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Today’s Agenda
Introduction to Low-Power Wide Area Networks

A top-down approach in LoRaWAN MAC/LoRa PHY

Research challenges and methodology

Our work: Simulation study & Implementation study

Fundamental topics on Stochastic Processes and Markov chains
◦ Markov chains use cases

Apply stochastic modeling methodology to LoRaWAN channel access challenge
◦ “Performance analysis of the on-the-air activation in LoRaWAN”, J. Toussaint, N. El Rachkidy and A. Guitton, IEEE 

7th Annual IEMCON, Vancouver, BC, 2016
◦ Key points from LoRaWAN protocol

◦ Analysis of access in LoRaWAN systems in terms of device activation procedure

◦ Expected delay to activation

◦ Expected energy consumed
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IoT
A global infrastructure for the 
information society, enabling advanced 
services by interconnecting (physical 
and virtual) things based on existing 
and evolving interoperable information 
and communication technologies [1]

Proliferation
◦ Cisco predicts 500B devices by 2030 [2], 

Ericsson 25B by 2025 [3]
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LPWAN
Networks that can cover very large 
areas by supporting large numbers of 
extremely low-cost, low-throughput 
devices with very low power 
consumption [4]

Main characteristics
◦ Low power

◦ Long range

◦ Low data rates

◦ CapEx, OpEx efficiency
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[5] W. Guibene et al., "Survey on Clean Slate Cellular-IoT Standard Proposals," IEEE CIT, 2015
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The growth of interest in LPWANs
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Standardization
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Sigfox

Weightless Alliance

ETSI
(implementation)

Ingenu Inc.

Wize Alliance

Semtech
Corporation

LoRa Alliance

ITU
(approval)

3GPP

non-3GPP

EC-GSM-IoT



LPWANs: Which one?
A lot of technologies!

There is no one solution to rule them all

However, there are promising technologies
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EC-GSM-IoT

as of July 2021



LoRa and NB-IoT complementarity 
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[6] R. S. Sinha et al., “A survey on LPWA technology: LoRa and NB-IoT,” ICT Express, 2017

[7] K. Mekki et al., “A comparative study of LPWAN technologies for large-scale IoT deployment,” ICT Express, 2019



LoRa in Networks beyond 2020 & 5G
The mMTC usage scenario [8]
◦ Vertical markets as will be described

◦ Network slicing approach suits the concept

[11] R. Yasmin et al., “On the Integration of LoRaWAN With the 5G Test Network,” IEEE 
PIMRC, 2017
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Deployment options considering the part of
the network
◦ multi-RAT paradigm

◦ LoRa in the RAN, 5G as backhaul link

The concept of N3IWF [9], [10]



[12] LoRaWAN™ 1.0.4 Specification, LoRa Alliance, Technical Specification, 2020
[13] Low power protocol for wide area wireless networks, ITU-T, Recommendation Y.4480, 2021

LoRaWAN Protocol Stack
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LoRa Alliance Open Specification
Fully open protocol
◦ https://resources.lora-alliance.org/technical-

specifications/ts001-1-0-4-lorawan-l2-1-0-4-
specification

A set of specifications that define device classes, 
activation procedures, over the air 
communication, backend interfaces, etc.

Two current versions
◦ 1.0.4 (latest, and last of 1.0.x family)

◦ 1.1

◦ eventually, they will converge

Thanks to openness, publicly available codebases
◦ e.g., https://github.com/search?q=lora
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https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification
https://github.com/search?q=lora


[12] LoRaWAN™ 1.0.4 Specification, LoRa Alliance, Technical Specification, 2020
[13] Low power protocol for wide area wireless networks, ITU-T, Recommendation Y.4480, 2021

LoRaWAN Protocol Stack
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ITU-T Recommendation
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LoRaWAN Protocol Stack
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Applications
Semtech Corporation (LoRa)
◦ Critical V Mass-scale

◦ Industrial, Enterprise, Consumer applications
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LoRa Alliance (LoRaWAN)
◦ The “smart” paradigm

◦ Smart agriculture

◦ Smart buildings

◦ Smart cities

◦ Smart industry

◦ Smart logistics

◦ Smart utilities



LoRaWAN Protocol Stack
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LoRaWAN: star-of-stars topology

End Device (ED)
Gateway (GW)

Network Server (NS)
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LoRaWAN device classes

Class A

Class C

Class B
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LoRaWAN Protocol Stack

Transmission Channels (MHz) – UL

1. 868.1: SF7BW125 μέχρι SF12BW125

2. 868.3: SF7BW125 μέχρι SF12BW125 και 
SF7BW250

3. 868.5: SF7BW125 μέχρι SF12BW125

4. 867.1: SF7BW125 μέχρι SF12BW125

5. 867.3: SF7BW125 μέχρι SF12BW125

6. 867.5: SF7BW125 μέχρι SF12BW125

7. 867.7: SF7BW125 μέχρι SF12BW125

8. 867.9: SF7BW125 μέχρι SF12BW125

9. 868.8: FSK

* For DL, channels are the same, plus a high
power channel of 0.5W at 869.525MHz with
SF9BW125

*
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LoRaWAN Protocol Stack
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LoRa Basics
LoRa: an implementation of Chirp Spread Spectrum (CSS)

CSS: an implementation of Spread Spectrum (SS)

Spreading Factor (𝑆𝐹): # of times the signal has been spread

chip: the way to encode information in spread spectrum systems

Symbol rate: 𝑅𝑠 =
𝑅𝑐

2𝑆𝐹
, where 𝑅𝑐 is the chip rate (𝑅𝑐 = 𝐵𝑊)

Duration 𝑇𝑠: the reciprocal of rate, 𝑇𝑠 =
2𝑆𝐹

𝑅𝑐

Bit Rate: 𝑅𝑏 =
𝑆𝐹

𝑇𝑠

FEC is implemented in LoRa: Rate Code = 
4

4+𝐶𝑅
, CR = {1, 2, 3, 4}

Bit Rate: 𝑅𝑏 = 𝑆𝐹 ∗
4

4+𝐶𝑅
∗
𝐵𝑊

2𝑆𝐹

𝑆𝐹→ chip sequence: # of bits used for a symbol
o in CSS context: symbol == chirp
o # of ways to encode information: 2𝑆𝐹
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The Data Rate V Range trade off
Data Rate: 𝑅𝑏 = 𝑆𝐹 ∗

4

4+𝐶𝑅
∗

𝐵𝑊

2𝑆𝐹

Receiver Sensitivity: 𝑆(𝑑𝐵𝑚) = −174 + 10 log10 𝐵𝑊(𝐻𝑧) + 𝑁𝐹(𝑑𝐵) + 𝑆𝑁𝑅(𝑑𝐵)
SF SNR (dB)

SF7 -7.5

SF8 -10

SF9 -12.5

SF10 -15

SF11 -17.5

SF12 -20
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Protocol stack inside architecture’s nodes
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Research work: challenges
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Robust PHY, e.g., [14]

ED activation, e.g., [15]

Transmission’s parameters configuration (ADR algorithm): TP, CF, SF, BW, CR (“nuts and bolts”), e.g., [16], [34]

Node (ED, GW) placement, e.g., [17]

Multiple access and transmission scheme, e.g., [18], [19], [20], [21], [28]

Mobility and roaming support, e.g., [22]

ED’s energy efficiency, e.g., [23], [32], [34], [35]

Information management, e.g., [24]

End-to-end cross-layer security, e.g., [25], [26], [39]

Combinations
◦ parameters configuration + node placement = spatial coverage, range, path loss models, e.g., [27], [36], [37]

◦ collective study of EDs’ power consumption = system lifetime, e.g., [28]

◦ robust PHY + parameters configuration + multiple access = successful reception, scalability, e.g., [20], [21], [33], [34], [35], [36], [38]

◦ advanced information management = utilization of ML algorithms, e.g., [29]

◦ advanced parameters configuration = resource allocation, network slicing, SDN, e.g., [30]

◦ distributed security = applicability of blockchain protocols, e.g., [31]



Research work: methodology
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Analytical studies
◦ Fast Fourier Transform, e.g., [14]

◦ Markov Chain, e.g., [15]

◦ Type – A, – B uncertainty, e.g., 
[20]

◦ Kruskal-Wallis testing, e.g., [22]

◦ Security Analysis, e.g., [25], [26], 
[39]

◦ Federated Learning, e.g., [29]

◦ Game Theory, e.g., [30]

◦ Markov Decision Process, e.g., 
[32]

◦ Stochastic Geometry, e.g., [33]

Real Deployments
◦ Environment of ED and GW 

(Outdoor/Indoor) – Mobility 
(none/low/high/medium) –
Number of EDs 
(low/high/medium)
◦ Indoor-to-Indoor (I2I) – fixed position 

– 1 GW covering 15 EDs, e.g., [28]

◦ O2O Suburban – high mobility – low 
number of EDs, I2I – fixed position –
medium number of EDs, etc., e.g., 
[18], [19], [20], [24], [27]

◦ Advanced scenarios
◦ water-to-land, e.g., [27]

◦ underground-to-land, e.g., [37]

◦ satellite-to-land, e.g., [38]

Simulation studies
◦ Network-specific

◦ ns-3, e.g., [17], [28], [30]

◦ OMNeT++, e.g., [34]

◦ WSN-specific
◦ Cooja

◦ TOSSIM

◦ CupCarbon

◦ LoRa/LoRaWAN-specific
◦ MATLAB, e.g., [18], [19], [23]

◦ Scilab, e.g., [15]

◦ Python (SimPy)

◦ LoRaSim and its successors, e.g., [16], [20]

◦ LoRa-FREE, e.g., [21]

◦ LoRa-MAB, e.g., [35]

◦ Java

◦ LoRaSim, e.g., [36]

◦ Domain-specific
◦ ML, e.g., Tensorflow [29]

◦ Blockchain, e.g., Ethereum client [31]



CupCarbon simulations

5/20/2022 NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS 26



The implemented testbed
The Things Node:
◦ RN2483 LoRa module

◦ MEGA32u4 processor

◦ printed antenna

◦ MMA8652FC 
accelerometer

◦ MCP9804 temperature 
sensor

◦ NOA1212 light sensor

◦ button for event 
triggering

◦ LED

◦ 3 AAA batteries

The Things Uno
◦ RN2483 LoRa module

◦ MEGA32u4 processor

◦ printed antenna

◦ LED
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State Transition Diagram

Based on “TheThingsNetwork.h”, “TheThingsNode.h” Arduino libraries stored in EDs
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Sending UL/DL message

mosquitto_pub -h <HOST> -p <PORT> -u <USERNAME> -P <PASSWORD> -t <TOPIC>

mosquitto_sub -h <HOST> -p <PORT> -u <USERNAME> -P <PASSWORD> -t <TOPIC>
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MQTT Tree
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Wireshark capture

TTN NS
MQTT topic

MQTT
QoS class

message
decoding

{“app_id”: “testing_appli…

5/20/2022 NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS 31



Management Platforms
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Storing the data
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Visualization

(locally)

(locally)
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Docker setup as Proof-of-Concept

localhost:8086localhost:1880 localhost:3000
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Node-RED flow
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An instance from InfluxDB
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Grafana visualization
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Experiments based on testbed
1. Examine power consumption and the longevity of EDs

a. 1 stationary GW, 4 stationary EDs, suburban

b. Focus on one ED, transmit a payload of 19 bytes every 2 mins with SF7, CR=4

2. Test GWs range capabilities
a. GW again stationary, environment again suburban

b. Mobile ED, transmitting to find out its location

3. Packet delivery ratio
a. Same setup as in 1st experiment

b. Try to find out percentage of successful transmissions with regards to parameter selection

4. Channel selection
a. Examine the pseudorandom channel selection in UL transmissions
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Power Consumption
CupCarbon simulations, Battery Consumption
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TTN Mapper
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Packet Delivery Ratio

5/20/2022 NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS 42



Pseudorandom Channel Selection
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Part I - Conclusions
A theoretical and practical study of LoRa/LoRaWAN

Research directions based on published work
◦ research challenges

◦ research methodology

From methodology perspective, we have worked with simulators and real testbed
◦ both methodologies agree on power consumption behavior

◦ testbed reveals
◦ promising results on range

◦ high PDR

◦ fair channel selection

◦ development of a modular and scalable framework via Docker
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A first glance on Stochastic Processes
Stochastic Process
◦ “A collection of random variables {𝑋 𝜏 , 𝜏 ∈ 𝑇}, indexed by the parameter 𝜏 taking values in the parameter set 
𝑇. The random variables take values in the set 𝑆, called the state-space of the stochastic process.”

A plethora of them
◦ Bernoulli, Poisson, Discrete Time Markov Chains, Continuous Time Markov Chains, Renewal, Regenerative, 

Diffusion, …

How to study them
◦ Definition

◦ Characterization

◦ Transient Behavior

◦ First Passage Times

◦ Limiting Behavior

◦ Costs / Rewards

◦ Applications

[40] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, CRC Press, 3rd Edition, 2017
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Initial intuition
Law of Large Numbers applies to independent and identically distributed (iid) RVs

Can it be applied to RVs that have some dependency among them?
◦ How much dependency?

Allow full dependency
◦ Impossible to compute

One step
◦ Dependency in pairs (time pairs, space pairs, …)

iid Markov property complete dependency

Andrey Andreyevich Markov (1856 – 1922)
[Image from Wikipedia]
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𝑝01

Markov chains primer
Markov property: a step further
◦ Future and Past are independent assuming knowledge of Present → conditional independence

◦ 𝑃 𝑋𝑛+1 = 𝑖𝑛+1 𝑋𝑛 = 𝑖𝑛, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0 = 𝑃 𝑋𝑛+1 = 𝑖𝑛+1 𝑋𝑛 = 𝑖𝑛

Assuming a space of states 𝑆, a Markov chain is a stochastic process, modeled by a graph 𝐺 with a set 
of vertices 𝑉 (practically 𝑉 is 𝑆) and connections among them called edges 𝐸, symbolized 𝐺 = (𝑉, 𝐸), 
that:
◦ holds the Markov property for every transition 𝑝, i.e., edge in 𝐸, from a state 𝑖 to a state 𝑗, ∀𝑖, 𝑗 ∈ 𝑆

◦ every possible transition 𝑝𝑖𝑗 , i.e., edge in 𝐸, is non-negative

◦ for each of its states in 𝑆, i.e., vertices in 𝑉, the sum of transitions from (out-edges) is 1, σ𝑗 𝑝𝑖𝑗 = 1

Assumptions
◦ discrete time

◦ discrete space

◦ finite number of states

◦ probabilities do not change over time (time-homogeneous)

0 1

0
1

0 1

0.5

0.5

0.9

0.1
𝑷 =

𝑝00 𝑝11

𝑝10

0.5 0.5

0.10.9

𝑝01𝑝00

𝑝11𝑝10

n
n+1
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Terminology: States
Accessible: state 𝑗 is accessible from state 𝑖 if there is a valid sequence of transitions leading from 𝑖 to 𝑗

Communicating: states 𝑖 and 𝑗 are said to be communicating, if 𝑖 is accessible from 𝑗 and 𝑗 is accessible 
from 𝑖

Recurrent: starting from one state, there is a positive probability that we get back to this state
◦ positive recurrent (or recurrent non-null): come back in finite steps

◦ recurrent null: come back but after infinitely many steps

Transient: by complementarity, if not recurrent

Periodic: a state that occurs in a periodic manner, i.e., gcd(𝑟𝑒𝑡𝑢𝑟𝑛𝑠_𝑡𝑜_𝑠𝑡𝑎𝑡𝑒) ≠ 1

Aperiodic: by complementarity, if not periodic, i.e., gcd(𝑟𝑒𝑡𝑢𝑟𝑛𝑠_𝑡𝑜_𝑠𝑡𝑎𝑡𝑒) = 1

Ergodic: Recurrent non-null + Aperiodic

Absorbing: a state that when reached there is no escape from it, i.e., 𝑝𝑖𝑖 = 1
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Terminology: Chains
Irreducible: All states communicating
◦ Strongly connected graph (useful property)

Reducible: by complementarity, if not irreducible

Periodic: if at least one state is periodic
◦ Cyclic graph

Aperiodic: if all states are aperiodic
◦ Finite recurrent non-null states: aperiodic = irreducible 1

Ergodic: Irreducible + Aperiodic
◦ all states are ergodic

Absorbing: chain with at least one absorbing state, that is accessible from any other non-absorbing state

Markov chain on steady state: transition probabilities have reached stationary distribution

Reversible: long-run percentage of transitions from 𝑖 to 𝑗 are equal to the long-run percentage of transitions from 𝑗 to 𝑖
◦ intuition: you can look MC backwards in time without noticing any difference

1 [42] https://brilliant.org/wiki/markov-chains/#markov-chain, Accessed: 22/01/2020
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Chapman – Kolmogorov equation
Probability of reaching state 𝑗 starting from state 𝑖 in 𝑛 steps
◦ Intuition

◦ Reach some state 𝑘 in 𝑛 − 1 steps and from there transition to 𝑗 in 1 step (assuming 𝑗 is accessible from 𝑘)

◦ Proceed recursively

◦ Formula: 𝑝𝑖𝑗(𝑛) = σ𝑘=1
𝑚 𝑝𝑖𝑘(𝑛 − 1) ∗ 𝑝𝑘𝑗

◦ The opposite approach can also work
◦ Transition from 𝑖 to 𝑘 in 1 step and from 𝑘 reach 𝑗 in 𝑛 − 1 steps (again, assuming accessibility)

◦ 𝑝𝑖𝑗(𝑛) = σ𝑘=1
𝑚 𝑝𝑖𝑘 ∗ 𝑝𝑘𝑗(𝑛 − 1)

Generalization: in 𝑚 steps transition to intermediate state
and in 𝑛 steps to destination
◦ 𝑝𝑖𝑗(𝑚 + 𝑛) = σ𝑘 𝑝𝑖𝑘(𝑚) ∗ 𝑝𝑘𝑗(𝑛)

𝒊

𝟏

𝒋𝒌

𝒎

𝑛 − 1 𝑠𝑡𝑒𝑝𝑠 1 𝑠𝑡𝑒𝑝

[43] D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability, Athena Scientific, 2nd Edition, 2008
[44] W. Feller, An Introduction to Probability Theory and its Applications – Volume I, Wiley, 3rd Edition, 1968
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𝑷 =

Stationary distribution (steady-state distribution): a row vector (𝜋) describing the long-run 
probabilities of each state, 𝜋 = 𝜋 ∗ 𝑃

Key on explaining a Markov chain’s behavior
◦ Average time spent on each state

◦ Average visits to each state

Questions:
◦ Does a steady state exist?

◦ Is it unique?

◦ Is it limiting?

For ergodic Markov chains the answer is yes to everything

For other types of Markov chains, the answers may vary, but a steady state does exist for finitely 
many states

𝑷𝒏 =

Stationarity

0 1

0
1

0 1

0.5

0.5

0.9

0.1

0.5 0.5

0.10.9

0.64

0.64

0.36

0.36

𝜋 = (0.64, 0.36)
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Stationarity calculation
Chapman – Kolmogorov equation for 𝑛 steps
◦ Recursive formula: 𝑝𝑖𝑗(𝑛) = σ𝑘=1

𝑚 𝑝𝑖𝑘(𝑛 − 1) ∗ 𝑝𝑘𝑗

From the above expression as 𝑛 → ∞:
◦ 𝜋𝑗 = σ𝑘=1

𝑚 𝜋𝑘 ∗ 𝑝𝑘𝑗 , ∀𝑗 (balance equations)

Remember, 𝜋 is a distribution row vector
◦ σ𝑗=1

𝑚 𝜋𝑗 = 1 (normalization equation)

These set of equations (balance equations, normalization equation) form a linear system that gives stationary distribution 
vector
◦ Also called “Steady-state convergence Theorem” or “The Big Theorem of Markov chains” 2

Essentially, to calculate the distribution vector in time 𝑛:
◦ 𝜋(𝑛) = 𝜋(𝑛−1) ∗ 𝑃1

◦ 𝜋(𝑛) = 𝜋(0) ∗ 𝑃𝑛

For “large” 𝑛, if there is a steady state: 𝜋 = 𝜋 ∗ 𝑃𝑛, ∀𝑛
◦ Remember, each row of 𝑃𝑛 equals to stationary distribution vector

◦ Iterative self-multiplications of stochastic matrix 𝑃 lead to stationary distribution

2 [45] John Tsitsiklis’ lectures on “Probabilistic System Analysis and Applied Probability”, fall 2010, via MIT OCW
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0.001

0.5

How to interpret “large” 𝑛?

0 1
0
1

0 1

0.5

0.9

0.1𝑷 =
0.5 0.5

0.10.9

0 1
0
1

0 1

0.999

0.002

0.998𝑷 =
0.9980.002

𝜋 = (0.65, 0.35)

𝜋 = (0.64, 0.36)

0.999 0.001
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Types of stationarity
Does a steady state exist?
◦ If MC has finite state space: YES

◦ Interpretation: if I assign initial probabilities equal to stationary distribution, then, after achieving 
stationarity, in every run of the chain I will get the same distribution

Is it unique?
◦ If MC is irreducible: YES

◦ If MC has only one absorbing state accessible from all other states: YES

◦ Interpretation: initial distribution vector does not play a role in the long-run

Is it limiting?
◦ If MC is irreducible + aperiodic (=ergodic): YES

◦ Interpretation: The chain converges to this stationarity, meaning that each row of stochastic matrix of 
𝑛 − 𝑡ℎ order (𝑛 appropriately selected, as discussed before) will converge to stationary distribution
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Transient

State 𝒊

States categorization

𝝅𝒊 = 𝟎

𝝅𝒊 = 𝟎

lim
𝒏→∞

𝒑𝒋𝒊
(𝒏)

= 𝝅𝒊 lim
𝒏→∞

𝒑𝒋𝒊
(𝒏)

= 𝒅 ∗ 𝝅𝒊, with period 𝒅

Recurrent

PeriodicAperiodic

nullnon-null

𝝅𝒊 > 𝟎

[46] Simon Haykin, Neural Networks and Machine Learning, Pearson, 3rd Edition, 2008
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Common Examples – Random Walk

-1 0 1 2

𝒑 𝒑 𝒑𝒑𝒑

𝒒 𝒒 𝒒 𝒒 𝒒

𝟏 − 𝒑 − 𝒒 𝟏 − 𝒑 − 𝒒 𝟏 − 𝒑 − 𝒒 𝟏 − 𝒑 − 𝒒
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Common Examples – Gambler’s Ruin

0 1 2 31 1

1-p

p p

1-p
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Common Examples

0 1 2 3 4

0 1 2 31 1

1-p

p p

1-p

0 1 & 2 3

Common Examples – Gambler’s Ruin
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Common Examples – Periodicity

0

1

2
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Common Examples

01

2

3

5

4
8

7

6
01

2

3

4

5

6

7

8

2

0

4

7

1

3

5

6

8

Common Examples – Periodicity

[45] John Tsitsiklis’ lectures on “Probabilistic System Analysis and Applied Probability”, fall 2010, via MIT OCW
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Common Examples – Birth/Death Chain

0 1 2 31-p 1-q

p*(1-q)p

q*(1-p)

p*q + (1-p)(1-q) p*q + (1-p)(1-q)

q*(1-p) q

p*(1-q)
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Common Examples – Slowly Spreading Chain

0 1 2 3𝟏 − 𝒑𝟎𝟏

𝒑𝟎𝟏 𝒑𝟏𝟐 𝒑𝟐𝟑

𝟏 − 𝒑𝟏𝟐

𝟏 − 𝒑𝟐𝟑

𝟏

[47] John G. Kemeny, “Slowly spreading chains of the first kind,” Journal of Mathematical Analysis and Applications, Volume 15, Issue 2, pp. 295-310, 1966, ISSN 0022-247X, https://doi.org/10.1016/0022-247X(66)90121-1.
[48] Kanal Laveen, Sastry Ark , “Models for Channels with Memory and Their Applications to Error Control,” Proceedings of the IEEE. 66, pp. 724 – 744, 1978, 10.1109/PROC.1978.11013
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Usage Examples
Wide area of applications: networks, operating systems, ML, finance, genetics, epidemiology, 
earthquake study, particle physics, sports analytics, etc.
◦ Even in one domain the field of applications is vast

◦ search engine indexing, network caching, wireless network access, network resource utilization, etc.

PageRank: probably the most famous implementation
◦ the way that Google ranks the indexed webpages

◦ 𝑊𝑒𝑏𝑝𝑎𝑔𝑒 𝑅𝑎𝑛𝑘 = σ𝑖 = 𝑎𝑙𝑙 𝑖𝑛−𝑒𝑑𝑔𝑒𝑠 𝑟𝑎𝑛𝑘𝑖
◦ a variation counts both in- and out-edges

Wide use in networks to evaluate nodes’ behavior: routers, switches, links
◦ Modelling of systems, like M/M/1, M/G/1, G/M/1, M/M/m, …

◦ Birth-death chains
◦ “birth”: packet arrival, “death”: packet departure (“served”)
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Weather Modeling
Suppose a simple two-weather model: 𝑆: Sun, 𝑅: Rain

Probability of sun tomorrow according to today’s weather

𝒑

S R𝟏 − 𝒑

𝒒

𝟏 − 𝒒

If 𝑝 is close to 0 and 𝑞 is close to 1, we observe an area with a nice weather!

5/20/2022 NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS 64



Clinical Trials
2 tested drugs for a disease

Clinical trials on patients

Ethical reasons dictate play the winner rule

0

1

0 1

𝒑 𝟏 − 𝒑

𝟏 − 𝒒 𝒒

𝟏 − 𝒑

0 1𝒑

𝟏 − 𝒒

𝒒

If 𝑝 > 𝑞 after many trials, we select drug 0, otherwise drug 1
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0,0*,0

Susceptible - Infected - Recovered Model
Susceptible (S): people in danger of getting diseased

Infected (I): people carrying the virus
𝑝: prob. get infected, 𝑞: prob. get well

Recovered (R): people recovered

0 1 2

SIS model

𝒒𝟐

𝟏 (𝟏 − 𝒒)𝟐

𝟐𝒒(𝟏 − 𝒒)

𝒑(𝟏 − 𝒒)
𝒑𝒒 + (𝟏 − 𝒑)(𝟏 − 𝒒)

𝒒(𝟏 − 𝒑)

0,1 0,2

𝟏 (𝟏 − 𝒒)𝟐
𝟐𝒒(𝟏 − 𝒒)(𝟏 − 𝒒)

𝒒

𝒒𝟐

SIR model ((S,I) States)

1,11,0

𝒒(𝟏 − 𝒑)

𝟏

(𝟏 − 𝒑)(𝟏 − 𝒒)

𝒑(𝟏 − 𝒒)

𝒑𝒒

2,0𝟏
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Urn Model
Let’s play a game!

2 ∗ 𝑁 balls in total, 𝑁 green, 𝑁 red

𝑁 balls in each urn

Urn 1: 𝑖 greens, the rest are red

Probability of having 𝑘, 𝑘 ∈ {0, … , 4} greens in Urn 1?

0 1 2 3

((𝑵 − 𝟏)/𝑵)𝟐𝟏

4

𝟏

((𝑵 − 𝟐)/𝑵)𝟐 ((𝑵 − 𝟑)/𝑵)𝟐

(𝟏/𝑵)𝟐 (𝟑/𝑵)𝟐(𝟐/𝑵)𝟐

𝟐 ∗ (𝟏 ∗ 𝑵 − 𝟏 )/𝑵𝟐 𝟐 ∗ (𝟑 ∗ 𝑵 − 𝟑 )/𝑵𝟐𝟐 ∗ (𝟐 ∗ 𝑵 − 𝟐 )/𝑵𝟐
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PageRank Algorithm
Intuition: A webpage is important when a lot of webpages 
cite it (academic citation) 
◦ Extension: It does not matter what someone says, but also 

who is this someone
◦ how much important this someone is

𝑃𝑅 𝐴 =
1−𝑑

𝑁
+ 𝑑

𝑃𝑅 𝑇1

𝐶 𝑇1
+ … +

𝑃𝑅 𝑇𝑛

𝐶 𝑇𝑛

◦ 𝐴: some webpage A

◦ 𝑇1…𝑇𝑛: pages 1…n with a link to page A

◦ 𝐶 𝐴 : number of out-links from A

◦ 𝑑: damping factor (1 − 𝑑: probability of “teleporting” to a 
random page)
◦ In Brin’s and Page’s publication, 𝑑 = 0.85

[49] S. Brin, L. Page, “The anatomy of a large-scale hypertextual Web search engine,” Computer Networks and ISDN Systems, Volume 30, Issues 1–7, 1998

[PageRank in Wikipedia]

B A

E

C

D
F

G
H I

J

K
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Markov chains in Network Access
Wireless networks with excessive number of end devices trying to access the medium

“Performance analysis of the on-the-air activation in LoRaWAN”, J. Toussaint, N. El Rachkidy and A. 
Guitton, 2016 IEEE 7th Annual IEMCON, Vancouver, BC, 2016

[15] J. Toussaint, N. El Rachkidy and A. Guitton, "Performance analysis of the on-the-air activation in LoRaWAN," in IEMCON, 2016
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LoRaWAN primer
Low-Power Wide Area Network (LPWAN): a subdomain of IoT

Interconnection of devices:
◦ power constraints

◦ communication in wide areas

◦ small data rates

◦ low cost

LoRaWAN: a MAC protocol in the space of LPWAN
◦ open protocol developed by LoRa Alliance

◦ based on LoRa PHY, proprietary modulation by Semtech
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State of the problem
Three main entities:
◦ End Device (ED)

◦ Gateway (GW)

◦ Network Server (NS)

EDs are deployed in massive numbers: how to access the medium?

First time an ED tries to access the channel: during activation
◦ Activation By Personalization (ABP): hardcoded access keys

◦ Over The Air Activation (OTAA): based on join request/accept messages between ED and server-side

Successful activation is based on successful communication and proper key generation

2 questions:
◦ How much time until successful activation?

◦ How much energy until successful activation?
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Markov chain of the problem
Wireless networks with excessive number of end nodes trying to access the medium

“Performance analysis of the on-the-air activation in LoRaWAN”, J. Toussaint, N. El Rachkidy and A. 
Guitton, 2016 IEEE 7th Annual IEMCON, Vancouver, BC, 2016
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Transition Matrix

𝟎 𝒑𝒔,𝒓𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝒑𝒓𝟏,𝒑𝟏 𝟎 𝒑𝒓𝟏,𝒓𝟐 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝒑𝒑𝟏,𝒄𝟏 𝒑𝒑𝟏,𝒓𝟐 𝟎 𝟎 𝒑𝒑𝟏,𝒘 𝟎

𝟎 𝟎 𝟎 𝟎 𝒑𝒄𝟏,𝒓𝟐 𝟎 𝟎 𝒑𝒄𝟏,𝒘 𝒑𝒄𝟏,𝒂

𝟎 𝟎 𝟎 𝟎 𝟎 𝒑𝒓𝟐,𝒑𝟐 𝟎 𝒑𝒓𝟐,𝒘 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝒑𝒑𝟐,𝒄𝟐 𝒑𝒑𝟐,𝒘 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝒑𝒄𝟐,𝒘 𝒑𝒄𝟐,𝒂

𝒑𝒘,𝒔 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏

Q R

𝟏

𝟏

𝟎

0 I

𝜋(0) = (1, 0, 0, 0, 0, 0, 0, 0, 0) States 0 – 7 are transient State 8 is recurrent (absorbing)
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Transition Matrix (cont’d)
𝑁 = (𝐼 − 𝑄)−1: fundamental matrix
◦ Gauss – Jordan elimination

𝑁𝑖,𝑗: Expected number of visits to
state 𝑗 starting from state 𝑖
◦ 𝑉 = 1𝑠 ∗ 𝑁, 𝑤ℎ𝑒𝑟𝑒 1𝑠 = 𝜋(0)

Column vector 𝐷 (expected duration
of each state)
◦ 𝑉 ∗ 𝐷: expected delay of activation

procedure

Column vector 𝐸 (expected energy
consumption of each state)
◦ 𝑉 ∗ 𝐸: expected energy

consumption of activation procedure

𝟎 𝒑𝒔,𝒓𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝒑𝒓𝟏,𝒑𝟏 𝟎 𝒑𝒓𝟏,𝒓𝟐 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝒑𝒑𝟏,𝒄𝟏 𝒑𝒑𝟏,𝒓𝟐 𝟎 𝟎 𝒑𝒑𝟏,𝒘 𝟎

𝟎 𝟎 𝟎 𝟎 𝒑𝒄𝟏,𝒓𝟐 𝟎 𝟎 𝒑𝒄𝟏,𝒘 𝒑𝒄𝟏,𝒂

𝟎 𝟎 𝟎 𝟎 𝟎 𝒑𝒓𝟐,𝒑𝟐 𝟎 𝒑𝒓𝟐,𝒘 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝒑𝒑𝟐,𝒄𝟐 𝒑𝒑𝟐,𝒘 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝒑𝒄𝟐,𝒘 𝒑𝒄𝟐,𝒂

𝒑𝒘,𝒔 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏

Q R

𝟏

𝟏

𝟎

0 I
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Performance Evaluation
Scilab environment

Key parameters: channel quality 𝑎, used receive window 𝛾
◦ 𝑎 ∈ 0, 1

◦ 0: low quality

◦ 1: high quality

◦ γ = {0, 1}
◦ 0: 2nd receive window

◦ 1: 1st receive window

Assumptions for other parameters as well (network saturation, # of channels, # of sub-bands, # of 
inactivated / activated EDs, duty cycle)

Energy consumption setting from Semtech (SX1272)
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Expected delay to activation
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Expected energy consumed
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Outlines of the paper
Low channel quality leads to packet losses → EDs visit more often state Wait → delay issues due 
to duty cycle

More sub-bands → more traffic → more collisions → delay issues
◦ But Wait state lasts less due to more sub-bands (duty cycle applies to each sub-band)

Wait state duration has greater impact than traffic

Energy follows delay’s behavior
◦ But in figures that are respect to total number of channels the behavior of the two performance metrics 

is the opposite

◦ Little detail
◦ Delay Vs total number of channels: absolute difference is steady among the sub-bands but proportion changes

◦ Energy Vs total number of channels: absolute difference changes among the sub-bands but proportion is steady
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Outlines of the paper (cont’d)
Assumptions: No capture effect, 1 GW, Data Rate 0 - DR0 (Spreading Factor 12 - SF12), EU868 bands

US915 bands
◦ dedicated DL channels → no DL / UL interference

◦ more UL channels → less interference

◦ DR0 equals SF10

China matches EU case but EDs have less max. transmission power
◦ Less energy consumption

DR0 = SF12
◦ higher SF, greater DR changes some of the probabilities in stochastic matrix

◦ Most important: smaller Time On Air (ToA)
◦ smaller collision probability

◦ less Wait state duration
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LPWAN paradigm: a new IoT networking family

LoRa/LoRaWAN: a top-down approach

Research challenges and methodology

Discussion on our simulations and experimental testbed

Stochastic Modeling – Discrete Time Markov Chains: Definitions, Terminology, Key Properties

Modeling of LoRaWAN Access

Christos Milarokostas · chmil@di.uoa.gr

Summing up
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