
Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 6
The Link Layer
and LANs
A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide
content to suit your needs. They obviously represent a lot of work on
our part. In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2020
 J.F Kurose and K.W. Ross, All Rights Reserved

Link layer and LANs: our goals
▪understand principles

behind link layer services:
• error detection, correction
• sharing a broadcast

channel: multiple access
• link layer addressing
• local area networks:

Ethernet, VLANs

▪datacenter networks

• instantiation,
implementation of various
link layer technologies

Link Layer: 6-2

Link layer, LANs: roadmap

▪ a day in the life of a web
request

▪ introduction
▪ error detection, correction
▪ multiple access protocols
▪ LANs

• addressing, ARP
• Ethernet
• switches
• VLANs

▪ link virtualization: MPLS
▪ data center networking

Link Layer: 6-3

MAC addresses

Link Layer: 6-4

▪ 32-bit IP address:
• network-layer address for interface
• used for layer 3 (network layer) forwarding
• e.g.: 128.119.40.136

▪ MAC (or LAN or physical or Ethernet) address:
• function: used “locally” to get frame from one interface to another

physically-connected interface (same subnet, in IP-addressing sense)
• 48-bit MAC address (for most LANs) burned in NIC ROM, also

sometimes software settable

hexadecimal (base 16) notation
(each “numeral” represents 4 bits)

• e.g.: 1A-2F-BB-76-09-AD

MAC addresses

Link Layer: 6-5

each interface on LAN
▪ has unique 48-bit MAC address
▪ has a locally unique 32-bit IP address (as we’ve seen)

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN
(wired or wireless)

137.196.7/24

137.196.7.78

137.196.7.14

137.196.7.88

137.196.7.23

MAC addresses

Link Layer: 6-6

▪ MAC address allocation administered by IEEE
▪ manufacturer buys portion of MAC address space (to

assure uniqueness)
▪ analogy:

• MAC address: like Social Security Number
• IP address: like postal address

▪ MAC flat address: portability
• can move interface from one LAN to another
• recall IP address not portable: depends on IP subnet to

which node is attached

ARP: address resolution protocol

Link Layer: 6-7

ARP table: each IP node (host,
router) on LAN has table

Question: how to determine interface’s MAC address, knowing its IP
address?

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

137.196.7.78

137.196.7.14

137.196.7.88

137.196.7.23

ARP

ARP

ARP
ARP

• IP/MAC address mappings for
some LAN nodes:

 < IP address; MAC address; TTL>

• TTL (Time To Live): time after
which address mapping will
be forgotten (typically 20 min)

ARP protocol in action

Link Layer: 6-8

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53

137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• B’s MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

A broadcasts ARP query, containing B's IP
addr
• destination MAC address = FF-FF-FF-FF-

FF-FF
• all nodes on LAN receive ARP query

1
Source MAC: 71-65-F7-2B-08-
53
Source IP: 137.196.7.23
Target IP address: 137.196.7.14
…

1

Ethernet frame (sent to FF-FF-FF-FF-FF-FF)

ARP protocol in action

Link Layer: 6-9

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53

137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• B’s MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

B replies to A with ARP
response, giving its MAC
address

2

Target IP address: 137.196.7.14
Target MAC address:
 58-23-D7-FA-20-B0
…

2

ARP message into Ethernet
frame (sent to 71-65-F7-2B-08-
53)

ARP protocol in action

Link Layer: 6-10

58-23-D7-FA-20-B0
137.196.7.14

B

C

D

TTL

71-65-F7-2B-08-53

137.196.7.23

A

ARP table in A
IP addr MAC addr TTL

example: A wants to send datagram to B
• B’s MAC address not in A’s ARP table, so A uses ARP to find B’s MAC address

A receives B’s reply, adds B
entry into its local ARP table

3

137.196.

 7.14
58-23-D7-FA-20-B0 500

Routing to another subnet: addressing

Link Layer: 6-11

walkthrough: sending a datagram from A to B via R
▪ focus on addressing – at IP (datagram) and MAC layer (frame)

levels

R
A B

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55 222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

▪ assume that:
• A knows B’s IP address
• A knows IP address of first hop router, R (how?)
• A knows R’s MAC address (how?)

Routing to another subnet: addressing

Link Layer: 6-12

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP
Eth
Phy

IP src: 111.111.111.111

 IP dest: 222.222.222.222

▪ A creates IP datagram with IP source A, destination B
▪ A creates link-layer frame containing A-to-B IP datagram

• R's MAC address is frame’s destination
MAC src: 74-29-9C-E8-FF-55

 MAC dest: E6-E9-00-17-BB-4B

Routing to another subnet: addressing

Link Layer: 6-13

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP
Eth
Phy

▪ frame sent from A to R

IP

Eth

Phy

▪ frame received at R, datagram removed, passed up to IP

MAC src: 74-29-9C-E8-FF-55

 MAC dest: E6-E9-00-17-BB-4B

IP src: 111.111.111.111

 IP dest: 222.222.222.222

IP src: 111.111.111.111

 IP dest: 222.222.222.222

Routing to another subnet: addressing

Link Layer: 6-14

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP src: 111.111.111.111

 IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B

 MAC dest: 49-BD-D2-C7-56-2A

▪ R determines outgoing interface, passes datagram with IP source A,
destination B to link layer

▪ R creates link-layer frame containing A-to-B IP datagram. Frame destination
address: B's MAC address

IP

Eth

Phy

Routing to another subnet: addressing

Link Layer: 6-15

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP

Eth

Phy
IP

Eth

Phy

IP src: 111.111.111.111

 IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B

 MAC dest: 49-BD-D2-C7-56-2A▪ transmits link-layer
frame

▪ R determines outgoing interface, passes datagram with IP source A,
destination B to link layer

▪ R creates link-layer frame containing A-to-B IP datagram. Frame destination
address: B's MAC address

Routing to another subnet: addressing

Link Layer: 6-16

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

IP

Eth

Phy
IP

Eth

Phy

▪ B receives frame, extracts IP datagram destination B

▪ B passes datagram up protocol stack to IP

IP src: 111.111.111.111

 IP dest: 222.222.222.222

Link layer, LANs: roadmap

▪ a day in the life of a web
request

▪ introduction
▪ error detection, correction
▪ multiple access protocols
▪ LANs

• addressing, ARP
• Ethernet
• switches
• VLANs

▪ link virtualization: MPLS
▪ data center networking

Link Layer: 6-17

Ethernet

Link Layer: 6-18

“dominant” wired LAN technology:
▪ first widely used LAN technology
▪ simpler, cheap
▪ kept up with speed race: 10 Mbps – 400 Gbps
▪ single chip, multiple speeds (e.g., Broadcom

BCM5761)

Metcalfe’s Ethernet
sketch

https://www.uspto.gov/learning-and-resources/journeys-innovation/audio-stories/defying-doubters

Ethernet: physical topology

Link Layer: 6-19

▪ bus: popular through mid 90s
• all nodes in same collision domain (can collide with each other)

bus: coaxial cable switched

▪ switched: prevails today
• active link-layer 2 switch in center
• each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with

each other)

Ethernet frame structure

Link Layer: 6-20

sending interface encapsulates IP datagram (or other network layer
protocol packet) in Ethernet frame

dest.
address

source
address data (payload) CRCpreamble

type

preamble:
▪ used to synchronize receiver, sender clock rates
▪ 7 bytes of 10101010 followed by one byte of 10101011

Ethernet frame structure (more)

Link Layer: 6-21

dest.
address

source
address data (payload) CRCpreamble

type

▪ addresses: 6 byte source, destination MAC addresses
• if adapter receives frame with matching destination address, or with broadcast

address (e.g., ARP packet), it passes data in frame to network layer protocol
• otherwise, adapter discards frame

▪ type: indicates higher layer protocol
• mostly IP but others possible, e.g., Novell IPX, AppleTalk
• used to demultiplex up at receiver

▪CRC: cyclic redundancy check at receiver
• error detected: frame is dropped

Ethernet: unreliable, connectionless

Link Layer: 6-22

▪connectionless: no handshaking between sending and
receiving NICs

▪unreliable: receiving NIC doesn’t send ACKs or NAKs to
sending NIC
• data in dropped frames recovered only if initial sender uses

higher layer rdt (e.g., TCP), otherwise dropped data lost

▪Ethernet’s MAC protocol: unslotted CSMA/CD with
binary backoff

802.3 Ethernet standards: link & physical
layers

Link Layer: 6-23

• different physical layer media: fiber, cable

application
transport
network

link
physical

MAC protocol
and frame format

100BASE-TX

100BASE-T4

100BASE-FX100BASE-T2

100BASE-SX 100BASE-BX

fiber physical layercopper (twister pair) physical
layer

▪ many different Ethernet standards
• common MAC protocol and frame format
• different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40

Gbps

Link layer, LANs: roadmap

▪ a day in the life of a web
request

▪ introduction
▪ error detection, correction
▪ multiple access protocols
▪ LANs

• addressing, ARP
• Ethernet
• switches
• VLANs

▪ link virtualization: MPLS
▪ data center networking

Link Layer: 6-24

Ethernet switch

Link Layer: 6-25

▪ Switch is a link-layer device: takes an active role
• store, forward Ethernet frames
• examine incoming frame’s MAC address, selectively forward

frame to one-or-more outgoing links when frame is to be
forwarded on segment, uses CSMA/CD to access segment

▪ transparent: hosts unaware of presence of switches

▪ plug-and-play, self-learning
• switches do not need to be configured

Switch: multiple simultaneous transmissions

Link Layer: 6-26

switch with six
interfaces (1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

3
45

6

▪ hosts have dedicated, direct
connection to switch

▪ switches buffer packets
▪ Ethernet protocol used on each

incoming link, so:
• no collisions; full duplex
• each link is its own collision

domain
▪ switching: A-to-A’ and B-to-B’ can

transmit simultaneously, without
collisions

Switch: multiple simultaneous transmissions

Link Layer: 6-27

switch with six
interfaces (1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

3
45

6

▪ hosts have dedicated, direct
connection to switch

▪ switches buffer packets
▪ Ethernet protocol used on each

incoming link, so:
• no collisions; full duplex
• each link is its own collision

domain
▪ switching: A-to-A’ and B-to-B’ can transmit

simultaneously, without collisions
• but A-to-A’ and C to A’ can not happen

simultaneously

Switch forwarding table

Link Layer: 6-28

A

A’

B

B’ C

C’

1 2

3
45

6

Q: how does switch know A’ reachable via
interface 4, B’ reachable via interface 5?

A: each switch has a switch table,
each entry:
▪ (MAC address of host, interface to

reach host, time stamp)
▪ looks like a routing table!

Q: how are entries created,
maintained in switch table?
▪ something like a routing protocol?

Switch: self-learning

Link Layer: 6-29

A

A’

B

B’ C

C’

1 2

3
45

6

▪switch learns which hosts
can be reached through
which interfaces

A A’

Source: A

Dest: A’

MAC addr interface TTL
Switch table

(initially empty)

A 1 60

• when frame received, switch
“learns” location of sender:
incoming LAN segment

• records sender/location
pair in switch table

Switch: frame filtering/forwarding

Link Layer: 6-30

when frame received at switch:
1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination

 then {
 if destination on segment from which frame arrived

 then drop frame
 else forward frame on interface indicated by entry
 }
 else flood /* forward on all interfaces except arriving interface

*/

A

A’

B

B’ C

C’

1 2

3
45

6

Self-learning, forwarding: example

Link Layer: 6-31

A A’

Source: A

Dest: A’

MAC addr interface TTL

switch table

(initially empty)
A 1 60

A A’A A’A A’A A’A A’

A’ A

A’ 4 60

▪ frame destination, A’,
location unknown:flood

▪ destination A location
known:selectively send

on just one link

Interconnecting switches

Link Layer: 6-32

self-learning switches can be connected together:

Q: sending from A to G - how does S1 know to forward frame destined
to G via S4 and S3?

▪ A: self learning! (works exactly the same as in single-switch case!)

A

B

S1

C D

E

F
S2

S4

S3

H

I

G

Self-learning multi-switch example

Link Layer: 6-33

Suppose C sends frame to I, I responds to C

Q: show switch tables and packet forwarding in S1, S2, S3, S4

A

B

S1

C D

E

F
S2

S4

S3

H

I

G

Small institutional network

Link Layer: 6-34

to external

network

router

IP subnet

mail server

web server

Switches vs. routers

Link Layer: 6-35

application
transport
network

link
physical

network
link

physical

link
physical

switch

datagram

application
transport
network

link
physical

frame

frame

frame
datagram

6-35

both are store-and-forward:
▪ routers: network-layer devices

(examine network-layer headers)
▪ switches: link-layer devices (examine

link-layer headers)

both have forwarding tables:
▪ routers: compute tables using routing

algorithms, IP addresses
▪ switches: learn forwarding table using

flooding, learning, MAC addresses

Link layer, LANs: roadmap

▪ a day in the life of a web
request

▪ introduction
▪ error detection, correction
▪ multiple access protocols
▪ LANs

• addressing, ARP
• Ethernet
• switches
• VLANs

▪ link virtualization: MPLS
▪ data center networking

Link Layer: 6-36

Virtual LANs (VLANs): motivation

Link Layer: 6-37

Computer
Science EE

Q: what happens as LAN sizes scale, users change point of attachment?

single broadcast domain:
▪ scaling: all layer-2 broadcast traffic

(ARP, DHCP, unknown MAC) must
cross entire LAN

▪ efficiency, security, privacy issues

Virtual LANs (VLANs): motivation

Link Layer: 6-38

administrative issues:
▪ CS user moves office to EE -

physically attached to EE switch,
but wants to remain logically
attached to CS switch

Computer
Science EE

single broadcast domain:
▪ scaling: all layer-2 broadcast traffic

(ARP, DHCP, unknown MAC) must
cross entire LAN

▪ efficiency, security, privacy,
efficiency issues

Q: what happens as LAN sizes scale, users change point of attachment?

1

82

7 9

1610

15

Port-based VLANs

Link Layer: 6-39

switch(es) supporting
VLAN capabilities can
be configured to
define multiple virtual
LANS over single
physical LAN
infrastructure.

Virtual Local Area
Network (VLAN)

port-based VLAN: switch ports grouped
(by switch management software) so that
single physical switch ……

…

EE (VLAN ports 1-8) CS (VLAN ports 9-15)

…

… operates as multiple virtual
switches

1

82

7

EE (VLAN ports 1-8)

…

9

1610

15

…

CS (VLAN ports 9-15)

1

82

7 9

1610

15

Port-based VLANs

Link Layer: 6-40

…

EE (VLAN ports 1-8) CS (VLAN ports 9-15)

…

▪ traffic isolation: frames to/from
ports 1-8 can only reach ports 1-8

• can also define VLAN based on MAC
addresses of endpoints, rather than
switch port

▪ dynamic membership: ports can be
dynamically assigned among
VLANs

▪ forwarding between VLANS: done via
routing (just as with separate
switches)
• in practice vendors sell combined

switches plus routers

1

82

7 9

1610

15

VLANS spanning multiple switches

Link Layer: 6-41

…

EE (VLAN ports 1-8) CS (VLAN ports 9-15)

…

5

82

7

…

16

1

6

3

4

Ports 2,3,5 belong to EE VLAN

Ports 4,6,7,8 belong to CS VLAN

trunk port: carries frames between VLANS defined over multiple
physical switches
▪ frames forwarded within VLAN between switches can’t be vanilla 802.1

frames (must carry VLAN ID info)
▪ 802.1q protocol adds/removed additional header fields for frames

forwarded between trunk ports

802.1Q VLAN frame format

Link Layer: 6-42

802.1 Ethernet frame
dest.

address
source

address data (payload) CRCpreamble

type

2-byte Tag Protocol Identifier
 (value: 81-00) Tag Control Information

(12 bit VLAN ID field, 3 bit priority field like IP
TOS)

Recomputed
CRC

802.1Q framedest.
address

source
address data (payload) CRCpreamble

type

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 4
Network Layer:
Data Plane
A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide
content to suit your needs. They obviously represent a lot of work on
our part. In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2020
 J.F Kurose and K.W. Ross, All Rights Reserved

Network layer: our goals
▪understand principles

behind network layer
services, focusing on data
plane:
• network layer service

models
• forwarding versus routing
• how a router works
• addressing
• generalized forwarding
• Internet architecture

• instantiation,
implementation in the
Internet
• IP protocol
• NAT, middleboxes

Network Layer: 4-44

Network layer: “data plane” roadmap

• Network layer: overview
• data plane
• control plane

▪ Generalized Forwarding, SDN
• Match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-45

▪ What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

▪ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

Network-layer services and protocols

▪ transport segment from sending
to receiving host
• sender: encapsulates segments into

datagrams, passes to link layer
• receiver: delivers segments to

transport layer protocol

▪ network layer protocols in every
Internet device: hosts, routers

▪ routers:
• examines header fields in all IP

datagrams passing through it

• moves datagrams from input ports to
output ports to transfer datagrams
along end-end path

mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 4-46

Two key network-layer functions
network-layer functions:
• forwarding: move packets from

a router’s input link to
appropriate router output link

analogy: taking a trip
▪ forwarding: process of getting

through single interchange

forwarding

routing

▪ routing: process of planning trip
from source to destination▪ routing: determine route taken

by packets from source to
destination

• routing algorithms

Network Layer: 4-47

Network layer: data plane, control plane
Data plane:
▪ local, per-router function
▪ determines how datagram

arriving on router input
port is forwarded to router
output port

Control plane
• network-wide logic
• determines how datagram is

routed among routers along end-
end path from source host to
destination host

1

2
3

0111

values in arriving

packet header

▪ two control-plane approaches:
• traditional routing algorithms:

implemented in routers

• software-defined networking (SDN):
implemented in (remote) servers

Network Layer: 4-48

Per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving

packet header

3

Network Layer: 4-49

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving

packet header

Network Layer: 4-50

Network service model

example services for
individual datagrams:

▪ guaranteed delivery
▪ guaranteed delivery with

less than 40 msec delay

example services for a flow of
datagrams:

• in-order datagram delivery
• guaranteed minimum bandwidth

to flow
• restrictions on changes in inter-

packet spacing

Q: What service model for “channel” transporting datagrams
from sender to receiver?

Network Layer: 4-51

Network-layer service model

Network

Architecture

Internet

ATM

ATM

Internet

Internet

Service

Model

best effort

Constant Bit Rate

Available Bit Rate

Intserv Guaranteed

(RFC 1633)

Diffserv (RFC 2475)

Bandwidth

none

Constant rate

Guaranteed min

yes

possible

Loss

no

yes

no

yes

possibly

Order

no

yes

yes

yes

possibly

Timing

no

yes

no

yes

no

No guarantees on:
i. successful datagram delivery to destination
ii. timing or order of delivery
iii. bandwidth available to end-end flow

Internet “best effort” service model

Quality of Service (QoS) Guarantees ?

Network Layer: 4-52

Reflections on best-effort service:
▪ simplicity of mechanism has allowed Internet to be widely deployed

adopted
▪ sufficient provisioning of bandwidth allows performance of real-time

applications (e.g., interactive voice, video) to be “good enough” for
“most of the time”

▪ replicated, application-layer distributed services (datacenters,
content distribution networks) connecting close to clients’
networks, allow services to be provided from multiple locations

▪ congestion control of “elastic” services helps

It’s hard to argue with success of best-effort service model
Network Layer: 4-53

Network layer: “data plane” roadmap

• Network layer: overview
• data plane
• control plane

• What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

• IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• Match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-54

Router architecture overview
high-level view of generic router architecture:

high-speed
switching

fabric

high-speed
switching

fabric

high-speed
switching

fabric

routing
processor

router input ports router output ports

forwarding data plane

(hardware) operates

in nanosecond

timeframe

routing, management

control plane (software)

operates in millisecond

time frame

Network Layer: 4-55

Input port functions

switch
fabric

line

termination

physical layer:
bit-level reception

link
layer

protocol
(receive)

link layer:
e.g., Ethernet

(chapter 6)

lookup,

forwarding

queueing

decentralized switching:
▪ using header field values, lookup output port using

forwarding table in input port memory (“match plus action”)

▪ goal: complete input port processing at ‘line speed’

▪ input port queuing: if datagrams arrive faster than forwarding
rate into switch fabric

Network Layer: 4-56

Input port functions

line

termination

lookup,

forwarding

queueing

decentralized switching:
▪ using header field values, lookup output port using

forwarding table in input port memory (“match plus action”)

▪ destination-based forwarding: forward based only on
destination IP address (traditional)

▪ generalized forwarding: forward based on any set of header
field values

physical layer:
bit-level reception

switch
fabric

link
layer

protocol
(receive)

link layer:
e.g., Ethernet

(chapter 6)

Network Layer: 4-57

Q: but what happens if ranges don’t divide up so nicely?

Destination-based forwarding

3

Network Layer: 4-58

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010

examples:
which interface?

which interface?

11001000 00010111 00010110 10100001

Network Layer: 4-59

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010

examples:
which interface?

which interface?

11001000 00010111 00010110 10100001

match!

Network Layer: 4-60

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010

examples:
which interface?

which interface?

11001000 00010111 00010110 10100001
match!

Network Layer: 4-61

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010

examples:
which interface?

which interface?

11001000 00010111 00010110 10100001

match!

Network Layer: 4-62

• we’ll see why longest prefix matching is used shortly,
when we study addressing

• longest prefix matching: often performed using ternary
content addressable memories (TCAMs)

• content addressable: present address to TCAM: retrieve
address in one clock cycle, regardless of table size

• Cisco Catalyst: ~1M routing table entries in TCAM

Longest prefix matching

Network Layer: 4-63

▪ transfer packet from input link to appropriate output link
Switching fabrics

high-speed
switching

fabric

high-speed
switching

fabric

high-speed
switching

fabric

N input ports N output ports

. . .

. . .

▪ switching rate: rate at which packets can be transfer from
inputs to outputs
• often measured as multiple of input/output line rate

• N inputs: switching rate N times line rate desirable

R

R

R

R

(rate: NR,
ideally)

Network Layer: 4-64

Switching fabrics

busmemory

memory

interconnection

network

▪ three major types of switching fabrics:

▪ transfer packet from input link to appropriate output link
▪ switching rate: rate at which packets can be transfer from

inputs to outputs
• often measured as multiple of input/output line rate

• N inputs: switching rate N times line rate desirable

Network Layer: 4-65

first generation routers:
• traditional computers with switching under direct control of CPU
• packet copied to system’s memory
• speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via memory

input
port

(e.g.,
Ethernet)

memory

output
port

(e.g.,
Ethernet)

system bus

Network Layer: 4-66

▪datagram from input port memory to output port memory
via a shared bus

▪bus contention: switching speed limited by bus
bandwidth

▪32 Gbps bus, Cisco 5600: sufficient speed for access
routers

Switching via a bus

Network Layer: 4-67

▪ Crossbar, Clos networks, other
interconnection nets initially
developed to connect processors
in multiprocessor

Switching via interconnection network

8x8 multistage switch
built from smaller-sized switches

3x3 crossbar▪ multistage switch: nxn switch from
multiple stages of smaller switches

▪ exploiting parallelism:
• fragment datagram into fixed length cells on

entry

• switch cells through the fabric, reassemble
datagram at exit

3x3 crossbar

Network Layer: 4-68

▪ scaling, using multiple switching “planes” in parallel:
▪ speedup, scaleup via parallelism

Switching via interconnection network

fabric plane 0

. .
 .

. .
 .

fabric plane 1

. .
 .

. .
 .

fabric plane 2

. .
 .

. .
 .

fabric plane 3

. .
 .

. .
 .

fabric plane 4

. .
 .

. .
 .

fabric plane 5

. .
 .

. .
 .

fabric plane 6

. .
 .

. .
 .

fabric plane 7

. .
 .

. .
 .

▪ Cisco CRS router:
▪ basic unit: 8

switching planes

▪ each plane: 3-stage
interconnection
network

▪ up to 100’s Tbps
switching capacity

Network Layer: 4-69

• If switch fabric slower than input ports combined -> queueing may
occur at input queues

• queueing delay and loss due to input buffer overflow!

Input port queuing

output port contention: only one red
datagram can be transferred. lower red

packet is blocked

switch

fabric

one packet time later: green
packet experiences HOL blocking

switch

fabric

▪Head-of-the-Line (HOL) blocking: queued datagram at front of queue
prevents others in queue from moving forward

Network Layer: 4-70

Output port queuing

▪ Buffering required when datagrams
arrive from fabric faster than link
transmission rate. Drop policy: which
datagrams to drop if no free buffers?

▪ Scheduling discipline chooses
among queued datagrams for
transmission

Datagrams can be lost
due to congestion, lack of
buffers

Priority scheduling – who
gets best performance,
network neutrality

This is a really important slide

line
termination

link
layer

protocol
(send)

switch
fabric

(rate: NR)

datagram

buffer

queueing
R

Network Layer: 4-71

Output port queuing

at t, packets more

from input to output

one packet time later

switch

fabric

switch

fabric

▪ buffering when arrival rate via switch exceeds output line speed

▪ queueing (delay) and loss due to output port buffer overflow!

Network Layer: 4-72

Buffer Management

buffer management:

▪ drop: which packet to add,
drop when buffers are full
• tail drop: drop arriving

packet
• priority: drop/remove on

priority basis

line
termination

link
layer

protocol
(send)

switch
fabric

datagram

buffer

queueing

scheduling

▪ marking: which packets to
mark to signal congestion
(ECN, RED)

R

queue

(waiting area)

packet

arrivals

packet

departures

link

 (server)

Abstraction: queue

R

Network Layer: 4-73

Network layer: “data plane” roadmap

• Network layer: overview
• data plane
• control plane

• What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

• IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-74

Network Layer: Internet

host, router network layer functions:

IP protocol
• datagram format
• addressing
• packet handling conventions

ICMP protocol
• error reporting
• router “signaling”

transport layer: TCP, UDP

link layer

physical layer

network
layer

forwarding
table

Path-selection
algorithms:
implemented in
• routing protocols

(OSPF, BGP)
• SDN controller

Network Layer: 4-75

IP Datagram format

ver length

32 bits

payload data

(variable length,

typically a TCP

or UDP segment)

16-bit identifier

header

 checksum

time to

live

source IP address

head.

len

type of

service

flgs
fragment

 offset
upper

 layer

destination IP address

options (if any)

IP protocol version number

header length(bytes)

upper layer protocol (e.g., TCP or UDP)

total datagram

length (bytes)

“type” of service:
▪ diffserv (0:5)

▪ ECN (6:7)

fragmentation/

reassembly

TTL: remaining max hops
(decremented at each router)

▪ 20 bytes of TCP

▪ 20 bytes of IP

▪ = 40 bytes + app
layer overhead for
TCP+IP

overhead
e.g., timestamp, record

route taken

32-bit source IP address

32-bit destination IP address

header checksum

Maximum length: 64K bytes
Typically: 1500 bytes or less

Network Layer: 4-76

• IP address: 32-bit identifier
associated with each host or
router interface

• interface: connection between
host/router and physical link
• router’s typically have multiple

interfaces
• host typically has one or two

interfaces (e.g., wired Ethernet,
wireless 802.11)

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

dotted-decimal IP address notation:

Network Layer: 4-77

• IP address: 32-bit identifier
associated with each host or
router interface

• interface: connection between
host/router and physical link
• router’s typically have multiple

interfaces
• host typically has one or two

interfaces (e.g., wired Ethernet,
wireless 802.11)

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

dotted-decimal IP address notation:

Network Layer: 4-78

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

Q: how are interfaces
actually connected?

A: wired

Ethernet interfaces

connected by

Ethernet switches

A: wireless WiFi interfaces

connected by WiFi base station

For now: don’t need to worry
about how one interface is
connected to another (with no
intervening router)

A: we’ll learn about
that in chapters 6, 7

Network Layer: 4-79

Subnets
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

▪What’s a subnet ?
• device interfaces that can

physically reach each other
without passing through an
intervening router

network consisting of 3 subnets

▪ IP addresses have structure:
• subnet part: devices in same subnet

have common high order bits

• host part: remaining low order bits

Network Layer: 4-80

Subnets
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

Recipe for defining subnets:

▪detach each interface from its
host or router, creating
“islands” of isolated networks

▪each isolated network is
called a subnet

subnet mask: /24
(high-order 24 bits: subnet part of IP address)

subnet

223.1.3.0/24

subnet 223.1.1.0/24

subnet 223.1.2.0/24

Network Layer: 4-81

Subnets

▪ where are the
subnets?

▪ what are the
/24 subnet
addresses?

223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1

223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

223.1.2.1

subnet 223.1.1/24

subnet 223.1.7/24

subnet 223.1.3/24subnet 223.1.2/24

subnet 223.1.9/24

subnet 223.1.8/24

Network Layer: 4-82

IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced “cider”)

• subnet portion of address of arbitrary length
• address format: a.b.c.d/x, where x is # bits in subnet portion

of address

11001000 00010111 00010000 00000000

subnet

part

host

part

200.23.16.0/23

Network Layer: 4-83

IP addresses: how to get one?

That’s actually two questions:

1. Q: How does a host get IP address within its network (host part of
address)?

2. Q: How does a network get IP address for itself (network part of
address)

How does host get IP address?
▪ hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
▪ DHCP: Dynamic Host Configuration Protocol: dynamically get address

from as server
• “plug-and-play”

Network Layer: 4-84

DHCP: Dynamic Host Configuration Protocol
goal: host dynamically obtains IP address from network server when it

“joins” network

▪ can renew its lease on address in use

▪ allows reuse of addresses (only hold address while connected/on)

▪ support for mobile users who join/leave network

DHCP overview:
▪ host broadcasts DHCP discover msg [optional]

▪ DHCP server responds with DHCP offer msg [optional]

▪ host requests IP address: DHCP request msg

▪ DHCP server sends address: DHCP ack msg

Network Layer: 4-85

DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

DHCP server

223.1.2.5

arriving DHCP client needs
address in this network

Typically, DHCP server will be co-
located in router, serving all subnets
to which router is attached

Network Layer: 4-86

DHCP client-server scenario
DHCP server: 223.1.2.5

Arriving clientDHCP discover

src : 0.0.0.0, 68

dest.: 255.255.255.255,67

yiaddr: 0.0.0.0

transaction ID: 654

DHCP offer

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddr: 223.1.2.4

transaction ID: 654

lifetime: 3600 secs

DHCP request

src: 0.0.0.0, 68

dest:: 255.255.255.255, 67

yiaddr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

Broadcast: is there a
DHCP server out there?

Broadcast: I’m a DHCP
server! Here’s an IP
address you can use

Broadcast: OK. I would
like to use this IP address!

Broadcast: OK. You’ve
got that IP address!

The two steps above can
be skipped “if a client
remembers and wishes to
reuse a previously
allocated network address”
[RFC 2131]

Network Layer: 4-87

DHCP: more than IP addresses
DHCP can return more than just allocated IP address on

subnet:
▪ address of first-hop router for client

▪ name and IP address of DNS sever

▪ network mask (indicating network versus host portion of address)

Network Layer: 4-88

DHCP: example

▪ Connecting laptop will use DHCP
to get IP address, address of first-
hop router, address of DNS server.

router with DHCP

server built into

router

▪ DHCP REQUEST message encapsulated
in UDP, encapsulated in IP, encapsulated
in Ethernet

▪ Ethernet frame broadcast (dest:
FFFFFFFFFFFF) on LAN, received at router
running DHCP server

▪ Ethernet demux’ed to IP demux’ed,
UDP demux’ed to DHCP

168.1.1.1

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCPDHCP

Network Layer: 4-89

DHCP: example

▪ DCP server formulates DHCP ACK
containing client’s IP address, IP
address of first-hop router for client,
name & IP address of DNS server

▪ encapsulated DHCP server reply
forwarded to client, demuxing up to
DHCP at client

router with DHCP

server built into

router

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

▪ client now knows its IP address, name
and IP address of DNS server, IP
address of its first-hop router

Network Layer: 4-90

IP addresses: how to get one?
Q: how does network get subnet part of IP address?

A: gets allocated portion of its provider ISP’s address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

ISP can then allocate out its address space in 8 blocks:

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23

Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23

Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

 ... ….. …. ….

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

Network Layer: 4-91

Hierarchical addressing: route aggregation

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us
“Send me anything

with addresses

beginning

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

hierarchical addressing allows efficient advertisement of
routing information:

Network Layer: 4-92

Hierarchical addressing: more specific routes

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

200.23.18.0/23

Organization 1

ISPs-R-Us
“Send me anything

with addresses

beginning

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

▪ Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
▪ ISPs-R-Us now advertises a more specific route to Organization 1

200.23.18.0/23

Organization 1

“or 200.23.18.0/23”

Network Layer: 4-93

Hierarchical addressing: more specific routes

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

ISPs-R-Us
“Send me anything

with addresses

beginning

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

▪ Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
▪ ISPs-R-Us now advertises a more specific route to Organization 1

200.23.18.0/23

Organization 1

“or 200.23.18.0/23”

Network Layer: 4-94

IP addressing: last words ...
Q: how does an ISP get block of

addresses?

A: ICANN: Internet Corporation for
Assigned Names and Numbers
http://www.icann.org/

• allocates IP addresses, through 5
regional registries (RRs) (who may
then allocate to local registries)

• manages DNS root zone, including
delegation of individual TLD (.com,
.edu , …) management

Q: are there enough 32-bit IP
addresses?

▪ ICANN allocated last chunk of
IPv4 addresses to RRs in 2011

▪ NAT (next) helps IPv4 address
space exhaustion

▪ IPv6 has 128-bit address space

"Who the hell knew how much address
space we needed?" Vint Cerf (reflecting
on decision to make IPv4 address 32 bits
long)

Network Layer: 4-95

Network layer: “data plane” roadmap

• Network layer: overview
• data plane
• control plane

• What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

• IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-96

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

local network (e.g., home
network) 10.0.0/24

138.76.29.7

rest of
Internet

NAT: network address translation

datagrams with source or destination in
this network have 10.0.0/24 address for
source, destination (as usual)

all datagrams leaving local network have
same source NAT IP address: 138.76.29.7,

but different source port numbers

NAT: all devices in local network share just one IPv4 address as
far as outside world is concerned

Network Layer: 4-97

▪ all devices in local network have 32-bit addresses in a “private” IP
address space (10/8, 172.16/12, 192.168/16 prefixes) that can only
be used in local network

▪ advantages:

▪ just one IP address needed from provider ISP for all devices

▪ can change addresses of host in local network without notifying
outside world

▪ can change ISP without changing addresses of devices in local
network

▪ security: devices inside local net not directly addressable, visible
by outside world

NAT: network address translation

Network Layer: 4-98

implementation: NAT router must (transparently):

▪ outgoing datagrams: replace (source IP address, port #) of every
outgoing datagram to (NAT IP address, new port #)

• remote clients/servers will respond using (NAT IP address, new port
#) as destination address

▪ remember (in NAT translation table) every (source IP address, port #)
to (NAT IP address, new port #) translation pair

▪ incoming datagrams: replace (NAT IP address, new port #) in
destination fields of every incoming datagram with corresponding
(source IP address, port #) stored in NAT table

NAT: network address translation

Network Layer: 4-99

NAT: network address translation

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 sends
datagram to
128.119.40.186, 80

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router changes
datagram source address
from 10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: reply arrives, destination
address: 138.76.29.7, 5001

10.0.0.1

10.0.0.2

10.0.0.3

Network Layer: 4-100

▪ NAT has been controversial:

• routers “should” only process up to layer 3

• address “shortage” should be solved by IPv6

• violates end-to-end argument (port # manipulation by network-layer device)

• NAT traversal: what if client wants to connect to server behind NAT?

▪ but NAT is here to stay:

• extensively used in home and institutional nets, 4G/5G cellular nets

NAT: network address translation

Network Layer: 4-101

▪ initial motivation: 32-bit IPv4 address space would be
completely allocated

▪ additional motivation:
• speed processing/forwarding: 40-byte fixed length header

• enable different network-layer treatment of “flows”

IPv6: motivation

Network Layer: 4-102

IPv6 datagram format

payload (data)

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit

flow labelpriver

32 bits
priority: identify

priority among
datagrams in flow

flow label: identify
datagrams in same
"flow.” (concept of
“flow” not well defined).

128-bit
IPv6 addresses

What’s missing (compared with IPv4):
▪ no checksum (to speed processing at routers)
▪ no fragmentation/reassembly
▪ no options (available as upper-layer, next-header protocol at router)

Network Layer: 4-103

• not all routers can be upgraded simultaneously
• no “flag days”
• how will network operate with mixed IPv4 and IPv6 routers?

Transition from IPv4 to IPv6

IPv4 source, dest addr

IPv4 header fields

IPv4 datagram

IPv6 datagram

IPv4 payload

UDP/TCP payload

IPv6 source dest addr

IPv6 header fields

▪ tunneling: IPv6 datagram carried as payload in IPv4 datagram among
IPv4 routers (“packet within a packet”)

• tunneling used extensively in other contexts (4G/5G)

Network Layer: 4-104

Tunneling and encapsulation

Ethernet connecting
two IPv6 routers:

Ethernet connects two
IPv6 routers

A B

IPv6 IPv6

E F

IPv6 IPv6

Link-layer frame

IPv6 datagram

The usual: datagram as payload in link-layer frame

A B

IPv6 IPv6/v4

E F

IPv6/v4 IPv6

IPv4 network

IPv4 network
connecting two
IPv6 routers

Network Layer: 4-105

Tunneling and encapsulation

Ethernet connecting
two IPv6 routers:

Ethernet connects two
IPv6 routers

A B

IPv6 IPv6

E F

IPv6 IPv6

IPv4 tunnel
connecting two
IPv6 routers

IPv4 tunnel
connecting IPv6 routers

A B

IPv6

E F

IPv6

Link-layer frame

IPv6 datagram

The usual: datagram as payload in link-layer frame

IPv4 datagram

IPv6 datagram

tunneling: IPv6 datagram as payload in a IPv4 datagram

IPv6/v4 IPv6/v4

Network Layer: 4-106

B-to-C:
IPv6 inside

IPv4

Flow: X

Src: A

Dest: F

data

src:B

dest: E

Tunneling

physical view:
IPv4 IPv4

E

IPv6/v4 IPv6

FC DA B

IPv6 IPv6/v4

logical view:
IPv4 tunnel

connecting IPv6 routers
A B

IPv6 IPv6/v4

E F

IPv6/v4 IPv6

flow: X

src: A

dest: F

data

A-to-B:
IPv6

Flow: X

Src: A

Dest: F

data

src:B

dest: E

B-to-C:
IPv6 inside

IPv4

E-to-F:
IPv6

flow: X

src: A

dest: F

data

B-to-C:
IPv6 inside

IPv4

Flow: X

Src: A

Dest: F

data

src:B

dest: E

Note source and
destination
addresses!

Network Layer: 4-107

• Google1: ~ 30% of clients access services via IPv6
• NIST: 1/3 of all US government domains are IPv6 capable

IPv6: adoption

1
https://www.google.com/intl
/en/ipv6/statistics.html

Network Layer: 4-108

• Google1: ~ 30% of clients access services via IPv6
• NIST: 1/3 of all US government domains are IPv6 capable
• Long (long!) time for deployment, use

• 25 years and counting!
• think of application-level changes in last 25 years: WWW,

social media, streaming media, gaming, telepresence, …
• Why?

IPv6: adoption

1 https://www.google.com/intl/en/ipv6/statistics.html
Network Layer: 4-109

The IP hourglass

IP

TCP UDP

HTTP SMTP
QUIC DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper radio fiber

Internet’s “thin waist”:
▪ one network layer

protocol: IP
▪ must be implemented

by every (billions) of
Internet-connected
devices

many protocols
in physical, link,
transport, and
application
layers

The IP hourglass, at middle age

IP

TCP UDP

HTTP SMTP
QUIC DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper radio fiber

Internet’s middle age
“love handles”?
▪ middleboxes,

operating inside the
network

Firewalls

caching

Architectural Principles of the Internet

“Many members of the Internet community would argue that there is no architecture, but only a tradition,
which was not written down for the first 25 years (or at least not by the IAB). However, in very general terms,
the community believes that

RFC 1958

the goal is connectivity, the tool is the Internet
Protocol, and the intelligence is end to end rather than hidden in the
network.”

Three cornerstone beliefs:
▪ simple connectivity
▪ IP protocol: that narrow waist
▪ intelligence, complexity at network edge

The end-end argument
▪ some network functionality (e.g., reliable data transfer, congestion)

can be implemented in network, or at network edge

end-end implementation of reliable data transferapplication
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

hop-by-hop (in-network) implementation of reliable data transfer

The end-end argument

“The function in question can completely and correctly be implemented only
with the knowledge and help of the application standing at the end points of the
communication system. Therefore, providing that questioned function as a
feature of the communication system itself is not possible. (Sometimes an
incomplete version of the function provided by the communication system may
be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the “end-
to-end argument.”

Saltzer, Reed, Clark 1981

▪ some network functionality (e.g., reliable data transfer, congestion)
can be implemented in network, or at network edge

Where’s the intelligence?

20th century phone net:
• intelligence/computing at

network switches

Internet (pre-2005)
• intelligence, computing at

edge

Internet (post-2005)
• programmable network devices
• intelligence, computing, massive

application-level infrastructure at edge

Question: how are forwarding tables (destination-based
forwarding) or flow tables (generalized forwarding) computed?

Answer: by the control plane (next chapter)

Chapter 4: done!

▪ Generalized Forwarding, SDN

▪ Middleboxes

▪ Network layer: overview

▪ What’s inside a router

▪ IP: the Internet Protocol

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 5
Network Layer:
Control Plane
A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide
content to suit your needs. They obviously represent a lot of work on
our part. In return for use, we only ask the following:

▪ If you use these slides (e.g., in a class) that you mention their
source (after all, we’d like people to use our book!)

▪ If you post any slides on a www site, that you note that they are
adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2020
 J.F Kurose and K.W. Ross, All Rights Reserved

Network layer control plane: our goals
▪understand principles

behind network control
plane:
• traditional routing

algorithms
• SDN controllers
• network management,

configuration

• instantiation,
implementation in the
Internet:
• OSPF, BGP
• OpenFlow, ODL and ONOS

controllers
• Internet Control Message

Protocol: ICMP
• SNMP, YANG/NETCONF

Network Layer: 5-118

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-119

Two approaches to structuring network control plane:
• per-router control (traditional)
• logically centralized control (software defined networking)

Network-layer functions

Network Layer: 5-120

▪ forwarding: move packets from router’s
input to appropriate router output data plane

control plane▪ routing: determine route taken by
packets from source to destination

Per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving

packet header

3

Network Layer: 4-121

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving

packet header

Network Layer: 4-122

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 4-123

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host,
through network of routers
• path: sequence of routers packets

traverse from given initial source
host to final destination host

• “good”: least “cost”, “fastest”,
“least congested”

• routing: a “top-10” networking
challenge!

Routing protocols
mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 5-124

Graph abstraction: link costs

Network Layer: 5-125

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
 e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely
related to bandwidth, or inversely
related to congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Routing algorithm classification

Network Layer: 5-126
global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of
computation, exchange of info with
neighbors
• routers initially only know link costs to

attached neighbors
• “distance vector” algorithms

How fast
do routes
change?

dynamic: routes
change more quickly
• periodic updates or in

response to link cost
changes

static: routes
change slowly over
time

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-127

Dijkstra’s link-state routing algorithm

Network Layer: 5-128

▪ centralized: network topology,
link costs known to all nodes
• accomplished via “link state

broadcast”
• all nodes have same info

▪ computes least cost paths from
one node (“source”) to all other
nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know
least cost path to k destinations

▪ cx,y: direct link cost from
node x to y; = ∞ if not direct
neighbors

▪ D(v): current estimate of
cost of least-cost-path from
source to destination v

▪ p(v): predecessor node
along path from source to v

▪ N': set of nodes whose
least-cost-path definitively
known

notation

Dijkstra’s link-state routing algorithm

Network Layer: 5-129

1 Initialization:
2 N' = {u} /* compute least cost path from u to all other nodes */

3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors */
5 then D(v) = cu,v /* but may not be minimum cost! */
6 else D(v) = ∞
7
8 Loop
9
10
11
12
13
14
15 until all nodes in N'

find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :
 D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known
least-cost-path to w plus direct-cost from w to v */

Dijkstra’s algorithm: an example

Network Layer: 5-130

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

4,y

D(w),p(w)

4,y3,y

5,u ∞∞1,u2,u

∞2,x4,x2,u
4,y3,y2,u

uxyvwz

uxyvw

uxyv

uxy

ux

u

v w x y z

find a not in N' such that D(a) is a minimum
add a to N'
update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

Initialization (step 0): For all a: if a adjacent to then D(a) = cu,a

Dijkstra’s algorithm: an example

Network Layer: 5-131

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all
other destinations
via x

Dijkstra’s algorithm: another example

Network Layer: 5-132

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2

3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
▪ construct least-cost-path tree by tracing predecessor nodes
▪ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z

Dijkstra’s algorithm: discussion

Network Layer: 5-133

algorithm complexity: n nodes
▪ each of n iteration: need to check all nodes, w, not in N
▪ n(n+1)/2 comparisons: O(n2) complexity
▪ more efficient implementations possible: O(nlogn)

message complexity:
▪ each router must broadcast its link state information to other n routers
▪ efficient (and interesting!) broadcast algorithms: O(n) link crossings to

disseminate a broadcast message from one source
▪ each router’s message crosses O(n) links: overall message complexity: O(n2)

Dijkstra’s algorithm: oscillations possible

Network Layer: 5-134

▪ when link costs depend on traffic volume, route oscillations possible

a

d

c

b
1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1

0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-135

Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm

Network Layer: 5-136

Let Dx(y): cost of least-cost path from x to y.

Then:

 Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

Bellman-Ford Example

Network Layer: 5-137

u

y

z

2

2

1
3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

 cu,x + Dx(z),

 cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

 1 + 3,

 5 + 3} = 4

node achieving minimum (x)
is next hop on estimated
least-cost path to destination
(z)

Distance vector algorithm

Network Layer: 5-138

key idea:
▪ from time-to-time, each node sends its own distance vector

estimate to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the
actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

Distance vector algorithm:

Network Layer: 5-139

iterative, asynchronous: each
local iteration caused by:
▪ local link cost change
▪ DV update message from neighbor

wait for (change in local link
cost or msg from neighbor)

each node:

distributed, self-stopping:
each node notifies neighbors
only when its DV changes
▪ neighbors then notify their

neighbors – only if necessary
▪ no notification received, no

actions taken!

recompute DV estimates
using DV received from

neighbor
if DV to any destination has
changed, notify neighbors

DV in a:
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

Network Layer: 5-140

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0
▪ All nodes have

distance
estimates to
nearest
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send
their local
distance vector
to their neighbors

Distance vector example: iteration

Network Layer: 5-141

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

Distance vector example: iteration

Network Layer: 5-142

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

Network Layer: 5-143

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=1

Distance vector example: iteration

Network Layer: 5-144

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=2

Distance vector example: iteration

Network Layer: 5-145

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

Network Layer: 5-146

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their
new local
distance vector

▪ send their new
local distance
vector to
neighbors

t=2

Distance vector example: iteration

Network Layer: 5-147

…. and so on

Let’s next take a look at the iterative computations at nodes

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-148

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Network Layer: 5-149

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:
Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} =
1 Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,2,∞} =
2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞, ∞, ∞} = ∞
Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞, ∞, 2} =
2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} =
1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞, ∞, ∞} =
∞

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-150

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation

Network Layer: 5-151

g h i

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b
computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞
Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞
Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive

exercises for more examples:

http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example: computation

Network Layer: 5-152

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e
at t=1?

compute

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and
may influence distance vector
computations up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence
distance vector computations up to 2
hops away, i.e., at b and now at a, e as well

t=2

c’s state at t=0 may influence distance
vector computations up to 3 hops away,
i.e., at b,a,e and now at c,f,h as well

t=3

c’s state at t=0 may influence distance
vector computations up to 4 hops away,
i.e., at b,a,e, c, f, h and now at g,i as well

t=4

Iterative communication, computation steps diffuses information through network:

t=1
t=2

t=3

t=4

Distance vector: link cost changes

Network Layer: 5-154

“good news
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its table, computes new
least cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table. y’s least
costs do not change, so y does not send a message to z.

link cost changes:
▪node detects local link cost change
▪updates routing info, recalculates local DV
▪ if DV changes, notify neighbors

x z

14

50

y
1

Distance vector: link cost changes

Network Layer: 5-155

link cost changes:
▪node detects local link cost change
▪ “bad news travels slow” – count-to-infinity

problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of
5. So y computes “my new cost to x will be 6, via z); notifies z of new cost of 6
to x.• z learns that path to x via y has new cost 6, so z computes “my new cost
to x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y computes “my new cost
to x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z computes “my new cost
to x will be 9 via y), notifies y of new cost of 9 to x.
…

▪ see text for solutions. Distributed algorithms are tricky!

Comparison of LS and DV algorithms

Network Layer: 5-156

message complexity
LS: n routers, O(n2) messages sent
DV: exchange between neighbors;

convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2)

messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if
router malfunctions, or is
compromised?

LS:
• router can advertise incorrect link

cost
• each router computes only its own

table
DV:
• DV router can advertise incorrect

path cost (“I have a really low cost
path to everywhere”): black-holing

• each router’s table used by others:
error propagate thru network

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-157

our routing study thus far - idealized
• all routers identical
• network “flat”

… not true in practice

Making routing scalable

Network Layer: 5-158

scale: billions of destinations:
▪ can’t store all destinations in

routing tables!
▪ routing table exchange would

swamp links!

administrative autonomy:
▪ Internet: a network of networks
▪ each network admin may want to

control routing in its own network

aggregate routers into regions known as “autonomous
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

Network Layer: 5-159

intra-AS (aka “intra-domain”):
routing among within same AS
(“network”)
▪ all routers in AS must run same intra-

domain protocol
▪ routers in different AS can run different

intra-domain routing protocols
▪ gateway router: at “edge” of its own

AS, has link(s) to router(s) in other
AS’es

inter-AS (aka “inter-
domain”): routing among
AS’es

▪ gateways perform inter-domain
routing (as well as intra-domain
routing)

Interconnected ASes

Network Layer: 5-160

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table configured by
intra- and inter-AS routing
algorithmsIntra-AS

Routing

Intra-AS

Routing

Intra-AS

Routing
Inter-AS

Routing

Inter-AS

Routing

Inter-AS

Routing ▪ intra-AS routing determine entries for
destinations within AS

▪ inter-AS & intra-AS determine entries
for external destinations

Inter-AS routing: a role in intradomain
forwarding

Network Layer: 5-161

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable

through AS2, which through AS3
2. propagate this reachability info to all

routers in AS1

• router should forward packet to
gateway router in AS1, but
which one?

Inter-AS routing: routing within an AS

Network Layer: 5-162

most common intra-AS routing protocols:
▪RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs
• no longer widely used

▪ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based
• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪ OSPF: Open Shortest Path First [RFC 2328]

• link-state routing
• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF

OSPF (Open Shortest Path First) routing

Network Layer: 5-163

▪ “open”: publicly available
▪ classic link-state

• each router floods OSPF link-state advertisements (directly over
IP rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay
• each router has full topology, uses Dijkstra’s algorithm to

compute forwarding table
▪ security: all OSPF messages authenticated (to prevent malicious

intrusion)

Hierarchical OSPF

Network Layer: 5-164

▪ two-level hierarchy: local area, backbone.
• link-state advertisements flooded only in area, or backbone
• each node has detailed area topology; only knows direction to reach

other destinations

area border routers:
“summarize” distances
to destinations in own
area, advertise in
backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router:
runs OSPF
limited to
backbone

boundary router:
connects to other
ASes

local routers:
• flood LS in area only
• compute routing within

area
• forward packets to

outside via area border
router

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-165

▪ BGP (Border Gateway Protocol): the de facto inter-domain routing
protocol

• “glue that holds the Internet together”
▪ allows subnet to advertise its existence, and the destinations it can

reach, to rest of Internet: “I am here, here is who I can reach, and
how”

▪ BGP provides each AS a means to:
• eBGP: obtain subnet reachability information from neighboring ASes
• iBGP: propagate reachability information to all AS-internal routers.
• determine “good” routes to other networks based on reachability

information and policy

Internet inter-AS routing: BGP

Network Layer: 5-166

eBGP, iBGP connections

Network Layer: 5-167

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols

BGP basics

Network Layer: 5-168

▪ when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
• AS3 promises to AS2 it will forward datagrams towards X

▪ BGP session: two BGP routers (“peers”) exchange BGP messages
over semi-permanent TCP connection:

• advertising paths to different destination network prefixes (BGP is a “path
vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
BGP advertisement:
AS3, X

Path attributes and BGP routes

Network Layer: 5-169

▪ BGP advertised route: prefix + attributes
• prefix: destination being advertised
• two important attributes:

• AS-PATH: list of ASes through which prefix advertisement has passed
• NEXT-HOP: indicates specific internal-AS router to next-hop AS

▪ policy-based routing:
• gateway receiving route advertisement uses import policy to

accept/decline path (e.g., never route through AS Y).
• AS policy also determines whether to advertise path to other other

neighboring ASes

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-170

▪ based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP)
to all AS2 routers

AS2,AS3,X

▪ AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

▪ based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X
to AS1 router 1c

AS3, X

BGP path advertisement (more)

Network Layer: 5-171

AS2,AS3,X

▪ AS1 gateway router 1c learns path AS2,AS3,X from 2a
gateway router may learn about multiple paths to destination:

AS3,X

▪ AS1 gateway router 1c learns path AS3,X from 3a
▪ based on policy, AS1 gateway router 1c chooses path AS3,X and advertises

path within AS1 via iBGP

AS3, X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

AS3,X
AS3,X

AS3,X

BGP messages

Network Layer: 5-172

▪ BGP messages exchanged between peers over TCP
connection

▪ BGP messages:
• OPEN: opens TCP connection to remote BGP peer and

authenticates sending BGP peer
• UPDATE: advertises new path (or withdraws old)
• KEEPALIVE: keeps connection alive in absence of UPDATES; also

ACKs OPEN request
• NOTIFICATION: reports errors in previous msg; also used to close

connection

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-173

AS2,AS3,X

AS3,X

AS3, X

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through
1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use interface
1

12

1

2

dest interface

…

…

…

…

local link
interface
s
at 1a, 1d

▪ at 1d: to get to X, use interface 1
1c 1
X 1

AS3,X

AS3,X

AS3,X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-174

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through
1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use interface
1

1

2

▪ at 1d: to get to X, use interface 1

dest interface

…

…

…

…

1c 2
X 2

▪ at 1a: OSPF intra-domain routing: to get to 1c, use interface
2▪ at 1a: to get to X, use interface 2

Why different Intra-, Inter-AS routing ?

Network Layer: 5-175

policy:
▪ inter-AS: admin wants control over how its traffic routed, who

routes through its network
▪ intra-AS: single admin, so policy less of an issue

scale:
▪ hierarchical routing saves table size, reduced update traffic

performance:
▪ intra-AS: can focus on performance
▪ inter-AS: policy dominates over performance

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

Hot potato routing

Network Layer: 5-176

▪ 2d learns (via iBGP) it can route to X via 2a or 2c
▪ hot potato routing: choose local gateway that has least intra-

domain cost (e.g., 2d chooses 2a, even though more AS hops to X):
don’t worry about inter-domain cost!

AS3,X AS1,AS3,X

OSPF link weights

201

112

263

BGP: achieving policy via advertisements

Network Layer: 5-177

B

legend:
customer
network:

provider
network

▪ A advertises path Aw to B and to C
▪ B chooses not to advertise BAw to C!

▪ B gets no “revenue” for routing CBAw, since none of C, A, w are B’s
customers

▪ C does not learn about CBAw path
▪ C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not
want to carry transit traffic between other ISPs – a typical “real world” policy)

w A
yC

x

A,w

A,w

BGP: achieving policy via advertisements (more)

Network Layer: 5-178

B

ISP only wants to route traffic to/from its customer networks (does not
want to carry transit traffic between other ISPs – a typical “real world” policy)

w A
yC

x

▪ A,B,C are provider networks
▪ x,w,y are customer (of provider networks)
▪ x is dual-homed: attached to two networks
▪ policy to enforce: x does not want to route from B to C via x

▪ .. so x will not advertise to B a route to C

legend:
customer
network:

provider
network

• router may learn about more than one route to
destination AS, selects route based on:

1. local preference value attribute: policy decision
2. shortest AS-PATH
3. closest NEXT-HOP router: hot potato routing
4. additional criteria

BGP route selection

Network Layer: 5-179

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-180

• Internet network layer: historically implemented via
distributed, per-router control approach:

• monolithic router contains switching hardware, runs
proprietary implementation of Internet standard protocols (IP,
RIP, IS-IS, OSPF, BGP) in proprietary router OS (e.g., Cisco IOS)

• different “middleboxes” for different network layer functions:
firewalls, load balancers, NAT boxes, ..

• ~2005: renewed interest in rethinking network control
plane

Software defined networking (SDN)

Network Layer: 5-181

Per-router control plane
Individual routing algorithm components in each and every router
interact in the control plane to computer forwarding tables

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving

packet header

3

Network Layer: 4-182

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving

packet header

Network Layer: 4-183

Why a logically centralized control plane?
• easier network management: avoid router misconfigurations,

greater flexibility of traffic flows
• table-based forwarding (recall OpenFlow API) allows

“programming” routers
• centralized “programming” easier: compute tables centrally and

distribute
• distributed “programming” more difficult: compute tables as result of

distributed algorithm (protocol) implemented in each-and-every router
• open (non-proprietary) implementation of control plane

• foster innovation: let 1000 flowers bloom

Software defined networking (SDN)

Network Layer: 4-184

SDN analogy: mainframe to PC revolution

Network Layer: 4-185

Vertically integrated
Closed, proprietary

Slow innovation
Small industry

Specialized
Operating

System

Specialized
Operating

System

Specialized
Hardware

Specialized
Hardware

Ap
p
Ap
p

Ap
p
Ap
p

Ap
p
Ap
p

Ap
p
Ap
p

Ap
p
Ap
p

Ap
p
Ap
p

Ap
p
Ap
p

Ap
p
Ap
p

Ap
p
Ap
p

Ap
p
Ap
p

AppApp
Specialized

Applications
Specialized

Applications

Horizontal
Open interfaces
Rapid innovation

Huge industry

MicroprocessorMicroprocessor

Open Interface

* Slide courtesy: N. McKeown

or or

Open Interface

Windows Linux MAC OS

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult with traditional routing

Network Layer: 4-186

Q: what if network operator wants u-to-z traffic to flow along
uvwz, rather than uxyz?

A: need to re-define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult with traditional routing

Network Layer: 4-187

Q: what if network operator wants to split u-to-
z traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)

Traffic engineering: difficult with traditional routing

Network Layer: 4-188

Q: what if w wants to route blue and red traffic differently from w to
z?

A: can’t do it (with destination-based forwarding, and LS, DV
routing)

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

We learned in Chapter 4 that generalized forwarding and SDN
can be used to achieve any routing desired

Software defined networking (SDN)

Network Layer: 4-189

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow-based”
forwarding (e.g., OpenFlow)

2. control, data
plane separation

3. control plane
functions external to
data-plane switches

…routing
access
control

load
balance4. programmable

control
applications

Software defined networking (SDN)

Network Layer: 4-190

Data-plane switches:
▪ fast, simple, commodity switches

implementing generalized data-
plane forwarding (Section 4.4) in
hardware

▪ flow (forwarding) table computed,
installed under controller
supervision

▪ API for table-based switch control
(e.g., OpenFlow)
• defines what is controllable, what is

not
▪ protocol for communicating with

controller (e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 4-191

SDN controller (network OS):
▪ maintain network state

information
▪ interacts with network control

applications “above” via
northbound API

▪ interacts with network switches
“below” via southbound API

▪ implemented as distributed
system for performance,
scalability, fault-tolerance,
robustness

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Software defined networking (SDN)

Network Layer: 4-192

network-control apps:
▪ “brains” of control:

implement control functions
using lower-level services,
API provided by SDN
controller

▪ unbundled: can be provided
by 3rd party: distinct from
routing vendor, or SDN
controller

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications

Components of SDN controller

Network Layer: 4-193

Network-wide distributed, robust state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…

…

OpenFlow SNMP…

network
graph intent

RESTful
API

…
Interface, abstractions for network control apps

SDN
controller

routing access
control

load
balance

communication:
communicate between SDN
controller and controlled
switches

network-wide state
management : state of
networks links, switches,
services: a distributed
database

interface layer to network
control apps: abstractions
API

OpenFlow protocol

Network Layer: 4-194

▪ operates between controller, switch
▪ TCP used to exchange messages

• optional encryption

▪ three classes of OpenFlow
messages:
• controller-to-switch
• asynchronous (switch to controller)
• symmetric (misc.)

▪ distinct from OpenFlow API
• API used to specify generalized

forwarding actions

OpenFlow Controller

OpenFlow: controller-to-switch messages

Network Layer: 4-195

Key controller-to-switch
messages
▪ features: controller queries switch

features, switch replies
▪ configure: controller queries/sets

switch configuration parameters
▪ modify-state: add, delete, modify

flow entries in the OpenFlow tables
▪ packet-out: controller can send this

packet out of specific switch port

OpenFlow Controller

OpenFlow: switch-to-controller messages

Network Layer: 4-196

Key switch-to-controller messages
▪ packet-in: transfer packet (and its

control) to controller. See packet-out
message from controller

▪ flow-removed: flow table entry deleted
at switch

▪ port status: inform controller of a
change on a port.

Fortunately, network operators don’t “program” switches by creating/sending
OpenFlow messages directly. Instead use higher-level abstraction at

controller

OpenFlow Controller

SDN: control/data plane interaction example

Network Layer: 4-197

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph

intent
RESTful

API
…

Dijkstra’s link-state
routing

s1
s2

s3
s4

S1, experiencing link failure uses
OpenFlow port status message
to notify controller

1

SDN controller receives
OpenFlow message, updates link
status info

2

Dijkstra’s routing algorithm
application has previously
registered to be called when ever
link status changes. It is called.

3

Dijkstra’s routing algorithm
access network graph info, link
state info in controller,
computes new routes

4
1

2

3

4

SDN: control/data plane interaction example

Network Layer: 4-198

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph

intent
RESTful

API
…

Dijkstra’s link-state
routing

s1
s2

s3
s4

link state routing app interacts
with flow-table-computation
component in SDN controller,
which computes new flow
tables needed

5

controller uses OpenFlow to
install new tables in switches
that need updating

6

5

1

2

3

4

OpenDaylight (ODL) controller

Network Layer: 4-199

Network Orchestrations and Applications

Southbound API

Service Abstraction
Layer (SAL)

config. and
operational data

store

REST/RESTCONF/NETCONF APIs

messaging

OpenFlow NETCONF SNMP OVSDB …

Northbound API

Traffic
Engineering …Firewalling Load Balancing

Basic Network FunctionsEnhanced
Services

…

… Forwarding
rules mgr.

AAA

Host
Tracker

Stats
mgr.

Switch
mgr.

Topology
processin

g

Service Abstraction
Layer:
▪ interconnects internal,

external applications
and services

ONOS controller

Network Layer: 4-200

Network Applications

Southbound API

Northbound API

Traffic
Engineering …Firewalling Load Balancing

southbound
abstractions,
protocolsOpenFlow Netconf OVSDB

device link host flow packet

northbound
abstractions,
protocols

REST API Intent

ONOS
distributed
core

statisticsdevices

hosts

links

paths flow rules topology

▪ control apps separate
from controller

▪ intent framework: high-
level specification of
service: what rather
than how

▪ considerable emphasis
on distributed core:
service reliability,
replication
performance scaling

• hardening the control plane: dependable, reliable,
performance-scalable, secure distributed system

• robustness to failures: leverage strong theory of reliable distributed
system for control plane

• dependability, security: “baked in” from day one?

• networks, protocols meeting mission-specific requirements
• e.g., real-time, ultra-reliable, ultra-secure

• Internet-scaling: beyond a single AS
• SDN critical in 5G cellular networks

SDN: selected challenges

Network Layer: 4-201

• SDN-computed versus router-computer forwarding tables:
• just one example of logically-centralized-computed versus protocol

computed

• one could imagine SDN-computed congestion control:
• controller sets sender rates based on router-reported (to controller)

congestion levels

SDN and the future of traditional network protocols

Network Layer: 4-202

How will implementation of
network functionality (SDN
versus protocols) evolve?

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-203

ICMP: internet control message protocol

Network Layer: 4-204

▪ used by hosts and routers to
communicate network-level
information
• error reporting: unreachable host,

network, port, protocol
• echo request/reply (used by ping)

▪ network-layer “above” IP:
• ICMP messages carried in IP

datagrams

▪ ICMP message: type, code plus
first 8 bytes of IP datagram
causing error

Type Code description

0 0 echo reply (ping)

3 0 dest. network unreachable

3 1 dest host unreachable

3 2 dest protocol unreachable

3 3 dest port unreachable

3 6 dest network unknown

3 7 dest host unknown

4 0 source quench (congestion

 control - not used)

8 0 echo request (ping)

9 0 route advertisement

10 0 router discovery

11 0 TTL expired

12 0 bad IP header

Traceroute and ICMP

Network Layer: 4-205

▪ when ICMP message arrives at source: record RTTs

stopping criteria:
▪ UDP segment eventually

arrives at destination
host

▪ destination returns ICMP
“port unreachable”
message (type 3, code 3)

▪ source stops

3 probes

3 probes

3 probes

▪ source sends sets of UDP segments to
destination
• 1st set has TTL =1, 2nd set has TTL=2, etc.

▪ datagram in nth set arrives to nth
router:
• router discards datagram and sends source

ICMP message (type 11, code 0)
• ICMP message possibly includes name of

router & IP address

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols
▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-206

• autonomous systems (aka “network”): 1000s of interacting
hardware/software components

• other complex systems requiring monitoring, configuration,
control:

• jet airplane, nuclear power plant, others?

What is network management?

Network Layer: 5-207

"Network management includes the deployment, integration

and coordination of the hardware, software, and human

elements to monitor, test, poll, configure, analyze, evaluate,

and control the network and element resources to meet the

real-time, operational performance, and Quality of Service

requirements at a reasonable cost."

Components of network management

Network Layer: 5-208

managed device
managed device

managed device

managed device

managed device

agent data

agent data

agent data

agent data

agent data

managing
server/controller

data

Managing server:
application, typically
with network
managers (humans) in
the loop

Managed device:
equipment with
manageable, configurable
hardware, software
components

Data: device
“state”
configuration data,
operational data,
device statistics

Network
management
protocol: used by
managing server to
query, configure,
manage device; used by
devices to inform
managing server of data,
events.

Network operator approaches to management

Network Layer: 5-209

managed device
managed device

managed device

managed device

managed device

agent data

agent data

agent data

agent data

agent data

managing
server/controller

data

CLI (Command Line Interface)
• operator issues (types, scripts) direct

to individual devices (e.g., vis ssh)

SNMP/MIB
• operator queries/sets devices data

(MIB) using Simple Network
Management Protocol (SNMP)

NETCONF/YANG
• more abstract, network-wide, holistic
• emphasis on multi-device configuration

management.
• YANG: data modeling language
• NETCONF: communicate YANG-

compatible actions/data to/from/among
remote devices

SNMP protocol

Network Layer: 5-210

managed device

agent data

managing
server/controlle

r

data

request

response trap message

Two ways to convey MIB info, commands:

request/response mode

managed device

agent data

managing
server/controlle

r

data

trap mode

SNMP protocol: message types

Network Layer: 5-211

GetRequest
GetNextRequest
GetBulkRequest

manager-to-agent: “get me data”
(data instance, next data in list,
 block of data).

Message type Function

SetRequest manager-to-agent: set MIB value

Response Agent-to-manager: value,
response to Request

Trap Agent-to-manager: inform
manager
of exceptional event

SNMP protocol: message formats

Network Layer: 5-212

….
PDU

type

(0-3)

Request

ID

Error

Status

(0-5)

Error

Index
Name Value Name Value

Get/set header Variables to get/set

SNMP PDU

message types 0-3

….
PDU

type

4

Enterprise
Agent

Addr

Trap

Type

(0-7)

Specific

code
Time

stamp
Name Value

Trap header Trap info

message type 4

• managed device’s operational (and some configuration) data

• gathered into device MIB module
• 400 MIB modules defined in RFC’s; many more vendor-specific MIBs

SNMP: Management Information Base (MIB)

Network Layer: 5-213

Object ID Name Type Comments
1.3.6.1.2.1.7.1 UDPInDatagrams 32-bit counter total # datagrams delivered

1.3.6.1.2.1.7.2 UDPNoPorts 32-bit counter # undeliverable datagrams (no application at
port)

1.3.6.1.2.1.7.3 UDInErrors 32-bit counter # undeliverable datagrams (all other reasons)

1.3.6.1.2.1.7.4 UDPOutDatagrams 32-bit counter total # datagrams sent

1.3.6.1.2.1.7.5 udpTable SEQUENCE one entry for each port currently in use

agent data

▪ Structure of Management Information (SMI): data definition language
▪ example MIB variables for UDP protocol:

• goal: actively manage/configure devices network-wide
• operates between managing server and managed network devices

• actions: retrieve, set, modify, activate configurations
• atomic-commit actions over multiple devices
• query operational data and statistics
• subscribe to notifications from devices

• remote procedure call (RPC) paradigm
• NETCONF protocol messages encoded in XML
• exchanged over secure, reliable transport (e.g., TLS) protocol

NETCONF overview

Network Layer: 5-214

NETCONF initialization, exchange, close

Network Layer: 5-215

Session initiation,
capabilities exchange: <hello>

Session close: <close-session>

<rpc>
<rpc-reply>

<rpc>
<rpc-reply>

<rpc>
<rpc-reply>

<notification>

…
…

…
…

…

…
…

…
…

managing
server/controller

data

agent data

Selected NETCONF Operations

Network Layer: 5-216

NETCONF Operation Description
<get-config> Retrieve all or part of a given configuration. A device may have multiple

configurations.

<get> Retrieve all or part of both configuration state and operational state data.

<edit-config> Change specified (possibly running) configuration at managed device.
Managed device <rpc-reply> contains <ok> or <rpcerror> with rollback.

<lock>, <unlock> Lock (unlock) configuration datastore at managed device (to lock out
NETCONF, SNMP, or CLIs commands from other sources).

<create-subscription>, Enable event notification subscription from managed device
<notification>

Sample NETCONF RPC message

Network Layer: 5-217

note message id

change the running configuration

change MTU of Ethernet 0/0 interface to 1500

change a configuration

• data modeling language used to
specify structure, syntax, semantics of
NETCONF network management data

• built-in data types, like SMI

• XML document describing device,
capabilities can be generated from
YANG description

• can express constraints among data
that must be satisfied by a valid
NETCONF configuration

• ensure NETCONF configurations satisfy
correctness, consistency constraints

YANG

Network Layer: 5-218

agent data

managing
server/controlle

r

data

NETCONF RPC
message<edit-config>

 YANG-generated XML
</edit-config> YANG

generated

Network layer: Summary

Network Layer: 5-219

we’ve learned a lot!
▪ approaches to network control plane

• per-router control (traditional)
• logically centralized control (software defined networking)

▪ traditional routing algorithms
• implementation in Internet: OSPF , BGP

▪SDN controllers
• implementation in practice: ODL, ONOS

▪ Internet Control Message Protocol
▪ network management

next stop: link layer!

Network layer, control plane: Done!

▪ network management,
configuration
• SNMP
• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state
▪ distance vector

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP
▪ SDN control plane
▪ Internet Control Message

Protocol

Network Layer: 5-220

Additional Chapter 5 slides

Network Layer: 5-221

Distance vector: another example

Network Layer: 5-222

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to

fr
o

m
fr

o
m

x y z

x

y

z

0

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z

12

7

y

Dx()

Dx(y) = min{cx,y + Dy(y), cx,z+ Dz(y)}

= min{2+0 , 7+1} = 2

Dx(z) = min{cx,y+ Dy(z), cx,z+ Dz(z)}

= min{2+1 , 7+0} = 3

32

Dy()

Dz()

cost to

fr
o

m

Distance vector: another example

Network Layer: 5-223

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

cost to

fr
o

m
fr

o
m

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2 0 1

∞ ∞ ∞

x z

12

7

y

Dx()

Dy()

Dz()

fr
o

m
x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

0 2 7
fr

o
m

cost to

x y z

x

y

z

0 2 3

fr
o

m

cost to

x y z

x

y

z

0 2 3

fr
o

m

cost to
x y z

x

y

z

0 2 7

fr
o

m

cost to

2 0 1

7 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

fr
o

m

x y z

x

y

z

0

2 0 1

7 1 0

32

cost to

time

	Slide 1
	Slide 2: Link layer and LANs: our goals
	Slide 3: Link layer, LANs: roadmap
	Slide 4: MAC addresses
	Slide 5: MAC addresses
	Slide 6: MAC addresses
	Slide 7: ARP: address resolution protocol
	Slide 8: ARP protocol in action
	Slide 9: ARP protocol in action
	Slide 10: ARP protocol in action
	Slide 11: Routing to another subnet: addressing
	Slide 12: Routing to another subnet: addressing
	Slide 13: Routing to another subnet: addressing
	Slide 14: Routing to another subnet: addressing
	Slide 15: Routing to another subnet: addressing
	Slide 16: Routing to another subnet: addressing
	Slide 17: Link layer, LANs: roadmap
	Slide 18: Ethernet
	Slide 19: Ethernet: physical topology
	Slide 20: Ethernet frame structure
	Slide 21: Ethernet frame structure (more)
	Slide 22: Ethernet: unreliable, connectionless
	Slide 23: 802.3 Ethernet standards: link & physical layers
	Slide 24: Link layer, LANs: roadmap
	Slide 25: Ethernet switch
	Slide 26: Switch: multiple simultaneous transmissions
	Slide 27: Switch: multiple simultaneous transmissions
	Slide 28: Switch forwarding table
	Slide 29: Switch: self-learning
	Slide 30: Switch: frame filtering/forwarding
	Slide 31: Self-learning, forwarding: example
	Slide 32: Interconnecting switches
	Slide 33: Self-learning multi-switch example
	Slide 34: Small institutional network
	Slide 35: Switches vs. routers
	Slide 36: Link layer, LANs: roadmap
	Slide 37: Virtual LANs (VLANs): motivation
	Slide 38: Virtual LANs (VLANs): motivation
	Slide 39: Port-based VLANs
	Slide 40: Port-based VLANs
	Slide 41: VLANS spanning multiple switches
	Slide 42: 802.1Q VLAN frame format
	Slide 43
	Slide 44: Network layer: our goals
	Slide 45: Network layer: “data plane” roadmap
	Slide 46: Network-layer services and protocols
	Slide 47: Two key network-layer functions
	Slide 48: Network layer: data plane, control plane
	Slide 49: Per-router control plane
	Slide 50: Software-Defined Networking (SDN) control plane
	Slide 51: Network service model
	Slide 52: Network-layer service model
	Slide 53: Reflections on best-effort service:
	Slide 54: Network layer: “data plane” roadmap
	Slide 55: Router architecture overview
	Slide 56: Input port functions
	Slide 57: Input port functions
	Slide 58: Destination-based forwarding
	Slide 59: Longest prefix matching
	Slide 60: Longest prefix matching
	Slide 61: Longest prefix matching
	Slide 62: Longest prefix matching
	Slide 63: Longest prefix matching
	Slide 64: Switching fabrics
	Slide 65: Switching fabrics
	Slide 66: Switching via memory
	Slide 67: Switching via a bus
	Slide 68: Switching via interconnection network
	Slide 69: Switching via interconnection network
	Slide 70: Input port queuing
	Slide 71: Output port queuing
	Slide 72: Output port queuing
	Slide 73: Buffer Management
	Slide 74: Network layer: “data plane” roadmap
	Slide 75: Network Layer: Internet
	Slide 76: IP Datagram format
	Slide 77: IP addressing: introduction
	Slide 78: IP addressing: introduction
	Slide 79: IP addressing: introduction
	Slide 80: Subnets
	Slide 81: Subnets
	Slide 82: Subnets
	Slide 83: IP addressing: CIDR
	Slide 84: IP addresses: how to get one?
	Slide 85: DHCP: Dynamic Host Configuration Protocol
	Slide 86: DHCP client-server scenario
	Slide 87: DHCP client-server scenario
	Slide 88: DHCP: more than IP addresses
	Slide 89: DHCP: example
	Slide 90: DHCP: example
	Slide 91: IP addresses: how to get one?
	Slide 92: Hierarchical addressing: route aggregation
	Slide 93: Hierarchical addressing: more specific routes
	Slide 94: Hierarchical addressing: more specific routes
	Slide 95: IP addressing: last words ...
	Slide 96: Network layer: “data plane” roadmap
	Slide 97: NAT: network address translation
	Slide 98: NAT: network address translation
	Slide 99: NAT: network address translation
	Slide 100: NAT: network address translation
	Slide 101: NAT: network address translation
	Slide 102: IPv6: motivation
	Slide 103: IPv6 datagram format
	Slide 104: Transition from IPv4 to IPv6
	Slide 105: Tunneling and encapsulation
	Slide 106: Tunneling and encapsulation
	Slide 107: Tunneling
	Slide 108: IPv6: adoption
	Slide 109: IPv6: adoption
	Slide 110: The IP hourglass
	Slide 111: The IP hourglass, at middle age
	Slide 112: Architectural Principles of the Internet
	Slide 113: The end-end argument
	Slide 114: The end-end argument
	Slide 115: Where’s the intelligence?
	Slide 116: Chapter 4: done!
	Slide 117
	Slide 118: Network layer control plane: our goals
	Slide 119: Network layer: “control plane” roadmap
	Slide 120: Network-layer functions
	Slide 121: Per-router control plane
	Slide 122: Software-Defined Networking (SDN) control plane
	Slide 123: Network layer: “control plane” roadmap
	Slide 124: Routing protocols
	Slide 125: Graph abstraction: link costs
	Slide 126: Routing algorithm classification
	Slide 127: Network layer: “control plane” roadmap
	Slide 128: Dijkstra’s link-state routing algorithm
	Slide 129: Dijkstra’s link-state routing algorithm
	Slide 130: Dijkstra’s algorithm: an example
	Slide 131: Dijkstra’s algorithm: an example
	Slide 132: Dijkstra’s algorithm: another example
	Slide 133: Dijkstra’s algorithm: discussion
	Slide 134: Dijkstra’s algorithm: oscillations possible
	Slide 135: Network layer: “control plane” roadmap
	Slide 136: Distance vector algorithm
	Slide 137: Bellman-Ford Example
	Slide 138: Distance vector algorithm
	Slide 139: Distance vector algorithm:
	Slide 140: Distance vector: example
	Slide 141: Distance vector example: iteration
	Slide 142: Distance vector example: iteration
	Slide 143: Distance vector example: iteration
	Slide 144: Distance vector example: iteration
	Slide 145: Distance vector example: iteration
	Slide 146: Distance vector example: iteration
	Slide 147: Distance vector example: iteration
	Slide 148: Distance vector example: computation
	Slide 149: Distance vector example: computation
	Slide 150: Distance vector example: computation
	Slide 151: Distance vector example: computation
	Slide 152: Distance vector example: computation
	Slide 153: Distance vector: state information diffusion
	Slide 154: Distance vector: link cost changes
	Slide 155: Distance vector: link cost changes
	Slide 156: Comparison of LS and DV algorithms
	Slide 157: Network layer: “control plane” roadmap
	Slide 158: Making routing scalable
	Slide 159: Internet approach to scalable routing
	Slide 160: Interconnected ASes
	Slide 161: Inter-AS routing: a role in intradomain forwarding
	Slide 162: Inter-AS routing: routing within an AS
	Slide 163: OSPF (Open Shortest Path First) routing
	Slide 164: Hierarchical OSPF
	Slide 165: Network layer: “control plane” roadmap
	Slide 166: Internet inter-AS routing: BGP
	Slide 167: eBGP, iBGP connections
	Slide 168: BGP basics
	Slide 169: Path attributes and BGP routes
	Slide 170: BGP path advertisement
	Slide 171: BGP path advertisement (more)
	Slide 172: BGP messages
	Slide 173: BGP path advertisement
	Slide 174: BGP path advertisement
	Slide 175: Why different Intra-, Inter-AS routing ?
	Slide 176: Hot potato routing
	Slide 177: BGP: achieving policy via advertisements
	Slide 178: BGP: achieving policy via advertisements (more)
	Slide 179: BGP route selection
	Slide 180: Network layer: “control plane” roadmap
	Slide 181: Software defined networking (SDN)
	Slide 182: Per-router control plane
	Slide 183: Software-Defined Networking (SDN) control plane
	Slide 184: Software defined networking (SDN)
	Slide 185: SDN analogy: mainframe to PC revolution
	Slide 186: Traffic engineering: difficult with traditional routing
	Slide 187: Traffic engineering: difficult with traditional routing
	Slide 188: Traffic engineering: difficult with traditional routing
	Slide 189: Software defined networking (SDN)
	Slide 190: Software defined networking (SDN)
	Slide 191: Software defined networking (SDN)
	Slide 192: Software defined networking (SDN)
	Slide 193: Components of SDN controller
	Slide 194: OpenFlow protocol
	Slide 195: OpenFlow: controller-to-switch messages
	Slide 196: OpenFlow: switch-to-controller messages
	Slide 197: SDN: control/data plane interaction example
	Slide 198: SDN: control/data plane interaction example
	Slide 199: OpenDaylight (ODL) controller
	Slide 200: ONOS controller
	Slide 201: SDN: selected challenges
	Slide 202: SDN and the future of traditional network protocols
	Slide 203: Network layer: “control plane” roadmap
	Slide 204: ICMP: internet control message protocol
	Slide 205: Traceroute and ICMP
	Slide 206: Network layer: “control plane” roadmap
	Slide 207: What is network management?
	Slide 208: Components of network management
	Slide 209: Network operator approaches to management
	Slide 210: SNMP protocol
	Slide 211: SNMP protocol: message types
	Slide 212: SNMP protocol: message formats
	Slide 213: SNMP: Management Information Base (MIB)
	Slide 214: NETCONF overview
	Slide 215: NETCONF initialization, exchange, close
	Slide 216: Selected NETCONF Operations
	Slide 217: Sample NETCONF RPC message
	Slide 218: YANG
	Slide 219: Network layer: Summary
	Slide 220: Network layer, control plane: Done!
	Slide 221: Additional Chapter 5 slides
	Slide 222: Distance vector: another example
	Slide 223: Distance vector: another example

