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Link layer and LANs: our goals
▪understand principles 

behind link layer services:
• error detection, correction
• sharing a broadcast 

channel: multiple access
• link layer addressing
• local area networks: 

Ethernet, VLANs

▪datacenter networks

• instantiation, 
implementation of various 
link layer technologies

Link Layer: 6-2



Link layer, LANs: roadmap

▪ a day in the life of a web 
request

▪ introduction
▪ error detection, correction 
▪ multiple access protocols
▪ LANs

• addressing, ARP
• Ethernet
• switches
• VLANs

▪ link virtualization: MPLS
▪ data center networking

Link Layer: 6-3



MAC addresses

Link Layer: 6-4

▪ 32-bit IP address: 
• network-layer address for interface
• used for layer 3 (network layer) forwarding
• e.g.: 128.119.40.136

▪ MAC (or LAN or physical or Ethernet) address: 
• function: used “locally” to get frame from one interface to another 

physically-connected interface (same subnet, in IP-addressing sense)
• 48-bit MAC address (for most LANs) burned in NIC ROM, also 

sometimes software settable

hexadecimal (base 16) notation
(each “numeral” represents 4 bits)

• e.g.: 1A-2F-BB-76-09-AD



MAC addresses

Link Layer: 6-5

each interface on LAN 
▪ has unique 48-bit MAC address
▪ has a locally unique 32-bit IP address (as we’ve seen)

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN
(wired or wireless)

137.196.7/24

137.196.7.78

137.196.7.14

137.196.7.88

137.196.7.23



MAC addresses

Link Layer: 6-6

▪ MAC address allocation administered by IEEE
▪ manufacturer buys portion of MAC address space (to 

assure uniqueness)
▪ analogy:

• MAC address: like Social Security Number
• IP address: like postal address

▪  MAC flat address: portability 
• can move interface from one LAN to another
• recall IP address not portable: depends on IP subnet to 

which node is attached



ARP: address resolution protocol

Link Layer: 6-7

ARP table: each IP node (host, 
router) on LAN has table

Question: how to determine interface’s MAC address, knowing its IP 
address?

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

137.196.7.78

137.196.7.14

137.196.7.88

137.196.7.23

ARP

ARP

ARP
ARP

• IP/MAC address mappings for 
some LAN nodes:

          < IP address; MAC address; TTL>

• TTL (Time To Live): time after 
which address mapping will 
be forgotten (typically 20 min)



ARP protocol in action

Link Layer: 6-8

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53

137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• B’s MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

A broadcasts ARP query, containing B's IP 
addr
• destination MAC address = FF-FF-FF-FF-

FF-FF
• all nodes on LAN receive ARP query 

1
Source MAC:  71-65-F7-2B-08-
53
Source IP: 137.196.7.23 
Target IP address: 137.196.7.14
…

1

Ethernet frame (sent to FF-FF-FF-FF-FF-FF)



ARP protocol in action

Link Layer: 6-9

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53

137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• B’s MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

B replies to A with ARP 
response, giving its MAC 
address

2

Target IP address: 137.196.7.14
Target MAC address: 
                    58-23-D7-FA-20-B0
…

2

ARP message into Ethernet 
frame (sent to 71-65-F7-2B-08-
53)



ARP protocol in action

Link Layer: 6-10

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53

137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• B’s MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

A receives B’s reply, adds B 
entry into its local ARP table

3

137.196.

       7.14
58-23-D7-FA-20-B0 500



Routing to another subnet: addressing

Link Layer: 6-11

walkthrough: sending a  datagram from A to B via R
▪ focus on addressing – at IP (datagram) and MAC layer (frame) 

levels

R
A B

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55 222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

▪ assume that:
• A knows B’s IP address
• A knows IP address of first hop router, R (how?)
• A knows R’s MAC address (how?)



Routing to another subnet: addressing

Link Layer: 6-12

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP
Eth
Phy

IP src: 111.111.111.111

   IP dest: 222.222.222.222

▪ A creates IP datagram with IP source A, destination B 
▪ A creates link-layer frame containing A-to-B IP datagram

•  R's MAC address is frame’s destination
MAC src: 74-29-9C-E8-FF-55

   MAC dest: E6-E9-00-17-BB-4B



Routing to another subnet: addressing

Link Layer: 6-13

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP
Eth
Phy

▪ frame sent from A to R

IP

Eth

Phy

▪ frame received at R, datagram removed, passed up to IP

MAC src: 74-29-9C-E8-FF-55

   MAC dest: E6-E9-00-17-BB-4B

IP src: 111.111.111.111

   IP dest: 222.222.222.222

IP src: 111.111.111.111

   IP dest: 222.222.222.222



Routing to another subnet: addressing

Link Layer: 6-14

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP src: 111.111.111.111

   IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B

  MAC dest: 49-BD-D2-C7-56-2A

▪ R determines outgoing interface, passes datagram with IP source A, 
destination B to link layer 

▪ R creates link-layer frame containing A-to-B IP datagram. Frame destination 
address: B's MAC address

IP

Eth

Phy



Routing to another subnet: addressing

Link Layer: 6-15

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP

Eth

Phy
IP

Eth

Phy

IP src: 111.111.111.111

   IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B

  MAC dest: 49-BD-D2-C7-56-2A▪ transmits link-layer 
frame

▪ R determines outgoing interface, passes datagram with IP source A, 
destination B to link layer 

▪ R creates link-layer frame containing A-to-B IP datagram. Frame destination 
address: B's MAC address



Routing to another subnet: addressing

Link Layer: 6-16

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP

Eth

Phy
IP

Eth

Phy

▪ B receives frame, extracts IP datagram destination B 

▪ B passes datagram up protocol stack to IP

IP src: 111.111.111.111

   IP dest: 222.222.222.222



Link layer, LANs: roadmap

▪ a day in the life of a web 
request

▪ introduction
▪ error detection, correction 
▪ multiple access protocols
▪ LANs

• addressing, ARP
• Ethernet
• switches
• VLANs

▪ link virtualization: MPLS
▪ data center networking

Link Layer: 6-17



Ethernet

Link Layer: 6-18

“dominant” wired LAN technology: 
▪ first widely used LAN technology
▪ simpler, cheap
▪ kept up with speed race: 10 Mbps – 400 Gbps 
▪ single chip, multiple speeds (e.g., Broadcom  

BCM5761)

Metcalfe’s Ethernet 
sketch

https://www.uspto.gov/learning-and-resources/journeys-innovation/audio-stories/defying-doubters



Ethernet: physical topology

Link Layer: 6-19

▪ bus: popular through mid 90s
• all nodes in same collision domain (can collide with each other)

bus: coaxial cable switched

▪ switched: prevails today
• active link-layer 2 switch in center
• each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with 

each other)



Ethernet frame structure

Link Layer: 6-20

sending interface encapsulates IP datagram (or other network layer 
protocol packet) in Ethernet frame

dest.
address

source
address data (payload) CRCpreamble

type

preamble: 
▪  used to synchronize receiver, sender clock rates
▪ 7 bytes of 10101010 followed by one byte of 10101011



Ethernet frame structure (more)

Link Layer: 6-21

dest.
address

source
address data (payload) CRCpreamble

type

▪ addresses: 6 byte source, destination MAC addresses
• if adapter receives frame with matching destination address, or with broadcast 

address (e.g., ARP packet), it passes data in frame to network layer protocol
• otherwise, adapter discards frame

▪ type: indicates higher layer protocol 
• mostly IP but others possible, e.g., Novell IPX, AppleTalk
• used to demultiplex up at receiver

▪CRC: cyclic redundancy check at receiver
• error detected: frame is dropped



Ethernet: unreliable, connectionless

Link Layer: 6-22

▪connectionless: no handshaking between sending and 
receiving NICs 

▪unreliable: receiving NIC doesn’t send ACKs or NAKs to 
sending NIC
• data in dropped frames recovered only if initial sender uses 

higher layer rdt (e.g., TCP), otherwise dropped data lost

▪Ethernet’s MAC protocol: unslotted CSMA/CD with 
binary backoff



802.3 Ethernet standards: link & physical 
layers

Link Layer: 6-23

• different physical layer media: fiber, cable

application
transport
network

link
physical

MAC protocol
and frame format

100BASE-TX

100BASE-T4

100BASE-FX100BASE-T2

100BASE-SX 100BASE-BX

fiber physical layercopper (twister pair) physical 
layer

▪ many different Ethernet standards
• common MAC protocol and frame format
• different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 

Gbps



Link layer, LANs: roadmap

▪ a day in the life of a web 
request

▪ introduction
▪ error detection, correction 
▪ multiple access protocols
▪ LANs

• addressing, ARP
• Ethernet
• switches
• VLANs

▪ link virtualization: MPLS
▪ data center networking

Link Layer: 6-24



Ethernet switch

Link Layer: 6-25

▪ Switch is a link-layer device: takes an active role
• store, forward Ethernet frames
• examine incoming frame’s MAC address, selectively forward  

frame to one-or-more outgoing links when frame is to be 
forwarded on segment, uses CSMA/CD to access segment

▪ transparent: hosts unaware of presence of switches

▪ plug-and-play, self-learning
• switches do not need to be configured



Switch: multiple simultaneous transmissions

Link Layer: 6-26

switch with six 
interfaces (1,2,3,4,5,6)  

A

A’

B

B’ C

C’

1 2

3
45

6

▪ hosts have dedicated, direct 
connection to switch

▪ switches buffer packets
▪ Ethernet protocol used on each 

incoming link, so: 
• no collisions; full duplex
• each link is its own collision 

domain
▪ switching: A-to-A’ and B-to-B’ can 

transmit simultaneously, without 
collisions



Switch: multiple simultaneous transmissions

Link Layer: 6-27

switch with six 
interfaces (1,2,3,4,5,6)  

A

A’

B

B’ C

C’

1 2

3
45

6

▪ hosts have dedicated, direct 
connection to switch

▪ switches buffer packets
▪ Ethernet protocol used on each 

incoming link, so: 
• no collisions; full duplex
• each link is its own collision 

domain
▪ switching: A-to-A’ and B-to-B’ can transmit 

simultaneously, without collisions
• but A-to-A’ and C to A’ can not happen 

simultaneously 



Switch forwarding table

Link Layer: 6-28

A

A’

B

B’ C

C’

1 2

3
45

6

Q: how does switch know A’ reachable via 
interface 4, B’ reachable via interface 5?

A:  each switch has a switch table, 
each entry:
▪ (MAC address of host, interface to 

reach host, time stamp)
▪ looks like a routing table!

Q: how are entries created, 
maintained in switch table? 
▪ something like a routing protocol?



Switch: self-learning

Link Layer: 6-29

A

A’

B

B’ C

C’

1 2

3
45

6

▪switch learns which hosts 
can be reached through 
which interfaces

A A’

Source: A

Dest: A’

MAC addr   interface    TTL
Switch table 

(initially empty)

A 1 60

• when frame received, switch 
“learns”  location of sender: 
incoming LAN segment

• records sender/location 
pair in switch table



Switch: frame filtering/forwarding

Link Layer: 6-30

when  frame received at switch:
1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination

  then {
     if destination on segment from which frame arrived

       then drop frame
           else forward frame on interface indicated by entry
     }   
      else flood  /* forward on all interfaces except arriving interface 

*/
  



A

A’

B

B’ C

C’

1 2

3
45

6

Self-learning, forwarding: example

Link Layer: 6-31

A A’

Source: A

Dest: A’

MAC addr   interface    TTL

switch table 

(initially empty)
A 1 60

A A’A A’A A’A A’A A’

A’ A

A’ 4 60

▪ frame destination, A’, 
location unknown:flood

▪ destination A location 
known:selectively send 

on just one link



Interconnecting switches

Link Layer: 6-32

self-learning switches can be connected together:

Q: sending from A to G - how does S1 know to forward frame destined 
to G via S4 and S3?

▪ A: self learning! (works exactly the same as in single-switch case!)

A

B

S1

C D

E

F
S2

S4

S3

H

I

G



Self-learning multi-switch example

Link Layer: 6-33

Suppose C sends frame to I, I responds to C

Q: show switch tables and packet forwarding in S1, S2, S3, S4 

A

B

S1

C D

E

F
S2

S4

S3

H

I

G



Small institutional network

Link Layer: 6-34

to external

network

router

IP subnet

mail server

web server



Switches vs. routers

Link Layer: 6-35

application
transport
network

link
physical

network
link

physical

link
physical

switch

datagram

application
transport
network

link
physical

frame

frame

frame
datagram

6-35

both are store-and-forward: 
▪ routers: network-layer devices 

(examine network-layer headers)
▪ switches: link-layer devices (examine 

link-layer headers)

both have forwarding tables:
▪ routers: compute tables using routing 

algorithms, IP addresses
▪ switches: learn forwarding table using 

flooding, learning, MAC addresses 



Link layer, LANs: roadmap

▪ a day in the life of a web 
request

▪ introduction
▪ error detection, correction 
▪ multiple access protocols
▪ LANs

• addressing, ARP
• Ethernet
• switches
• VLANs

▪ link virtualization: MPLS
▪ data center networking

Link Layer: 6-36



Virtual LANs (VLANs): motivation

Link Layer: 6-37

Computer 
Science EE

Q: what happens as LAN sizes scale, users change point of attachment?

single broadcast domain:
▪ scaling: all layer-2 broadcast traffic 

(ARP, DHCP, unknown MAC) must 
cross entire LAN 

▪ efficiency, security, privacy issues



Virtual LANs (VLANs): motivation

Link Layer: 6-38

administrative issues:
▪ CS user moves office to EE - 

physically attached to EE switch, 
but wants to remain logically 
attached to CS switch

Computer 
Science EE

single broadcast domain:
▪ scaling: all layer-2 broadcast traffic 

(ARP, DHCP, unknown MAC) must 
cross entire LAN 

▪ efficiency, security, privacy, 
efficiency issues

Q: what happens as LAN sizes scale, users change point of attachment?



1

82

7 9

1610

15

Port-based VLANs

Link Layer: 6-39

switch(es) supporting 
VLAN capabilities can 
be configured to 
define multiple virtual 
LANS over single 
physical LAN 
infrastructure.

Virtual Local Area 
Network (VLAN)

port-based VLAN: switch ports grouped 
(by switch management software) so that 
single physical switch ……

…

EE (VLAN ports 1-8) CS (VLAN ports 9-15)

…

… operates as multiple virtual 
switches

1

82

7

EE (VLAN ports 1-8)

…

9

1610

15

…

CS (VLAN ports 9-15)



1

82

7 9

1610

15

Port-based VLANs

Link Layer: 6-40

…

EE (VLAN ports 1-8) CS (VLAN ports 9-15)

…

▪ traffic isolation: frames to/from 
ports 1-8 can only reach ports 1-8

• can also define VLAN based on MAC 
addresses of endpoints, rather than 
switch port

▪ dynamic membership: ports can be 
dynamically assigned among 
VLANs

▪ forwarding between VLANS: done via 
routing (just as with separate 
switches)
• in practice vendors sell combined 

switches plus routers



1

82

7 9

1610

15

VLANS spanning multiple switches

Link Layer: 6-41

…

EE (VLAN ports 1-8) CS (VLAN ports 9-15)

…

5

82

7

…

16

1

6

3

4

Ports 2,3,5 belong to EE VLAN

Ports 4,6,7,8 belong to CS VLAN

trunk port: carries frames between VLANS defined over multiple 
physical switches
▪ frames forwarded within VLAN between switches can’t be vanilla 802.1 

frames (must carry VLAN ID info)
▪ 802.1q protocol adds/removed additional header fields for frames 

forwarded between trunk ports



802.1Q VLAN frame format

Link Layer: 6-42

802.1 Ethernet frame
dest.

address
source

address data (payload) CRCpreamble

type

2-byte Tag Protocol Identifier
                        (value: 81-00) Tag Control Information 

(12 bit VLAN ID field, 3 bit priority field like IP 
TOS) 

Recomputed 
CRC 

802.1Q framedest.
address

source
address data (payload) CRCpreamble

type
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Network layer: our goals
▪understand principles 

behind network layer 
services, focusing on data 
plane:
• network layer service 

models
• forwarding versus routing
• how a router works
• addressing
• generalized forwarding
• Internet architecture

• instantiation, 
implementation in the 
Internet
• IP protocol
• NAT, middleboxes

Network Layer: 4-44



Network layer: “data plane” roadmap

• Network layer: overview
• data plane
• control plane

▪ Generalized Forwarding, SDN
• Match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-45

▪ What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

▪ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6



Network-layer  services and protocols

▪ transport segment from sending 
to receiving host 
• sender: encapsulates segments into 

datagrams, passes to link layer
• receiver: delivers segments to 

transport layer protocol

▪ network layer protocols in every 
Internet device: hosts, routers

▪ routers:
• examines header fields in all IP 

datagrams passing through it

• moves datagrams from input ports to 
output ports to transfer datagrams 
along end-end path

mobile network

enterprise
          network

national or global ISP

datacenter 
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 4-46



Two key network-layer functions
network-layer functions:
• forwarding: move packets from 

a router’s input link to 
appropriate router output link

analogy: taking a trip
▪ forwarding: process of getting 

through single interchange

forwarding

routing

▪ routing: process of planning trip 
from source to destination▪ routing: determine route taken 

by packets from source to 
destination

• routing algorithms

Network Layer: 4-47



Network layer: data plane, control plane
Data plane:
▪ local, per-router function
▪ determines how datagram 

arriving on router input 
port is forwarded to router 
output port

Control plane
• network-wide logic
• determines how datagram is 

routed among routers along end-
end path from source host to 
destination host

1

2
3

0111

values in arriving 

packet header

▪ two control-plane approaches:
• traditional routing algorithms: 

implemented in routers

• software-defined networking (SDN): 
implemented in (remote) servers

Network Layer: 4-48



Per-router control plane
Individual routing algorithm components in each and every 
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving 

packet header

3

Network Layer: 4-49



Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 

packet header

Network Layer: 4-50



Network service model

example services for 
individual datagrams:

▪ guaranteed delivery
▪ guaranteed delivery with 

less than 40 msec delay

example services for a flow of 
datagrams:

• in-order datagram delivery
• guaranteed minimum bandwidth 

to flow
• restrictions on changes in inter-

packet spacing

Q: What service model for “channel” transporting datagrams 
from sender to receiver?

Network Layer: 4-51



Network-layer service model

Network

Architecture

Internet

ATM

ATM

Internet

Internet

Service

Model

best effort

Constant Bit Rate

Available Bit Rate

Intserv Guaranteed

(RFC 1633)

Diffserv  (RFC 2475) 

Bandwidth

none

Constant rate

Guaranteed min

yes

possible

Loss

no

yes

no

yes

possibly

Order

no

yes

yes

yes

possibly

Timing

no

yes

no

yes

no

No guarantees on: 
i. successful datagram delivery to destination
ii. timing or order of delivery
iii. bandwidth available to end-end flow

Internet  “best effort” service model

Quality of Service (QoS) Guarantees ?
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Reflections on best-effort  service:
▪ simplicity of mechanism has allowed Internet to be widely deployed 

adopted
▪ sufficient provisioning of bandwidth allows performance of real-time 

applications (e.g., interactive voice, video) to be “good enough” for 
“most of the time”

▪ replicated, application-layer distributed services (datacenters, 
content distribution networks) connecting close to clients’ 
networks, allow services to be provided from multiple locations

▪ congestion control of “elastic” services helps

It’s hard to argue with success of best-effort service model 
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Network layer: “data plane” roadmap

• Network layer: overview
• data plane
• control plane

• What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

• IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• Match+action
• OpenFlow: match+action in action

▪ Middleboxes
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Router architecture overview
high-level view of generic router architecture:

high-speed 
switching

fabric

high-speed 
switching

fabric

high-speed 
switching

fabric

routing 
processor

router input ports router output ports

forwarding data plane  

(hardware) operates 

in nanosecond 

timeframe

routing, management

control plane (software)

operates in millisecond 

time frame
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Input port functions

switch
fabric

line

termination

physical layer:
bit-level reception

link 
layer 

protocol
(receive)

link layer:
e.g., Ethernet

(chapter 6)

lookup,

forwarding

queueing

decentralized switching: 
▪ using header field values, lookup output port using 

forwarding table in input port memory (“match plus action”)

▪ goal: complete input port processing at ‘line speed’

▪ input port queuing: if datagrams arrive faster than forwarding 
rate into switch fabric
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Input port functions

line

termination

lookup,

forwarding

queueing

decentralized switching: 
▪ using header field values, lookup output port using 

forwarding table in input port memory (“match plus action”)

▪ destination-based forwarding: forward based only on 
destination IP address (traditional)

▪ generalized forwarding: forward based on any set of header 
field values

physical layer:
bit-level reception

switch
fabric

link 
layer 

protocol
(receive)

link layer:
e.g., Ethernet

(chapter 6)
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Q: but what happens if ranges don’t divide up so nicely? 

Destination-based forwarding

3
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Longest prefix matching

when looking for forwarding table entry for given 
destination address, use longest address prefix that 
matches destination address.

longest prefix match

Destination Address Range                        

11001000  00010111  00010

11001000  00010111  00011000

11001000  00010111  00011

otherwise  

Link interface

0

1

2

3

***********

***********

********

11001000  00010111  00011000  10101010 

examples:
which interface?

which interface?

11001000  00010111  00010110  10100001 
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Longest prefix matching

when looking for forwarding table entry for given 
destination address, use longest address prefix that 
matches destination address.

longest prefix match

Destination Address Range                        

11001000  00010111  00010

11001000  00010111  00011000

11001000  00010111  00011

otherwise  

Link interface

0

1

2

3

11001000  00010111  00011000  10101010 

examples:
which interface?

which interface?

***********

***********

********

11001000  00010111  00010110  10100001 

match!
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Longest prefix matching

when looking for forwarding table entry for given 
destination address, use longest address prefix that 
matches destination address.

longest prefix match

Destination Address Range                        

11001000  00010111  00010

11001000  00010111  00011000

11001000  00010111  00011

otherwise  

Link interface

0

1

2

3

11001000  00010111  00011000  10101010 

examples:
which interface?

which interface?

***********

***********

********

11001000  00010111  00010110  10100001 
match!
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Longest prefix matching

when looking for forwarding table entry for given 
destination address, use longest address prefix that 
matches destination address.

longest prefix match

Destination Address Range                        

11001000  00010111  00010

11001000  00010111  00011000

11001000  00010111  00011

otherwise  

Link interface

0

1

2

3

11001000  00010111  00011000  10101010 

examples:
which interface?

which interface?

***********

***********

********

11001000  00010111  00010110  10100001 

match!
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• we’ll see why longest prefix matching is used shortly, 
when we study addressing

• longest prefix matching: often performed using ternary 
content addressable memories (TCAMs)

• content addressable: present address to TCAM: retrieve 
address in one clock cycle, regardless of table size

• Cisco Catalyst:  ~1M routing table entries in TCAM

Longest prefix matching
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▪ transfer packet from input link to appropriate output link
Switching fabrics

high-speed 
switching

fabric

high-speed 
switching

fabric

high-speed 
switching

fabric

N input ports N output ports

. . . 

. . . 

▪ switching rate: rate at which packets can be transfer from 
inputs to outputs
• often measured as multiple of input/output line rate

• N inputs: switching rate N times line rate desirable

R

R

R

R

(rate: NR, 
ideally)
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Switching fabrics

busmemory

memory

interconnection

network

▪ three major types of switching fabrics:

▪ transfer packet from input link to appropriate output link
▪ switching rate: rate at which packets can be transfer from 

inputs to outputs
• often measured as multiple of input/output line rate

• N inputs: switching rate N times line rate desirable
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first generation routers:
• traditional computers with switching under direct control of CPU
• packet copied to system’s memory
• speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via memory

input
port

(e.g.,
Ethernet)

memory

output
port

(e.g.,
Ethernet)

system bus
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▪datagram from input port memory to output port memory 
via a shared bus

▪bus contention:  switching speed limited by bus 
bandwidth

▪32 Gbps bus, Cisco 5600: sufficient speed for access 
routers

Switching via a bus
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▪ Crossbar, Clos networks, other 
interconnection nets initially 
developed to connect processors 
in multiprocessor

Switching via interconnection network

8x8 multistage switch 
built from smaller-sized switches

3x3 crossbar▪ multistage switch: nxn switch from 
multiple stages of smaller switches

▪ exploiting parallelism: 
• fragment datagram into fixed length cells on 

entry

• switch cells through the fabric, reassemble 
datagram at exit

3x3 crossbar
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▪ scaling, using multiple switching “planes” in parallel: 
▪ speedup, scaleup via parallelism

Switching via interconnection network

fabric plane 0

. .
 .

. .
 .

fabric plane 1

. .
 .

. .
 .

fabric plane 2

. .
 .

. .
 .

fabric plane 3

. .
 .

. .
 .

fabric plane 4

. .
 .

. .
 .

fabric plane 5

. .
 .

. .
 .

fabric plane 6

. .
 .

. .
 .

fabric plane 7

. .
 .

. .
 .

▪ Cisco CRS router:
▪ basic unit: 8 

switching planes

▪ each plane: 3-stage 
interconnection 
network

▪ up to 100’s Tbps 
switching capacity
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• If switch fabric slower than input ports combined -> queueing may 
occur at input queues 

• queueing delay and loss due to input buffer overflow!

Input port queuing

output port contention: only one red 
datagram can be transferred. lower red 

packet is blocked

switch

fabric

one packet time later: green 
packet experiences HOL blocking

switch

fabric

▪Head-of-the-Line (HOL) blocking: queued datagram at front of queue 
prevents others in queue from moving forward
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Output port queuing

▪ Buffering required when datagrams 
arrive from fabric faster than link 
transmission rate. Drop policy: which 
datagrams to drop if no free buffers?

▪ Scheduling discipline chooses 
among queued datagrams for 
transmission

Datagrams can be lost 
due to congestion, lack of 
buffers

Priority scheduling – who 
gets best performance, 
network neutrality

This is a really important slide

line
termination

link 
layer 

protocol
(send)

switch
fabric

(rate: NR)

datagram

buffer

queueing
R
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Output port queuing

at t, packets more

from input to output

one packet time later

switch

fabric

switch

fabric

▪ buffering when arrival rate via switch exceeds output line speed

▪ queueing (delay) and loss due to output port buffer overflow!

Network Layer: 4-72



Buffer Management

buffer management: 

▪ drop: which packet to add, 
drop when buffers are full
• tail drop: drop arriving 

packet
• priority: drop/remove on 

priority basis

line
termination

link 
layer 

protocol
(send)

switch
fabric

datagram

buffer

queueing 

scheduling

▪ marking: which packets to 
mark to signal congestion 
(ECN, RED)

R

queue

(waiting area)

packet

arrivals

packet

departures

link

 (server)

Abstraction: queue

R
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Network layer: “data plane” roadmap

• Network layer: overview
• data plane
• control plane

• What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

• IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• match+action
• OpenFlow: match+action in action

▪ Middleboxes
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Network Layer: Internet

host, router network layer functions:

IP protocol
• datagram format
• addressing
• packet handling conventions

ICMP protocol
• error reporting
• router “signaling”

transport layer: TCP, UDP

link layer

physical layer

network
layer

forwarding
table

Path-selection  
algorithms: 
implemented in 
• routing protocols 

(OSPF, BGP)
• SDN controller
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IP Datagram format

ver length

32 bits

payload data 

(variable length,

typically a TCP 

or UDP segment)

16-bit identifier

header

 checksum

time to

live

source IP address

head.

len

type of

service

flgs
fragment

 offset
upper

 layer

destination IP address

options (if any)

IP protocol version number

header length(bytes)

upper layer protocol (e.g., TCP or UDP)

total datagram

length (bytes)

“type” of service:
▪ diffserv (0:5)

▪ ECN (6:7)

 

fragmentation/

reassembly

TTL: remaining  max hops
(decremented at each router)

▪ 20 bytes of TCP

▪ 20 bytes of IP

▪ = 40 bytes + app 
layer overhead for 
TCP+IP

overhead
e.g., timestamp, record 

route taken

32-bit source IP address

32-bit destination IP address

header checksum

Maximum length: 64K bytes
Typically: 1500 bytes or less
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• IP address: 32-bit identifier 
associated with each host or 
router interface 

• interface: connection between 
host/router and physical link
• router’s typically have multiple 

interfaces
• host typically has one or two 

interfaces (e.g., wired Ethernet, 
wireless 802.11)

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

dotted-decimal IP address notation:
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• IP address: 32-bit identifier 
associated with each host or 
router interface 

• interface: connection between 
host/router and physical link
• router’s typically have multiple 

interfaces
• host typically has one or two 

interfaces (e.g., wired Ethernet, 
wireless 802.11)

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

dotted-decimal IP address notation:
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IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

Q: how are interfaces 
actually connected?

A: wired 

Ethernet interfaces 

connected by 

Ethernet switches

A: wireless WiFi interfaces 

connected by WiFi base station

For now: don’t need to worry 
about how one interface is 
connected to another (with no 
intervening router) 

A: we’ll learn about 
that in chapters 6, 7
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Subnets
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

▪What’s a subnet ?
• device interfaces that can 

physically reach each other 
without passing through an 
intervening router

network consisting of 3 subnets

▪ IP addresses have structure: 
• subnet part: devices in same subnet 

have common high order bits

• host part: remaining low order bits 
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Subnets
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

Recipe for defining subnets:

▪detach each interface from its 
host or router, creating 
“islands” of isolated networks

▪each isolated network is 
called a subnet

subnet mask: /24
(high-order 24 bits: subnet part of IP address)

subnet

223.1.3.0/24

subnet 223.1.1.0/24

subnet 223.1.2.0/24
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Subnets

▪ where are the 
subnets?

▪ what are the 
/24 subnet 
addresses?

223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1

223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

223.1.2.1

subnet 223.1.1/24

subnet 223.1.7/24

subnet 223.1.3/24subnet 223.1.2/24

subnet 223.1.9/24

subnet 223.1.8/24
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IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced “cider”)

• subnet portion of address of arbitrary length
• address format: a.b.c.d/x, where x is # bits in subnet portion 

of address

11001000  00010111  00010000  00000000

subnet

part

host

part

200.23.16.0/23
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IP addresses: how to get one?

That’s actually two questions:

1. Q: How does a host get IP address within its network (host part of 
address)?

2. Q: How does a network get IP address for itself (network part of 
address)

How does host get IP address?
▪ hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
▪ DHCP: Dynamic Host Configuration Protocol: dynamically get address 

from as server
• “plug-and-play”
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DHCP: Dynamic Host Configuration Protocol
goal: host dynamically obtains IP address from network server when it 

“joins” network

▪ can renew its lease on address in use

▪ allows reuse of addresses (only hold address while connected/on)

▪ support for mobile users who join/leave network 

DHCP overview:
▪ host broadcasts DHCP discover msg [optional]

▪ DHCP server responds with DHCP offer msg [optional]

▪ host requests IP address: DHCP request msg

▪ DHCP server sends address: DHCP ack msg 
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DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

DHCP server

223.1.2.5

arriving DHCP client needs 
address in this network

Typically, DHCP server will be  co-
located in router, serving all subnets 
to which router is attached
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DHCP client-server scenario
DHCP server: 223.1.2.5

Arriving clientDHCP discover

src : 0.0.0.0, 68     

dest.: 255.255.255.255,67

yiaddr:    0.0.0.0

transaction ID: 654

DHCP offer

src: 223.1.2.5, 67      

dest:  255.255.255.255, 68

yiaddr: 223.1.2.4

transaction ID: 654

lifetime: 3600 secs

DHCP request

src:  0.0.0.0, 68     

dest::  255.255.255.255, 67

yiaddr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67      

dest:  255.255.255.255, 68

yiaddr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

Broadcast: is there a 
DHCP server out there?

Broadcast: I’m a DHCP 
server! Here’s an IP 
address you can use 

Broadcast: OK.  I would 
like to use this IP address!

Broadcast: OK.  You’ve 
got that IP address!

The two steps above can 
be skipped “if a client 
remembers and wishes to 
reuse a previously 
allocated network address” 
[RFC 2131]
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DHCP: more than IP addresses
DHCP can return more than just allocated IP address on 

subnet:
▪ address of first-hop router for client

▪ name and IP address of DNS sever

▪ network mask (indicating network versus host portion of address)
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DHCP: example

▪ Connecting laptop will use DHCP 
to get IP address, address of first-
hop router, address of DNS server.

router with DHCP 

server built into 

router

▪ DHCP REQUEST message encapsulated 
in UDP, encapsulated in IP, encapsulated 
in Ethernet

▪ Ethernet frame broadcast (dest: 
FFFFFFFFFFFF) on LAN, received at router 
running DHCP server

▪ Ethernet demux’ed to IP demux’ed, 
UDP demux’ed to DHCP 

168.1.1.1

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCPDHCP
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DHCP: example

▪ DCP server formulates DHCP ACK 
containing client’s IP address, IP 
address of first-hop router for client, 
name & IP address of DNS server

▪ encapsulated DHCP server reply 
forwarded to client, demuxing up to 
DHCP at client

router with DHCP 

server built into 

router

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

▪ client now knows its IP address, name 
and IP address of DNS server, IP 
address of its first-hop router
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IP addresses: how to get one?
Q: how does network get subnet part of IP address?

A: gets allocated portion of its provider ISP’s address space

ISP's block          11001000  00010111  00010000  00000000    200.23.16.0/20 

ISP can then allocate out its address space in 8 blocks: 

Organization 0    11001000  00010111  00010000  00000000    200.23.16.0/23 

Organization 1    11001000  00010111  00010010  00000000    200.23.18.0/23 

Organization 2    11001000  00010111  00010100  00000000    200.23.20.0/23 

   ...                                          …..                                   ….                ….

Organization 7    11001000  00010111  00011110   00000000    200.23.30.0/23 
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Hierarchical addressing: route aggregation

“Send me anything

with addresses 

beginning 

200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us
“Send me anything

with addresses 

beginning 

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

hierarchical addressing allows efficient advertisement of 
routing  information:
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Hierarchical addressing: more specific routes

“Send me anything

with addresses 

beginning 

200.23.16.0/20”

200.23.16.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

200.23.18.0/23

Organization 1

ISPs-R-Us
“Send me anything

with addresses 

beginning 

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

▪ Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
▪ ISPs-R-Us now advertises a more specific route to Organization 1

200.23.18.0/23

Organization 1

“or 200.23.18.0/23”
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Hierarchical addressing: more specific routes

“Send me anything

with addresses 

beginning 

200.23.16.0/20”

200.23.16.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

ISPs-R-Us
“Send me anything

with addresses 

beginning 

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

▪ Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
▪ ISPs-R-Us now advertises a more specific route to Organization 1

200.23.18.0/23

Organization 1

“or 200.23.18.0/23”
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IP addressing: last words ...
Q: how does an ISP get block of 

addresses?

A: ICANN: Internet Corporation for 
Assigned  Names and Numbers 
http://www.icann.org/

• allocates IP addresses, through 5 
regional registries (RRs) (who may 
then allocate to local registries)

• manages DNS root zone, including 
delegation of individual TLD (.com, 
.edu , …) management 

Q: are there enough 32-bit IP 
addresses?

▪ ICANN allocated last chunk of 
IPv4 addresses to RRs in 2011

▪ NAT (next) helps IPv4 address 
space exhaustion

▪ IPv6 has 128-bit address space

"Who the hell knew how much address 
space we needed?"  Vint Cerf (reflecting 
on decision to make IPv4 address 32 bits 
long)
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Network layer: “data plane” roadmap

• Network layer: overview
• data plane
• control plane

• What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

• IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• match+action
• OpenFlow: match+action in action

▪ Middleboxes
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10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

local network (e.g., home 
network) 10.0.0/24

138.76.29.7

rest of
Internet

NAT: network address translation

datagrams with source or destination in 
this network have 10.0.0/24 address for  
source, destination (as usual)

all datagrams leaving local network have 
same source NAT IP address: 138.76.29.7,  

but different source port numbers

NAT: all devices in local network share just one IPv4 address as 
far as outside world is concerned
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▪ all devices in local network have 32-bit addresses in a “private” IP 
address space (10/8, 172.16/12, 192.168/16 prefixes) that can only 
be used in local network

▪ advantages:

▪ just one IP address needed from provider ISP for all devices

▪ can change addresses of host in local network without notifying 
outside world

▪ can change ISP without changing addresses of devices in local 
network

▪ security: devices inside local net not directly addressable, visible 
by outside world

NAT: network address translation
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implementation: NAT router must (transparently):

▪ outgoing datagrams: replace (source IP address, port #) of every 
outgoing datagram to (NAT IP address, new port #)

• remote clients/servers will respond using (NAT IP address, new port 
#) as destination address

▪ remember (in NAT translation table) every (source IP address, port #)  
to (NAT IP address, new port #) translation pair

▪ incoming datagrams: replace (NAT IP address, new port #) in 
destination fields of every incoming datagram with corresponding 
(source IP address, port #) stored in NAT table

NAT: network address translation
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NAT: network address translation

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 sends 
datagram to 
128.119.40.186, 80

NAT translation table
WAN side addr        LAN side addr

138.76.29.7, 5001   10.0.0.1, 3345
……                                         ……

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router changes 
datagram source address 
from 10.0.0.1, 3345 to 
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001 3

3: reply arrives, destination 
address: 138.76.29.7, 5001

10.0.0.1

10.0.0.2

10.0.0.3
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▪ NAT has been controversial:

• routers “should” only process up to layer 3

• address “shortage” should be solved by IPv6

• violates end-to-end argument (port # manipulation by network-layer device)

• NAT traversal: what if client wants to connect to server behind NAT?

▪ but NAT is here to stay:

• extensively used in home and institutional nets, 4G/5G cellular  nets

NAT: network address translation
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▪ initial motivation: 32-bit IPv4 address space would be 
completely allocated  

▪ additional motivation:
• speed processing/forwarding: 40-byte fixed length header

• enable different network-layer treatment of “flows”

IPv6: motivation
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IPv6 datagram format

payload (data)

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit

flow labelpriver

32 bits
priority:  identify 

priority among 
datagrams in flow

flow label: identify 
datagrams in same 
"flow.” (concept of 
“flow” not well defined).

128-bit 
IPv6 addresses

What’s missing (compared with IPv4): 
▪ no checksum (to speed processing at routers)
▪ no fragmentation/reassembly
▪ no options (available as upper-layer, next-header protocol at router)
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• not all routers can be upgraded simultaneously
• no “flag days”
• how will network operate with mixed IPv4 and IPv6 routers? 

Transition from IPv4 to IPv6

IPv4 source, dest addr 

IPv4 header fields 

IPv4 datagram

IPv6 datagram

IPv4 payload 

UDP/TCP payload

IPv6 source dest addr

IPv6 header fields

▪ tunneling: IPv6 datagram carried as payload in IPv4 datagram among 
IPv4 routers (“packet within a packet”)

• tunneling used extensively in other contexts (4G/5G)
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Tunneling and encapsulation

Ethernet connecting 
two IPv6 routers:

Ethernet connects two 
IPv6 routers

A B

IPv6 IPv6

E F

IPv6 IPv6

Link-layer frame

IPv6 datagram

The usual: datagram as payload in link-layer frame

A B

IPv6 IPv6/v4

E F

IPv6/v4 IPv6

IPv4 network

IPv4 network 
connecting two 
IPv6 routers
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Tunneling and encapsulation

Ethernet connecting 
two IPv6 routers:

Ethernet connects two 
IPv6 routers

A B

IPv6 IPv6

E F

IPv6 IPv6

IPv4 tunnel 
connecting two 
IPv6 routers

IPv4 tunnel 
connecting IPv6 routers

A B

IPv6

E F

IPv6

Link-layer frame

IPv6 datagram

The usual: datagram as payload in link-layer frame

IPv4 datagram

IPv6 datagram

tunneling: IPv6 datagram as payload in a IPv4 datagram

IPv6/v4 IPv6/v4
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B-to-C:
IPv6 inside

IPv4

Flow: X

Src: A

Dest: F

data

src:B

dest: E

Tunneling

physical view:
IPv4 IPv4

E

IPv6/v4 IPv6

FC DA B

IPv6 IPv6/v4

logical view:
IPv4 tunnel 

connecting IPv6 routers
A B

IPv6 IPv6/v4

E F

IPv6/v4 IPv6

flow: X

src: A

dest: F

data

A-to-B:
IPv6

Flow: X

Src: A

Dest: F

data

src:B

dest: E

B-to-C:
IPv6 inside

IPv4

E-to-F:
IPv6

flow: X

src: A

dest: F

data

B-to-C:
IPv6 inside

IPv4

Flow: X

Src: A

Dest: F

data

src:B

dest: E

Note source and 
destination 
addresses!
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• Google1: ~ 30% of clients access services via IPv6
• NIST: 1/3 of all US government domains are IPv6 capable

IPv6: adoption

1 
https://www.google.com/intl
/en/ipv6/statistics.html
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• Google1: ~ 30% of clients access services via IPv6
• NIST: 1/3 of all US government domains are IPv6 capable
• Long (long!) time for deployment, use

• 25 years and counting!
• think of application-level changes in last 25 years: WWW, 

social media, streaming media, gaming, telepresence, …
• Why?

IPv6: adoption

1 https://www.google.com/intl/en/ipv6/statistics.html
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The IP hourglass

IP

TCP UDP

HTTP SMTP
QUIC DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper   radio   fiber

Internet’s “thin waist”: 
▪ one network layer 

protocol: IP 
▪ must be implemented 

by every (billions) of 
Internet-connected 
devices

many protocols 
in physical, link, 
transport, and 
application 
layers 



The IP hourglass, at middle age

IP

TCP UDP

HTTP SMTP
QUIC DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper   radio   fiber

Internet’s middle age 
“love handles”? 
▪ middleboxes, 

operating inside the 
network

Firewalls

caching



Architectural Principles of the Internet

“Many members of the Internet community would argue that there is no architecture, but only a tradition, 
which was not written down for the first 25 years (or at least not by the IAB).  However, in very general terms, 
the community believes that

RFC  1958

the goal is connectivity, the tool is the Internet 
Protocol, and the intelligence is end to end rather than hidden in the 
network.”

Three cornerstone beliefs:
▪ simple connectivity
▪ IP protocol: that narrow waist
▪ intelligence, complexity at network edge



The end-end argument
▪ some network functionality (e.g., reliable data transfer, congestion) 

can be implemented in network, or at network edge

end-end implementation of reliable data transferapplication
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

hop-by-hop (in-network) implementation of reliable data transfer



The end-end argument

“The function in question can completely and correctly be implemented only 
with the knowledge and help of the application standing at the end points of the 
communication system. Therefore, providing that questioned function as a 
feature of the communication system itself is not possible. (Sometimes an 
incomplete version of the function provided by the communication system may 
be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the “end-
to-end argument.”

Saltzer, Reed, Clark 1981

▪ some network functionality (e.g., reliable data transfer, congestion) 
can be implemented in network, or at network edge



Where’s the intelligence?

20th century phone net:
• intelligence/computing at 

network switches

Internet (pre-2005)
• intelligence, computing at 

edge

Internet (post-2005)
• programmable network devices
• intelligence, computing, massive 

application-level infrastructure at edge



Question: how are forwarding tables (destination-based 
forwarding) or flow tables (generalized forwarding) computed?

Answer: by the control plane (next chapter)

Chapter 4: done!

▪ Generalized Forwarding, SDN

▪ Middleboxes

▪ Network layer: overview

▪ What’s inside a router

▪ IP: the Internet Protocol
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8th edition 
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Chapter 5
Network Layer:
Control Plane
A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students, 
readers). They’re in PowerPoint form so you see the animations; and 
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For a revision history, see the slide note for this page. 

Thanks and enjoy!  JFK/KWR
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Network layer control plane: our goals
▪understand principles 

behind network control 
plane:
• traditional routing 

algorithms
• SDN controllers
• network management, 

configuration

• instantiation, 
implementation in the 
Internet:
• OSPF, BGP
• OpenFlow, ODL and ONOS 

controllers
• Internet Control Message 

Protocol: ICMP
• SNMP, YANG/NETCONF
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Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 
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Two approaches to structuring network control plane:
• per-router control (traditional)
• logically centralized control (software defined networking)

Network-layer functions

Network Layer: 5-120

▪ forwarding: move packets from router’s 
input to appropriate router output data plane

control plane▪ routing: determine route taken by 
packets from source to destination



Per-router control plane
Individual routing algorithm components in each and every 
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving 

packet header

3
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Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 

packet header
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Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 
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Routing protocol goal: determine 
“good” paths (equivalently, routes), 
from sending hosts to receiving host, 
through network of routers
• path: sequence of routers packets 

traverse from given initial source 
host to final destination host

• “good”: least “cost”, “fastest”, 
“least congested”

• routing: a “top-10” networking 
challenge!

Routing protocols
mobile network

enterprise
          network

national or global ISP

datacenter 
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical
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Graph abstraction: link costs

Network Layer: 5-125

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
             e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 
could always be 1, or inversely 
related to bandwidth, or inversely 
related to congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }



Routing algorithm classification

Network Layer: 5-126
global or decentralized information?

global: all routers have complete 
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with 
neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes 
change more quickly
• periodic updates or in 

response to link cost 
changes

static: routes 
change slowly over 
time



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 
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Dijkstra’s link-state routing algorithm

Network Layer: 5-128

▪ centralized: network topology, 
link costs known to all nodes
• accomplished via “link state 

broadcast” 
• all nodes have same info

▪ computes least cost paths from 
one node (“source”) to all other 
nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know 
least cost path to k destinations

▪ cx,y: direct link cost from 
node x to y;  = ∞ if not direct 
neighbors

▪ D(v): current estimate of 
cost of least-cost-path from 
source to destination v

▪ p(v): predecessor node 
along path from source to v

▪ N': set of nodes whose 
least-cost-path definitively 
known

notation



Dijkstra’s link-state routing algorithm
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1  Initialization: 
2   N' = {u}                               /* compute least cost path from u to all other nodes */

3    for all nodes v 
4      if v adjacent to u            /* u initially knows direct-path-cost only to  direct neighbors    */
5          then D(v) = cu,v      /* but may not be minimum cost!                                                    */
6      else D(v) = ∞ 
7 
8   Loop 
9     
10    
11
12
13
14
15  until all nodes in N' 

find w not in N' such that D(w) is a minimum 
add w to N' 
update D(v) for all v adjacent to w and not in N' : 
     D(v) = min ( D(v),  D(w) + cw,v  ) 
/* new least-path-cost to v is either old least-cost-path to v or known 
least-cost-path to w plus direct-cost from w to v */ 



Dijkstra’s algorithm: an example
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Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

4,y

D(w),p(w)

4,y3,y

5,u ∞∞1,u2,u

∞2,x4,x2,u
4,y3,y2,u

uxyvwz

uxyvw

uxyv

uxy

ux

u

v w x y z

find a not in N' such that D(a) is a minimum 
add a to N' 
update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

Initialization (step 0): For all a: if a adjacent to then D(a) = cu,a 



Dijkstra’s algorithm: an example
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u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all 
other destinations 
via x 



Dijkstra’s algorithm: another example
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w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2

3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v 

uwxvy 12,y 

notes:
▪ construct least-cost-path tree by tracing predecessor nodes
▪ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z



Dijkstra’s algorithm: discussion
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algorithm complexity: n nodes
▪ each of n iteration: need to check all nodes, w, not in N
▪ n(n+1)/2 comparisons: O(n2) complexity
▪ more efficient implementations possible: O(nlogn)

message complexity: 
▪ each router must broadcast its link state information to other n routers 
▪ efficient (and interesting!) broadcast algorithms: O(n) link crossings to 

disseminate a broadcast message from one source
▪ each router’s message crosses O(n) links: overall message complexity: O(n2)



Dijkstra’s algorithm: oscillations possible
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▪ when  link costs depend on traffic volume, route oscillations possible

a

d

c

b
1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1

0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 
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Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm 

Network Layer: 5-136

Let Dx(y): cost of least-cost path from x to y.

Then:

   Dx(y) = minv { cx,v + Dv(y) }

   

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



Bellman-Ford Example
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u

y

z

2

2

1
3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

                    cu,x + Dx(z),

                    cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

           1 + 3,

           5 + 3}  = 4

node achieving minimum (x) 
is next hop on estimated 
least-cost path to destination 
(z)



Distance vector algorithm 
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key idea: 
▪ from time-to-time, each node sends its own distance vector 

estimate to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the 
actual least cost dx(y) 

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its 
own DV using B-F equation:



Distance vector algorithm:  
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iterative, asynchronous: each 
local iteration caused by: 
▪ local link cost change 
▪ DV update message from neighbor

wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: 
each node notifies neighbors 
only when its DV changes
▪ neighbors then notify their 

neighbors – only if necessary
▪ no notification received, no 

actions taken!

recompute DV estimates 
using DV received from 

neighbor
if DV to any destination has 
changed, notify neighbors 



DV in a: 
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

Network Layer: 5-140

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0
▪ All nodes have 

distance 
estimates to 
nearest 
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send 
their local 
distance vector 
to their neighbors



Distance vector example: iteration
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2



Distance vector example: iteration

Network Layer: 5-145

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2



Distance vector example: iteration
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…. and so on

Let’s next take a look at the iterative computations at nodes



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs 
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:
Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 
1 Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,2,∞} = 
2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = ∞ 
Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 
2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 
1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = 
∞ 



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-150

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
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g h i

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b 
computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 
Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 
Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive 

exercises for more examples: 

http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: computation
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1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs 
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞ 
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e 
at t=1?

compute



Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and 
may influence distance vector 
computations up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence 
distance vector computations up to 2 
hops away, i.e., at b and now at a, e as well

t=2

c’s state at t=0 may influence distance 
vector computations up to 3 hops away, 
i.e., at b,a,e and now at c,f,h as well

t=3

c’s state at t=0 may influence distance 
vector computations up to 4 hops away, 
i.e., at b,a,e, c, f, h and now at g,i as well

t=4

Iterative communication, computation steps diffuses information through network: 

t=1 
t=2 

t=3 

t=4 



Distance vector: link cost changes

Network Layer: 5-154

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its table, computes new 
least cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table.  y’s least 
costs do not change, so y does not send a message to z. 

link cost changes:
▪node detects local link cost change 
▪updates routing info, recalculates local DV
▪ if DV changes, notify neighbors 

x z

14

50

y
1



Distance vector: link cost changes

Network Layer: 5-155

link cost changes:
▪node detects local link cost change 
▪ “bad news travels slow” – count-to-infinity 

problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 
5. So y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 
to x.• z learns that path to x via y has new cost 6, so z  computes “my new cost 
to x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y  computes “my new cost 
to x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z  computes “my new cost 
to x will be 9 via y), notifies y of new cost of 9 to x.
…

▪ see text for solutions.  Distributed algorithms are tricky!



Comparison of LS and DV algorithms

Network Layer: 5-156

message complexity
LS: n routers, O(n2) messages sent  
DV: exchange between neighbors; 

convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) 

messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if 
router malfunctions, or is 
compromised?

LS: 
• router can advertise incorrect link 

cost
• each router computes only its own 

table
DV:
• DV router can advertise incorrect 

path cost (“I have a really low cost 
path to everywhere”): black-holing

• each router’s table used by others: 
error propagate thru network



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 

Network Layer: 5-157



our routing study thus far - idealized 
• all routers identical
• network “flat”

… not true in practice

Making routing scalable

Network Layer: 5-158

scale: billions of destinations:
▪ can’t store all destinations in 

routing tables!
▪ routing table exchange would 

swamp links! 

administrative autonomy:
▪ Internet: a network of networks
▪ each network admin may want to 

control routing in its own network



aggregate routers into regions known as “autonomous 
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

Network Layer: 5-159

intra-AS (aka “intra-domain”): 
routing among within same AS 
(“network”)
▪ all routers in AS must run same intra-

domain protocol
▪ routers in different AS can run different 

intra-domain routing protocols
▪ gateway router: at “edge” of its own 

AS, has link(s) to router(s) in other 
AS’es

inter-AS (aka “inter-
domain”): routing among 
AS’es

▪ gateways perform inter-domain 
routing (as well as intra-domain 
routing)



Interconnected ASes

Network Layer: 5-160

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table  configured by 
intra- and inter-AS routing 
algorithmsIntra-AS

Routing 

Intra-AS

Routing 

Intra-AS

Routing 
Inter-AS

Routing 

Inter-AS

Routing 

Inter-AS

Routing ▪ intra-AS routing determine entries for 
destinations within AS

▪ inter-AS & intra-AS determine entries 
for external destinations



Inter-AS routing:  a role in intradomain 
forwarding

Network Layer: 5-161

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives 
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable 

through AS2, which through AS3
2. propagate this reachability info to all 

routers in AS1

• router should forward packet to 
gateway router in AS1, but 
which one?



Inter-AS routing:  routing within an AS

Network Layer: 5-162

most common intra-AS routing protocols:
▪RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs
• no longer widely used

▪ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based
• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪  OSPF: Open Shortest Path First  [RFC 2328]

• link-state routing
• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF



OSPF (Open Shortest Path First) routing

Network Layer: 5-163

▪ “open”: publicly available
▪ classic link-state 

• each router floods OSPF link-state advertisements (directly over 
IP rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay
• each router has full topology, uses Dijkstra’s algorithm to 

compute forwarding table
▪ security: all OSPF messages authenticated (to prevent malicious 

intrusion) 



Hierarchical OSPF

Network Layer: 5-164

▪ two-level hierarchy: local area, backbone.
• link-state advertisements flooded only in area, or backbone
• each node has detailed area topology; only knows direction to reach 

other destinations

area border routers: 
“summarize” distances  
to destinations in own 
area, advertise in 
backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router: 
runs OSPF 
limited to 
backbone

boundary router: 
connects to other 
ASes

local routers: 
• flood LS in area only
• compute routing within 

area
• forward packets to 

outside via area border 
router



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 

Network Layer: 5-165



▪ BGP (Border Gateway Protocol): the de facto inter-domain routing 
protocol

• “glue that holds the Internet together”
▪ allows subnet to advertise its existence, and the destinations it can 

reach, to rest of Internet: “I am here, here is who I can reach, and 
how”

▪ BGP provides each AS a means to:
• eBGP: obtain subnet reachability information from neighboring ASes
• iBGP: propagate reachability information to all AS-internal routers.
• determine “good” routes to other networks based on reachability 

information and policy

Internet inter-AS routing: BGP

Network Layer: 5-166



eBGP, iBGP connections

Network Layer: 5-167

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols



BGP basics

Network Layer: 5-168

▪ when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
• AS3 promises to AS2 it will forward datagrams towards X

▪ BGP session: two BGP routers (“peers”) exchange BGP messages 
over semi-permanent TCP connection:

• advertising paths to different destination network prefixes (BGP  is a “path 
vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
BGP advertisement:
AS3, X



Path attributes and BGP routes

Network Layer: 5-169

▪ BGP advertised route:  prefix + attributes 
• prefix: destination being advertised
• two important attributes:

• AS-PATH: list of ASes through which prefix advertisement has passed
• NEXT-HOP: indicates specific internal-AS router to next-hop AS

▪ policy-based routing:
• gateway receiving route advertisement uses import policy to 

accept/decline path (e.g., never route through AS Y).
• AS policy also determines whether to advertise path to other other 

neighboring ASes



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-170

▪ based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) 
to all AS2 routers

AS2,AS3,X 

▪ AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

▪ based on AS2 policy,  AS2 router 2a advertises (via eBGP)  path AS2, AS3, X  
to AS1 router 1c

AS3, X



BGP path advertisement (more)

Network Layer: 5-171

AS2,AS3,X 

▪ AS1 gateway router 1c learns path AS2,AS3,X from 2a
gateway router may learn about multiple paths to destination:

AS3,X

▪ AS1 gateway router 1c learns path AS3,X from 3a
▪ based on policy, AS1 gateway router 1c chooses path AS3,X and advertises 

path within AS1 via iBGP

AS3, X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

AS3,X
AS3,X

AS3,X



BGP messages

Network Layer: 5-172

▪ BGP messages exchanged between peers over TCP 
connection

▪ BGP messages:
• OPEN: opens TCP connection to remote BGP peer and 

authenticates sending BGP peer
• UPDATE: advertises new path (or withdraws old)
• KEEPALIVE: keeps connection alive in absence of UPDATES; also 

ACKs OPEN request
• NOTIFICATION: reports errors in previous msg; also used to close 

connection



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-173

AS2,AS3,X 

AS3,X

AS3, X

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 
1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 
1

12

1

2

dest interface

…

…

…

…

local link 
interface
s
at 1a, 1d

▪ at 1d: to get to X, use  interface 1
1c 1
X 1

AS3,X

AS3,X

AS3,X



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-174

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 
1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 
1

1

2

▪ at 1d: to get to X, use  interface 1

dest interface

…

…

…

…

1c 2
X 2

▪ at 1a: OSPF intra-domain routing: to get to 1c, use  interface 
2▪ at 1a: to get to X, use  interface 2



Why different Intra-, Inter-AS routing ? 

Network Layer: 5-175

policy: 
▪ inter-AS: admin wants control over how its traffic routed, who 

routes through its network 
▪ intra-AS: single admin, so policy less of an issue

scale:
▪ hierarchical routing saves table size, reduced update traffic

performance: 
▪ intra-AS: can focus on performance
▪ inter-AS: policy dominates over performance



2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

Hot potato routing

Network Layer: 5-176

▪ 2d learns (via iBGP) it can route to X via 2a or 2c
▪ hot potato routing: choose local gateway that has least intra-

domain cost (e.g., 2d chooses 2a, even though more AS hops to X): 
don’t worry about inter-domain cost!

AS3,X AS1,AS3,X 

OSPF link weights

201

112

263



BGP: achieving policy via advertisements

Network Layer: 5-177

B

legend:
customer 
network:

provider
network

▪ A advertises path Aw to B and to C
▪ B chooses not to advertise BAw to C!  

▪ B gets no “revenue” for routing CBAw, since none of  C, A, w are B’s 
customers

▪ C does not learn about CBAw path
▪ C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not 
want to carry transit traffic between other ISPs – a typical “real world” policy)

w A
yC

x

A,w

A,w



BGP: achieving policy via advertisements (more)

Network Layer: 5-178

B

ISP only wants to route traffic to/from its customer networks (does not 
want to carry transit traffic between other ISPs – a typical “real world” policy)

w A
yC

x

▪ A,B,C are provider networks
▪ x,w,y are customer (of provider networks)
▪ x is dual-homed: attached to two networks
▪ policy to enforce: x does not want to route from B to C via x 

▪ .. so x will not advertise to B a route to C

legend:
customer 
network:

provider
network



• router may learn about more than one route to 
destination AS, selects route based on:

1. local preference value attribute: policy decision
2. shortest AS-PATH 
3. closest NEXT-HOP router: hot potato routing
4. additional criteria 

BGP route selection

Network Layer: 5-179



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪SDN control plane
▪ Internet Control Message 

Protocol 

Network Layer: 5-180



• Internet network layer: historically implemented via 
distributed, per-router control approach:

• monolithic router contains switching hardware, runs 
proprietary implementation of Internet standard protocols (IP, 
RIP, IS-IS, OSPF, BGP) in proprietary router OS (e.g., Cisco IOS)

• different “middleboxes” for different network layer functions: 
firewalls, load balancers, NAT boxes, ..

• ~2005: renewed interest in rethinking network control 
plane

Software defined networking (SDN)

Network Layer: 5-181



Per-router control plane
Individual routing algorithm components in each and every router 
interact in the control plane to computer forwarding tables

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving 

packet header

3

Network Layer: 4-182



Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 

packet header

Network Layer: 4-183



Why a logically centralized control plane?
• easier network management: avoid router misconfigurations, 

greater flexibility of traffic flows
• table-based forwarding (recall OpenFlow API) allows 

“programming” routers
• centralized “programming” easier: compute tables centrally and 

distribute
• distributed “programming” more difficult: compute tables as result of 

distributed algorithm (protocol) implemented in each-and-every router 
• open (non-proprietary) implementation of control plane

• foster innovation: let 1000 flowers bloom

Software defined networking (SDN)

Network Layer: 4-184



SDN analogy: mainframe to PC revolution

Network Layer: 4-185

Vertically integrated
Closed, proprietary

Slow innovation
Small industry

Specialized
Operating

System

Specialized
Operating

System
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Hardware
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Specialized

Applications
Specialized

Applications

Horizontal
Open interfaces
Rapid innovation

Huge industry

MicroprocessorMicroprocessor

Open Interface

* Slide  courtesy: N. McKeown

or or

Open Interface

Windows Linux MAC OS
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Traffic engineering: difficult with traditional routing

Network Layer: 4-186

Q: what if network operator wants u-to-z traffic to flow along 
uvwz, rather than uxyz?

A: need to re-define link weights so traffic routing algorithm 
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!
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Traffic engineering: difficult with traditional routing

Network Layer: 4-187

Q: what if network operator wants to split  u-to-
z traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)



Traffic engineering: difficult with traditional routing

Network Layer: 4-188

Q: what if w wants to route blue and red traffic differently from w to 
z?

A: can’t do it (with destination-based forwarding, and LS, DV 
routing)

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

We learned in Chapter 4 that generalized forwarding and SDN 
can be used to achieve any routing desired



Software defined networking (SDN)

Network Layer: 4-189

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow-based” 
forwarding (e.g., OpenFlow)

2. control, data 
plane separation

3. control plane 
functions external to 
data-plane switches

…routing
access 
control

load
balance4. programmable 

control 
applications



Software defined networking (SDN)

Network Layer: 4-190

Data-plane switches:
▪ fast, simple, commodity switches 

implementing generalized data-
plane forwarding (Section 4.4) in 
hardware

▪ flow (forwarding) table computed, 
installed under controller 
supervision

▪ API for table-based switch control 
(e.g., OpenFlow)
• defines what is controllable, what is 

not
▪ protocol for communicating with 

controller (e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



Software defined networking (SDN)

Network Layer: 4-191

SDN controller (network OS): 
▪ maintain network state 

information
▪ interacts with network control 

applications “above” via 
northbound API

▪ interacts with network switches 
“below” via southbound API

▪ implemented as distributed 
system for performance, 
scalability, fault-tolerance, 
robustness

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



Software defined networking (SDN)

Network Layer: 4-192

network-control apps:
▪ “brains” of control:  

implement control functions 
using lower-level services, 
API provided by SDN 
controller

▪ unbundled: can be provided 
by 3rd party: distinct from 
routing vendor, or SDN 
controller

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



Components of SDN controller

Network Layer: 4-193

Network-wide distributed, robust  state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…  

…  

OpenFlow SNMP…  

network 
graph intent

RESTful
API

…  
Interface, abstractions for network control apps

SDN
controller

routing access 
control

load
balance

communication: 
communicate between SDN 
controller and controlled 
switches

network-wide state 
management : state of 
networks links, switches, 
services: a distributed 
database

interface layer to network 
control apps: abstractions 
API



OpenFlow protocol

Network Layer: 4-194

▪ operates between controller, switch
▪ TCP used to exchange messages

• optional encryption

▪ three classes of  OpenFlow 
messages:
• controller-to-switch
• asynchronous (switch to controller)
• symmetric (misc.)

▪ distinct from OpenFlow API
• API used to specify  generalized 

forwarding actions

OpenFlow Controller



OpenFlow: controller-to-switch messages

Network Layer: 4-195

Key controller-to-switch 
messages
▪ features: controller queries switch 

features, switch replies
▪ configure: controller queries/sets 

switch configuration parameters
▪ modify-state: add, delete, modify 

flow entries in the OpenFlow tables
▪ packet-out: controller can send this 

packet out of specific switch port

OpenFlow Controller



OpenFlow: switch-to-controller messages

Network Layer: 4-196

Key switch-to-controller messages
▪ packet-in: transfer packet (and its 

control) to controller.  See packet-out 
message from controller

▪ flow-removed: flow table entry deleted 
at switch

▪ port status: inform controller of a 
change on a port.

Fortunately, network operators don’t “program” switches by creating/sending 
OpenFlow messages directly.  Instead use higher-level abstraction at 

controller

OpenFlow Controller



SDN: control/data plane interaction example

Network Layer: 4-197

Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP
…  

network 
graph

intent
RESTful

API
…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

S1, experiencing link failure uses 
OpenFlow port status message 
to notify controller

1

SDN controller receives 
OpenFlow message, updates link 
status info

2

Dijkstra’s routing algorithm 
application has previously 
registered to be called when ever 
link status changes.  It is called.

3

Dijkstra’s routing algorithm 
access network graph info, link 
state info in controller,  
computes new routes

4
1

2

3

4



SDN: control/data plane interaction example

Network Layer: 4-198

Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP
…  

network 
graph

intent
RESTful

API
…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

link state routing app interacts 
with flow-table-computation 
component in SDN controller, 
which computes new flow 
tables needed

5

controller uses OpenFlow to 
install new tables in switches 
that need updating

6

5

1

2

3

4



OpenDaylight (ODL) controller
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Network Orchestrations and Applications

Southbound API

Service Abstraction 
Layer (SAL)

config. and 
operational data 

store

REST/RESTCONF/NETCONF APIs

messaging

OpenFlow NETCONF SNMP OVSDB …

Northbound API

Traffic 
Engineering …Firewalling Load Balancing

Basic Network FunctionsEnhanced 
Services

…

… Forwarding 
rules mgr.

AAA

Host
Tracker

Stats
mgr.

Switch
mgr.

Topology
processin

g

Service Abstraction 
Layer: 
▪ interconnects internal, 

external applications 
and services



ONOS controller
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Network Applications

Southbound API

Northbound API

Traffic 
Engineering …Firewalling Load Balancing

southbound 
abstractions,
protocolsOpenFlow Netconf OVSDB

device link host flow packet

northbound 
abstractions,
protocols

REST    API Intent

ONOS
distributed 
core

statisticsdevices

hosts

links

paths flow rules topology

▪ control apps separate 
from controller

▪ intent framework: high-
level specification of 
service: what rather 
than how

▪ considerable emphasis 
on distributed core: 
service reliability, 
replication 
performance scaling



• hardening the control plane: dependable, reliable, 
performance-scalable, secure distributed system

• robustness to failures: leverage strong theory of reliable distributed 
system for control plane

• dependability, security: “baked in” from day one? 

• networks, protocols meeting mission-specific requirements
• e.g., real-time, ultra-reliable, ultra-secure

• Internet-scaling: beyond a single AS
• SDN critical in 5G cellular networks

SDN:  selected challenges

Network Layer: 4-201



• SDN-computed versus router-computer forwarding tables:
• just one example of logically-centralized-computed versus protocol 

computed

• one could imagine SDN-computed congestion control: 
• controller sets sender rates based on router-reported (to controller) 

congestion levels 

SDN and the future of traditional network protocols

Network Layer: 4-202

How will implementation of 
network functionality (SDN 
versus protocols) evolve?



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 

Network Layer: 5-203



ICMP: internet control message protocol

Network Layer: 4-204

▪ used by hosts and routers to 
communicate network-level 
information
• error reporting: unreachable host, 

network, port, protocol
• echo request/reply (used by ping)

▪ network-layer “above” IP:
• ICMP messages carried in IP 

datagrams

▪ ICMP message: type, code plus 
first 8 bytes of IP datagram 
causing error

Type  Code  description

0        0         echo reply (ping)

3        0         dest. network unreachable

3        1         dest host unreachable

3        2         dest protocol unreachable

3        3         dest port unreachable

3        6         dest network unknown

3        7         dest host unknown

4        0         source quench (congestion

                     control - not used)

8        0         echo request (ping)

9        0         route advertisement

10      0         router discovery

11      0         TTL expired

12      0         bad IP header



Traceroute and ICMP

Network Layer: 4-205

▪ when ICMP message arrives at source: record RTTs

stopping criteria:
▪ UDP segment eventually 

arrives at destination 
host

▪ destination returns ICMP 
“port unreachable” 
message (type 3, code 3)

▪ source stops

3 probes

3 probes

3 probes

▪ source sends sets of UDP segments to 
destination
• 1st  set has TTL =1, 2nd  set has TTL=2, etc.

▪ datagram in nth set arrives to nth 
router:
• router discards datagram and sends source 

ICMP message (type 11, code 0)
• ICMP message possibly includes name of 

router & IP address



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 

Network Layer: 5-206



• autonomous systems (aka “network”): 1000s of interacting 
hardware/software components

• other complex systems requiring monitoring, configuration, 
control:

• jet airplane, nuclear power plant, others?

What is network management?

Network Layer: 5-207

"Network management includes the deployment, integration 

and coordination of the hardware, software, and human 

elements to monitor, test, poll, configure, analyze, evaluate, 

and control the network and element resources to meet the 

real-time, operational performance, and Quality of Service 

requirements at a reasonable cost." 



Components of network management

Network Layer: 5-208

managed device
managed device

managed device

managed device

managed device

agent data

agent data

agent data

agent data

agent data

managing
server/controller

data

Managing server: 
application, typically 
with network
managers (humans) in 
the loop

Managed device: 
equipment with 
manageable, configurable 
hardware, software 
components

Data: device 
“state” 
configuration data, 
operational data, 
device statistics

Network 
management 
protocol: used by 
managing server to 
query, configure, 
manage device; used by 
devices to inform 
managing server of data, 
events.



Network operator approaches to management
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managed device
managed device

managed device

managed device

managed device

agent data

agent data

agent data

agent data

agent data

managing
server/controller

data

CLI (Command Line Interface) 
• operator issues (types, scripts) direct 

to individual devices (e.g., vis ssh)

SNMP/MIB 
• operator queries/sets devices data 

(MIB) using Simple Network 
Management Protocol (SNMP)

NETCONF/YANG
• more abstract, network-wide, holistic
• emphasis on multi-device configuration 

management. 
• YANG: data modeling language 
• NETCONF: communicate YANG-

compatible actions/data to/from/among 
remote devices 



SNMP protocol

Network Layer: 5-210

managed device

agent data

managing
server/controlle

r

data

request

response trap message

Two ways to convey MIB info, commands:

request/response mode

managed device

agent data

managing
server/controlle

r

data

trap mode



SNMP protocol: message types

Network Layer: 5-211

GetRequest
GetNextRequest
GetBulkRequest

manager-to-agent: “get me data”
(data instance, next data in list, 
                                 block of data). 

Message type Function

SetRequest manager-to-agent: set MIB value

Response Agent-to-manager: value, 
response to Request

Trap Agent-to-manager: inform 
manager
of exceptional event



SNMP protocol: message formats

Network Layer: 5-212

….
PDU

type

(0-3)

Request

ID

Error

Status

(0-5)

Error

Index
Name Value Name Value

Get/set header Variables to get/set

SNMP PDU

message types 0-3

….
PDU

type

4

Enterprise
Agent

Addr

Trap

Type

(0-7)

Specific

code
Time

stamp
Name Value

Trap header Trap info

message type 4



• managed device’s operational (and some configuration) data

• gathered into device MIB module
• 400 MIB modules defined in RFC’s; many more vendor-specific MIBs

SNMP: Management Information Base (MIB)

Network Layer: 5-213

Object ID           Name                      Type                  Comments
1.3.6.1.2.1.7.1     UDPInDatagrams     32-bit counter     total # datagrams delivered 

1.3.6.1.2.1.7.2    UDPNoPorts              32-bit counter     # undeliverable datagrams (no application at 
port)

1.3.6.1.2.1.7.3    UDInErrors                 32-bit counter     # undeliverable datagrams (all other reasons)

1.3.6.1.2.1.7.4    UDPOutDatagrams   32-bit counter    total  # datagrams sent

1.3.6.1.2.1.7.5    udpTable               SEQUENCE          one entry for each port currently in use

agent data

▪ Structure of Management Information (SMI): data definition language
▪ example MIB variables for UDP protocol:



• goal: actively manage/configure devices network-wide
• operates between managing server and managed network devices

• actions: retrieve, set, modify, activate configurations
• atomic-commit actions over multiple devices
• query operational data and statistics
• subscribe to notifications from devices

• remote procedure call (RPC) paradigm
• NETCONF protocol messages encoded in XML
• exchanged over secure, reliable transport (e.g., TLS) protocol

NETCONF overview

Network Layer: 5-214



NETCONF initialization, exchange, close

Network Layer: 5-215

Session initiation, 
capabilities exchange: <hello>

Session close:  <close-session>

<rpc>
<rpc-reply>

<rpc>
<rpc-reply>

<rpc>
<rpc-reply>

<notification>

…
…

…
…

…

…
…

…
…

managing
server/controller

data

agent data



Selected NETCONF Operations

Network Layer: 5-216

NETCONF              Operation Description
<get-config>                Retrieve all or part of a given configuration. A device may have multiple 

configurations. 

<get>                            Retrieve all or part of both configuration state and operational state data.

<edit-config>              Change specified (possibly running) configuration at managed device. 
Managed device <rpc-reply> contains <ok>  or <rpcerror> with rollback.

<lock>, <unlock>        Lock (unlock) configuration datastore at managed device (to lock out 
NETCONF, SNMP, or CLIs commands from other sources).

<create-subscription>,    Enable event notification subscription from managed device
<notification>



Sample NETCONF RPC message

Network Layer: 5-217

note message id

change the running configuration 

change MTU of Ethernet 0/0 interface to 1500

change a configuration



• data modeling language used to 
specify structure, syntax, semantics of 
NETCONF network management data

• built-in data types, like SMI

• XML document describing device, 
capabilities can be generated from 
YANG description

• can express constraints among data 
that must be satisfied by a valid 
NETCONF configuration

• ensure NETCONF configurations satisfy 
correctness, consistency constraints

YANG

Network Layer: 5-218

agent data

managing
server/controlle

r

data

NETCONF RPC 
message<edit-config>

  YANG-generated XML
</edit-config> YANG

generated



Network layer:  Summary

Network Layer: 5-219

we’ve learned a lot!
▪ approaches to network control plane

• per-router control (traditional)
• logically centralized control (software defined networking)

▪ traditional routing algorithms
• implementation in Internet: OSPF , BGP

▪SDN controllers
• implementation in practice: ODL, ONOS

▪ Internet Control Message Protocol
▪ network management

next stop:  link layer!



Network layer, control plane:  Done!

▪ network management, 
configuration 
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message 

Protocol 

Network Layer: 5-220



Additional Chapter 5 slides

Network Layer: 5-221



Distance vector: another example
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Distance vector: another example
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