
client and server technologies that people are able to
use. We will never be able to control all developments
inside the enterprise though and we will have even less
control over what our partners use to build clients to our
external Web Services. Without such testing there is a
risk of developing a service that some clients will not be
able to use.

5. Security
Security is one of the last problem areas to be addressed
by the Web Services community, and it is frustrating
that such an important aspect has been so slow to
develop. The standard in this area is now recognised as
being WS-Sec [4] which offers the fine-grained message
level security that distributed computing requires. For a
detailed discussion of the relevance of this standard, see
Kearney et al [5].

Unfortunately for BT, adoption of this standard is
not widespread and is expected to be slow. Web
Services and industry analysts, GIGA, claimed in March
2002 that it would be 18—30 months before adoption
of the standard was widespread and mature enough to
make its use feasible because of interoperability issues
between vendors’ implementations.

To date we have relied exclusively upon transport
level security and the underlying security mechanism of

the platforms on which the Web Services run. This type
of technique includes the following.

• IP filtering

This low-level technique involves the server only
accepting requests from IP addresses that it knows
represent valid client systems. As a security
mechanism it is barely adequate even within a
secure internal network because of the ease in
which a rogue client could spoof the incoming IP
address.

• Basic authentication over HTTP and HTTPS

This technique involves a user ID and password
combination passing in the clear or encrypted
(HTTPS) over a TCP/IP connection. If the user ID
and password are not validated, access to the Web
Service is denied. Shortcomings of this approach is
that the password is expected to be static. This
means that if a dynamic password manager is
employed to accommodate security requirements
an alternative out-of-band mechanism is needed for
resetting the password.

• Client certificates

This is most likely to be used for machine-to-
machine interfacing and involves the distribution of
a managed time-allocated certificate that allows
the client to authenticate itself to the server.

• Application level security

This is typically used where there is an existing
application being accessed that has its own security
function. This technique normally sees the client
send down security credentials in an initial request
and be passed back a security token that must then
be presented with each subsequent request. The
shortcoming of this is that the security is now
tightly coupled with the service definition itself and
cannot be removed without changes to both client
and server application interfaces.

 The challenge for us, and other early adopters of
Web Services, will be the migration to the WS-Sec
standard and managing the support of multiple security
solutions to the same Web Service.

6. Performance
The performance of Web Services is another area that
has been of concern to potential users of the
technology. This is understandable for a number of
reasons:

• Web Services are associated with HTTP which is not
considered a high performance protocol,

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 200494

• the XML documents are typically 50—200% bigger
than other wire protocols,

• the security solution in place may well necessitate
the use of HTTPS which can be slow given the large
packets of data needing to be encrypted,

• Web Services are frequently implemented using
languages such as Java/Javascript/Perl, etc, which
are slower than other fully compiled languages,

• early Web Services, hand coded by users, exploited
inappropriate techniques such as XML schema
validation and XSLT processing which are very slow
operations.

Indeed it is possible to find suggestions that Web
Services are 20—40 times slower than non-Web
Services solutions [6].

We have invested some effort in identifying the
overhead of using Web Services and have found a very
different experience for the type of Web Service that we
are using inside the company.

Space does not permit detailed performance
statistics to be presented here but for a typical on-line
service taking 2 sec to run and returning 5 kb of data,
an overhead of 25% may be attributed to the use of WS
technology.

Even for the simplest of services one can expect the
use of Web Services tool-kit technology at either end to
add on up to 200 ms to the overall end-to-end response
time. Genuine real-time operations will find this an
unacceptable overhead and we do not envisage Web
Services being used for general-purpose network
control.

There are many factors that will effect performance
but the two greatest impacts we have observed is the
choice of tool-kit and the implementation of security.

Individual Web Services tool-kits and technologies
have been observed to be extremely slow in certain
circumstances (e.g. from the selection of Java tool-kits
we have tested, the slowest takes 3 times longer to do
the same elementary service as the fastest). This type of
result, though, should be put down to the immaturity of
the offerings rather than generally dire performance for
Web Services.

The implementation of security is also responsible
for some degraded performance, but generally
performance is acceptable for most user-driven on-line
implementations. As the use of HTTPS for large
messages will always add a significant delay, it is

important to appreciate this overhead through testing
out the technologies that you plan to use.

In summary then, we believe that Web Services
performance is ‘good enough’ for on-line synchronous
systems integration. It is not currently an appropriate
solution for genuine real-time integration requirements
or for extremely high volume publish-and-subscribe
implementations. The benefits achieved through the
use of Web Services technology can outweigh the
performance degradation, and, in existing scenarios
involving the use of Web browsers and HTML interfaces,
the delays incurred could even be considered minimal.

As stated earlier, some of the real-life uses of Web
Services inside BT have allowed us to remove layers of
code and/or middleware, thus actually improving the
performance of the interface (see section 8.1). Our
experience in doing this leads us to make the following
recommendations:

• avoid XSLT processing if you are working at the
XML level,

• similarly, be cautious about performing schema
validation if this is not required,

• the use of security options can have a major impact
on performance,

• ensure the tool-kit technology is working over
HTTP1.1 not HTTP1.0,

• benchmark your selection of Web Services
technologies against each other to highlight
inefficiencies,

• exploit asynchronous patterns where appropriate.

7. UDDI and service discovery
UDDI is, in effect, a registry or directory for publishing
and finding Web Services [7]. Unlike some directories
UDDI does not actually describe or point to individual
Web Services. This is the role of the WSDL. The UDDI
points to the WSDL when the correct service has been
found by navigating the directory structure to the
correct category. As such it is not an essential part of
the Web Services in the way that SOAP, XML and WSDL
are.

 Universal description, discovery and integration is
the least implemented of the ‘core’ Web Services
technologies. The Cinderella nature of this technology
to date can be attributed to the fact that few companies
are advertising services outside the enterprise for
general consumption and therefore the need for
discovery is much reduced. Likewise inside the
organisation there is not the likelihood of a multiplicity
of identical services that a UDDI implementation could

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 2004 95

help to describe. If an enterprise does not have a
significant body of Web Services to publish and
categorise, the requirement for UDDI is not obvious.

Pragmatically it was accepted that we may not
actually need an internal UDDI instance until we had
achieved a ‘critical mass’ of services across a range of
business areas. Strategically though it was recognised
that to delay implementing a UDDI service for our
internal Web Services would mean a risk of being unable
to support and administer the service immediately when
it was required.

To this end we elected to implement a UDDI registry
that describes our internal Web Services before the
number and complexity of these services grew to the
point where a registry component was required.

A detailed technical evaluation of UDDI offerings
resulted in BT selecting the Microsoft UDDI as the
preferred solution. A key factor in this decision was the
ability to create custom categories in the UDDI that we
could use to describe the business areas and functions
of the Web Services we were creating. This remains a
weakness in many UDDI offerings currently available.

Our experience has shown that the large
organisation may need more than one categorisation
scheme or means of finding the service(s) being
published. It may be beneficial for services to be
categorised in different ways depending on the
knowledge and viewpoint of the designer/developer
using the service. For example, services may be
categorised around business areas, functional areas or
product ranges. This flexibility cannot be achieved if the
UDDI offering only allows services to be published
according to predefined categorisation schemes.

There is also the question of how such services may
be published outside the enterprise when needed for
integration with customers and trading partners. BT is
also currently involved in a work package to implement
the eTOM (electronic telecommunications operations
map) on UDDI, although this does not achieve the fine
level of granularity to describe services in such a manner
that developers/solutions designers are able to quickly
locate the right service.

In order to allow Web Services to be discovered at
any stage of their life cycle, we have chosen to
implement development, test and production UDDI
instances. In this way the designer only wanting to
discover services that are already deployed may be able
to do so.

8. Case studies

8.1 BT.com
BT.com is BT’s primary customer portal and offers many
customer services such as ‘View my bill’, ‘Friends and
Family’, etc. By using these services on line the
customer is saving BT money because of the high cost
of operator-assisted services. It is estimated that to
change a customer’s ‘Friends and Family’ numbers via
BT.com costs 3p compared to £3 for an operator-
assisted call. It is important therefore that customers
are encouraged to use this service and that they receive
a good experience when they first use BT.com.

In order to use BT.com for these types of service it is
necessary to register as a BT.com user. The process
involved an off-line validation of the customer followed
by an e-mail being sent to the customer with their
BT.com pass code, which they then used to access the
services they required. Statistics showed, however, that
people were not returning to the site after the pass code
had been sent out. This meant that BT was losing the
potential cost savings of on-line transactions, not
building the on-line community as fast as it could and
not offering the customer the best user experience
because they were not making a return visit.

The requirement then was to allow the customer
immediate access to the BT.com services such that we
retained their custom, benefited from the cost savings
and offered the best experience possible on their first
visit to BT.com.

8.1.1 Proposition
BT Exact proposed an on-line validation of the
customer, offering real-time confirmation of their
identity to enable the on-line dialogue with the
customer to continue and let them use the BT.com
services straight away.

8.1.2 Solution
It was agreed that the best approach was to use the
customer’s billing information as proof of identity. The
printed bill contains a 2-character check-digit field that
is only present on the printed bill itself. If this
information could be retrieved on-line and compared
with the data supplied by the customer, then we had
enough proof of identity to allow the customer to
continue their dialogue. We were able to provide this
information with a Web Services interface to CSS to
retrieve the billing data while the customer was on-line.

8.1.3 Results and customer benefits
The solution was implemented in a very rapid time-scale
and for low cost to the BT customer. The successful
implementation of this has meant that a far higher take-

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 200496

up of BT.com services has been realised. Real-time
validation for 95% of calls is taking less than 1 sec.

By selecting a lightweight Web Service for this
requirement, BT.com was able to take delivery of the
service within 1 week and able to go live within 5 weeks
of the initial request being made. Alternative costings
were made and it is estimated that this was
implemented in less than half the time of a conventional
mid-tier deployment and for 25% of the development
costs of hand coding a mid-tier solution.

8.1.4 Technology involved
The main components of the solution are shown in
Fig 7.

Fig 7 On-line trust.

8.2 SCORe
Project SCORe (Service Consolidation and Operational
Revitalisation) is a BT Retail initiative aimed at reducing
costs and increasing customer satisfaction with the way
their contact with call-centres is handled. One of the
problems identified was the system’s complexity in
retrieving all data relative to a customer’s contact
because it is held in multiple back-end databases. This
requires separate calls to these systems using different
access paths and technologies.

Part of the solution for BT Retail was to channel all of
this contact through their strategic CRM (customer
relationship management) product. The CRM platform,
however, was not an appropriate place to implement
complex business rules or cross-platform integration
solutions.

Phase 1 of SCORe required access to CSS,
COSMOSS and CAMSS. These are three applications on
very different database and TP Monitor combinations —
integrating with all of them would historically have
meant using three different protocols and data models.

It was suggested to BT Retail that life-cycle savings
and a more elegant architecture could be achieved if a
single interface style was used across all three systems.

CSS and COSMOSS already had a WS interface and so
the CAMSS interface (described above in section 3.3)
was developed for this deployment. The initial
deployment makes use of two services on CAMSS, two
services on COSMOSS and six services on CSS.

The whole piece is offered as a coherent set of
services (Fig 8) through the STAA platform (described
above in section 3), thus providing the capability to
integrate multiple heterogeneous platforms via Web
Services.

Fig 8 SCORe architecture.

 The main benefit of this deployment is that the
integration layer of the STAA platform that implements
the common data model is able to access services on
CICS, DB2 and IDMS/DC in a single consistent fashion.
This means that integration activities can be developed
more quickly, and ongoing support is reduced with
fewer integration technologies to be maintained.

8.3 Service provider gateway
Service provider gateway (SPG) is a BT Wholesale
application that allows restricted access to certain
functionality in the BT OSS stack to external service
providers. Typically this is around trouble ticketing and
line testing operations. Many of the functions required
by SPG on the back-end systems were accessible via a
DCE mid-tier. DCE is effectively an obsolete technology
and BT is actively removing it from the infrastructure,

bt.com

WS proxy

CSS

SOAP (HTTP)firewall

SOAP (TCP/MQ)

MVS
CICS
IDMS

Unix
Broadvision
JavaScript

Get_Bill_Checkdigits

EJB router

Middleware

data model

EJB EJB EJB

STAA

SIEBEL

COSMOSS CAMSSCSS

SOAP/TCP

X
M

L/
H

T
T

P

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 2004 97

having been served notice by our DCE provider that
support will be withdrawn.

When SPG required new features for their access to
CSS it was decided that we would offer them a Web
Services interface to the functions they require. Most of
the services were read-only or simple update
transactions with little business logic needed. These
services would be implemented as Web Services direct
to the CSS application, whereas any service that
required complex processing or application of business
rules would be implemented on the STAA platform as a
J2EE-based Web Service.

SPG is a Unix-based application with an Oracle
database and the majority of the business logic written
as PL/SQL stored procedures (see Fig 9). The software
levels that SPG were at and the environment that they
used prohibited us from exploiting a Web Services tool-
kit to effect the client interface, but the developers were
able to call the Web Services through manipulating XML
structures directly and send these out as requests over
HTTP. This demonstrates the flexibility and the near
universal access that the Web Services model exposes.
The benefits of this approach are:

Fig 9 SPG architecture.

• access to non-native services being made available
as Web Services means that heterogeneous
platforms are able to invoke them,

• the services could be individually deployed on the
most suitable platform and still be accessed in a
consistent manner by the client,

• being able to deploy Web Services directly on the
mainframe rather than coding a needless mid-tier
solution saved the customer circa 80% of their
standard development costs alone,

• an outdated technology (DCE) could be removed
from the architecture,

• with the majority of services implemented directly
on the back-end system, performance of the
application is greatly improved.

9. Conclusions
BT Exact is now some way into a programme of
promoting Web Services as the primary technology
solution for internal applications integration. This
approach has been proved across a wide range of
platforms and technologies and has delivered real
business benefit in delivering a better, cheaper, faster
integration capability. Web Services is a credible model
for large- scale systems integration and we are
confident that it will serve BT well and give our legacy
systems an extended lifetime of participation in our
distributed systems architecture.

There is wide industry support for Web Services.
However, it is still an evolving set of standards and Web
Services adopters must be cognisant of a number of
issues while navigating their way through the
technologies and planning their strategy. Inter-
operability, in particular, must not be assumed and
there is a need to prove the interoperability of Web
Services until initiatives such as the WS-I begin to
deliver conformance to the SOAP standard.

The core set of Web Services technologies are now
stable and this will mean greater stability and less
diversity in the different implementations of these
standards that are available. There are new standards
emerging all the time that will extend and enhance the
Web Services capability, notably Web Services reliable
messaging and choreography/orchestration. The
adoption of these standards by the market-place will
further promote the use of Web Services as an industry-
strength solution for comprehensive enterprise
integration.

Acknowledgements
The developments and strategies described in this
paper are the result of the dedication and expertise of

EJB router

Middleware

data model

EJB EJB EJB

STAA

Oracle

WS proxy

PL/SQL

MXBI

IDMS/DB

CSS

SOAP/TCP

SOAP/HTTP

3
se

rv
ic

es

7
se

rv
ic

es

Giving legs to the legacy — Web Services integration within the enterprise

BT Technology Journal • Vol 22 No 1 • January 200498

the BT Exact Web Services Integration Team, in
particular, Newland Andrews, Ken Bugbee, Paul
Downey, Mike Gibson, Pete Harris, Chris Hipson, Colin
Jones, Peter Kennedy, Dave Prout, Adrian Smith and
Terry Wyatt.

References
1 Calladine J: ‘BT Middleware — software as infrastructure’, BT

Technol J, 15, No 1, pp 135—146 (January 1997).

2 XMethods — http://www.xmethods.com/

3 Web Services Integration — http://www.ws-i.org/

4 OASIS — http://www.oasis-open.org/committees/

5 Kearney P et al: ‘An overview of Web Services security’, BT
Technol J, 22, No 1, pp 27—42 (January 2004).

6 Mclaren R: ‘Real World Web Services Deployment’, presentation
at Web Services Architecture 2002, reproduced in Web Services
Strategies, 1, No 4 (December 2002).

7 UDDI — http://www.uddi.org/

Jon Calladine is the manager of the Web
Services Integration team in BT Exact. He
holds a BA in Philosophy and Artificial
Intelligence from Sussex University, and
joined BT in 1987.

He initially worked as a systems pro-
grammer on some of the core systems
comprising today’s more ‘venerable’
legacy applications.

In 1991 he moved into systems integration
and has subsequently worked on many
different integration technologies for both

in-house and third-party products. He championed the introduction
and roll-out of MQSeries as BT’s core asynchronous message queuing
technology and was chairman of the UK user group for 3 years.

Since 2001 he has promoted the use of Web Services technologies
within the integration infrastructure as a strategic direction.

He currently represents BT in the WS-I (Web Services Interoperability)
forum.

