

National and Kapodistrian University of Athens

Νέες και Παλιές Προκλήσεις στα Δίκτυα Κινητών Επικοινωνιών (Μ301)

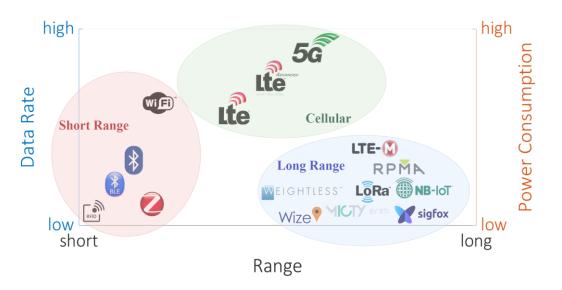
LoRa/LoRaWAN Low-Power Wide Area Networks: Analysis, Simulation, Implementation, Stochastic Modeling of Access

Christos Milarokostas · chmil@di.uoa.gr

National and Kapodistrian University of Athens

Today's Agenda

- Introduction to Low-Power Wide Area Networks
- A top-down approach in LoRaWAN MAC/LoRa PHY
- Research challenges and methodology
- Our work: Simulation study & Implementation study
- Fundamental topics on Stochastic Processes and Markov chains
- Markov chains use cases
- Apply stochastic modeling methodology to LoRaWAN channel access challenge
 - *"Performance analysis of the on-the-air activation in LoRaWAN",* J. Toussaint, N. El Rachkidy and A. Guitton, IEEE 7th Annual IEMCON, Vancouver, BC, 2016
 - Key points from LoRaWAN protocol
 - Analysis of access in LoRaWAN systems in terms of device activation procedure
 - Expected delay to activation
 - Expected energy consumed


National and Kapodistrian University of Athens

A global infrastructure for the information society, enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving interoperable information and communication technologies [1]

Proliferation

 Cisco predicts 500B devices by 2030 [2], Ericsson 25B by 2025 [3]

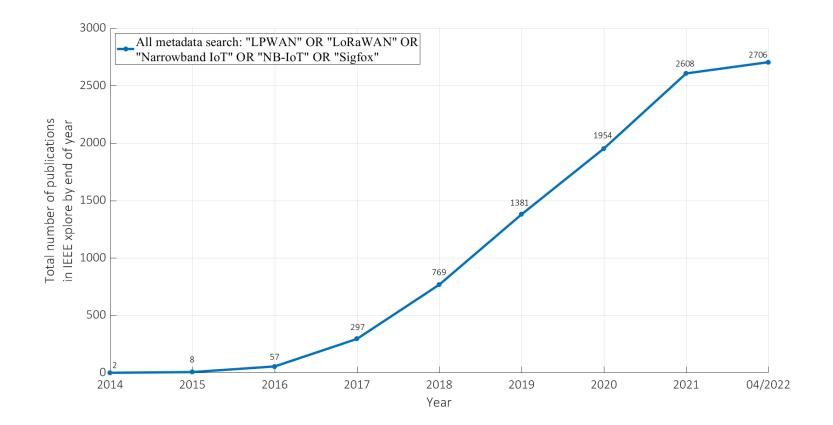
National and Kapodistrian University of Athens

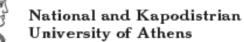
LPWAN

Networks that can cover very large areas by supporting large numbers of extremely low-cost, low-throughput devices with very low power consumption [4]

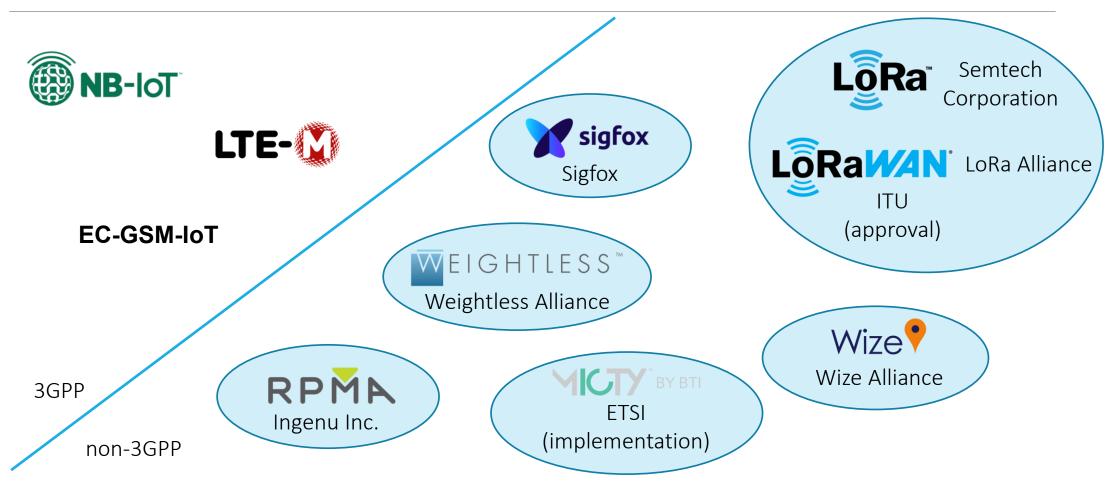
Main characteristics

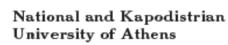
- Low power
- Long range
- Low data rates
- CapEx, OpEx efficiency


[5] W. Guibene et al., "Survey on Clean Slate Cellular-IoT Standard Proposals," IEEE CIT, 2015

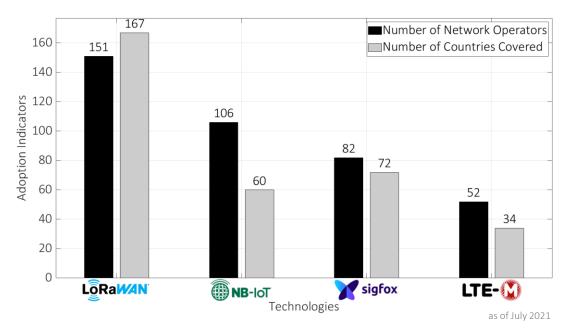

National and Kapodistrian University of Athens

The growth of interest in LPWANs





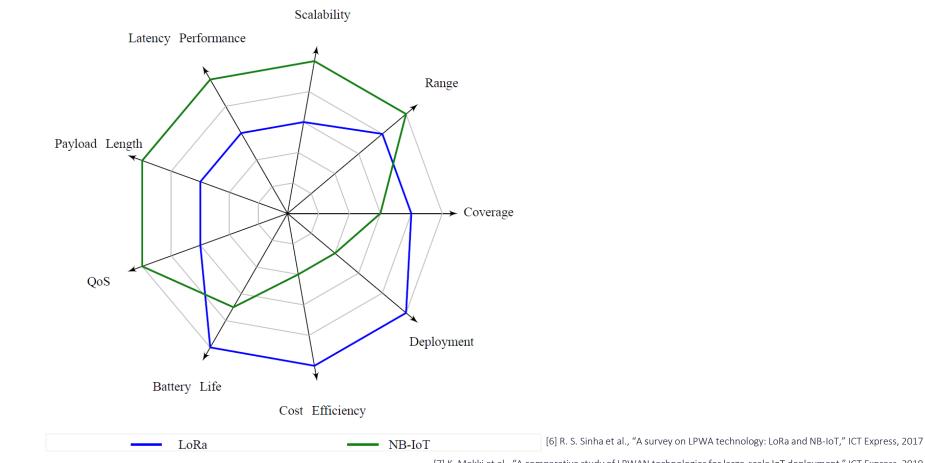
Standardization


LPWANs: Which one?

A lot of technologies!

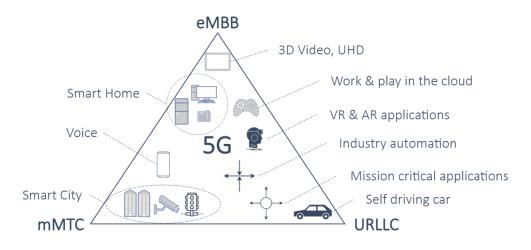
There is no one solution to rule them all

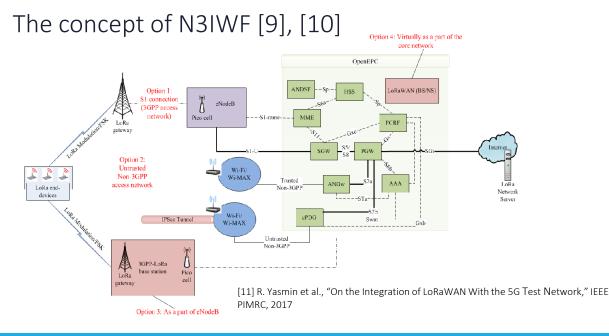
However, there are promising technologies



National and Kapodistrian University of Athens

LoRa and NB-IoT complementarity




LoRa in Networks beyond 2020 & 5G

- The mMTC usage scenario [8]
- Vertical markets as will be described
- Network slicing approach suits the concept

Deployment options considering the part of the network

- multi-RAT paradigm
- LoRa in the RAN, 5G as backhaul link

National and Kapodistrian University of Athens

LoRaWAN Protocol Stack

Application			
LoRaWAN (L2)			
Class A (all devices)	Class B (ping slots)	Class C (continuous)	
Regional Parameters EU868 US915 CN470 KR920 IN865			
PHY (LoRa Modulation, FSK)			

[13] Low power protocol for wide area wireless networks, ITU-T, Recommendation Y.4480, 2021

National and Kapodistrian University of Athens

LoRa Alliance Open Specification

Fully open protocol

<u>https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification</u>

A set of specifications that define device classes, activation procedures, over the air communication, backend interfaces, etc.

Two current versions

- 1.0.4 (latest, and last of 1.0.x family)
- 1.1
- eventually, they will converge

Thanks to openness, publicly available codebases

• e.g., <u>https://github.com/search?q=lora</u>

© 2020 LoRa Alliance® Page 2 of 90 The authors reserve the right to change specifications without notice.

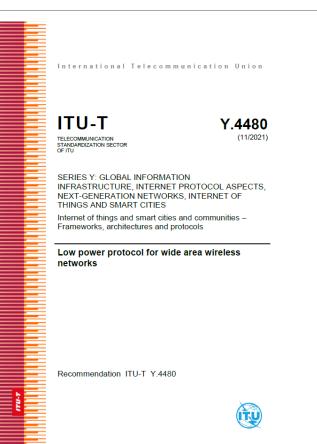
National and Kapodistrian University of Athens

LoRaWAN Protocol Stack

Application				
LoRaWAN (L2)				
Class A (all devices)	Class B (ping slots)	Class C (continuous)		
Regional Parameters				
EU868 US915	CN470 KR920	IN865		
PHY (LoRa Modulation, FSK)				

[12] LoRaWAN™ 1.0.4 Specification, LoRa Alliance, Technical Specification, 2020 [13] Low power protocol for wide area wireless networks, ITU-T, Recommendation Y.4480, 2021

National and Kapodistrian University of Athens

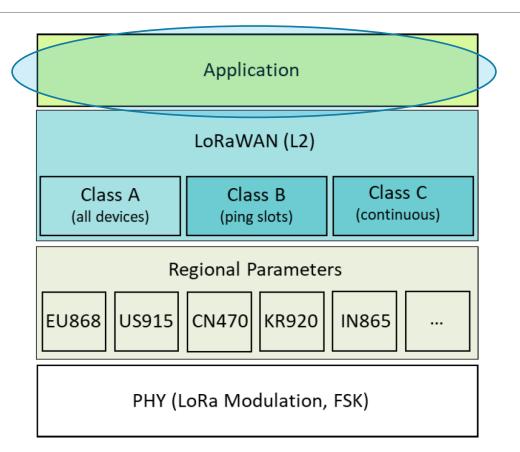

ITU-T Recommendation

		GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPEC NETWORKS, INTERNET OF THINGS AND SMART CITI	
		GLOBAL INFORMATION INFRASTRUCTURE General	Y.100-Y.199
		Services, applications and middleware	Y.200-Y.299
		Network aspects	Y.200-Y.299 Y.300-Y.399
		Interfaces and protocols	Y.400-Y.499
		Numbering, addressing and naming	Y.500-Y.599
		Operation, administration and maintenance	Y.600-Y.699
		Security	Y.700-Y.799
		Performances	Y.800-Y.899
		INTERNET PROTOCOL ASPECTS	1.000 1.000
		General	Y.1000-Y.1099
		Services and applications	Y.1100-Y.1199
		Architecture, access, network capabilities and resource management	Y.1200-Y.1299
	SERIES OF ITU-T RECOMMENDATIONS	Transport	Y.1300-Y.1399
		Interworking	Y.1400-Y.1499
		Quality of service and network performance	Y.1500-Y.1599
Series A	Organization of the work of ITU-T	Signalling	Y.1600-Y.1699
Series D	General tariff principles	Operation, administration and maintenance	Y.1700-Y.1799
Series D	General farm principles		
Series E	Overall network operation, telephone service, service operation and hun	Charging IPTV over NGN	Y.1800-Y.1899
Series 2	o verait network operation, aseptione service, service operation and had		Y.1900-Y.1999
Series F	Non-telephone telecommunication services	NEXT GENERATION NETWORKS	
	* Transmission systems and media, digital systems and networks	Frameworks and functional architecture models	Y.2000-Y.2099
Series G		Quality of Service and performance	Y.2100-Y.2199
Series H Audio	Audiovisual and multimedia systems	Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Series H Au	Audiovisuai and indumedia systems	Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Series I	Integrated services digital network	Enhancements to NGN	Y.2300-Y.2399
		Network management	Y.2400-Y.2499
Series J	Cable networks and transmission of television, sound programme and of	Computing power networks	Y.2500-Y.2599
	signals	Packet-based Networks	Y.2600-Y.2699
Series K	Desta di su serie di sta Conser	Security	Y.2700-Y.2799
Series K	Protection against interference	Generalized mobility	Y.2800-Y.2899
Series L	Environment and ICTs, climate change, e-waste, energy efficiency; con-	Carrier grade open environment	Y.2900-Y.2999
	and protection of cables and other elements of outside plant	FUTURE NETWORKS	Y.3000-Y.3499
	and protection of choice and cuter creating of chistate plan	CLOUD COMPUTING	Y.3500-Y.3599
Series M	Telecommunication management, including TMN and network mainten	BIG DATA	Y.3600-Y.3799
	· · · · · · · · · · · · · · · · · · ·	QUANTUM KEY DISTRIBUTION NETWORKS	Y.3800-Y.3999
Series N	Maintenance: international sound programme and television transmissio	INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES	
Series O	Specifications of measuring equipment	General	Y.4000-Y.4049
Jerres O	specifications of measuring equipment	Definitions and terminologies	Y.4050-Y.4099
Series P	Terminals and subjective and objective assessment methods	Requirements and use cases	Y.4100-Y.4249
		Infrastructure, connectivity and networks	Y.4250-Y.4399
Series Q	Switching and signalling	Erameworks, architectures and protocols	Y.4400-Y.4549
Series R	Telegraph transmission	Services, applications, computation and data processing	Y.4550-Y.4699
Jerres IV	reießrahn naustinsztoti	Management, control and performance	Y.4700-Y.4799
Series S	Telegraph services terminal equipment	Identification and security	Y.4800-Y.4899
	•••	Evaluation and assessment	Y.4900-Y.4999
Series T	Terminals for telematic services		
Series U	Telegraph switching		
Series V	Data communication over the telephone network		
Series X	Data networks, open system communications and security		
Series Y	Global information infrastructure, Internet protocol aspects, next-ge	neration networks, p	

ITU-T Y-SERIES RECOMMENDATIONS

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems



National and Kapodistrian University of Athens

LoRaWAN Protocol Stack

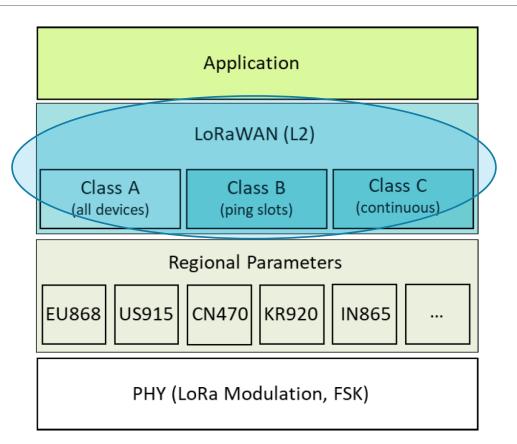
National and Kapodistrian University of Athens

Applications

Semtech Corporation (LoRa)

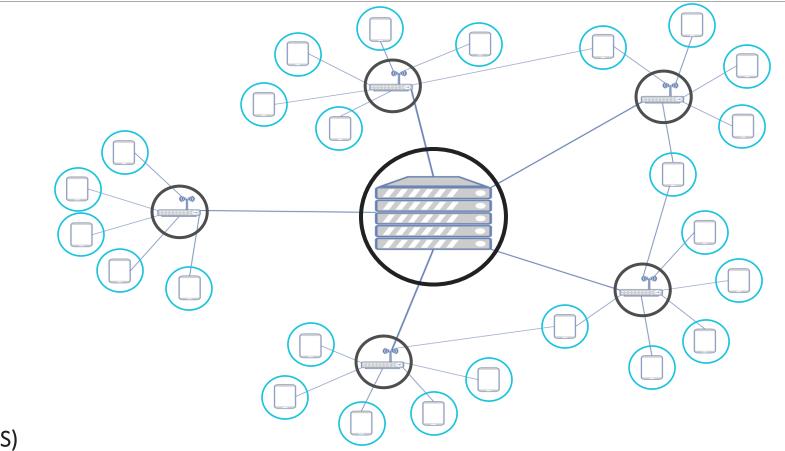
- Critical V Mass-scale
- Industrial, Enterprise, Consumer applications

LoRa Alliance (LoRaWAN)


- The "smart" paradigm
 - Smart agriculture
 - Smart buildings
 - Smart cities
 - Smart industry
 - Smart logistics
 - Smart utilities

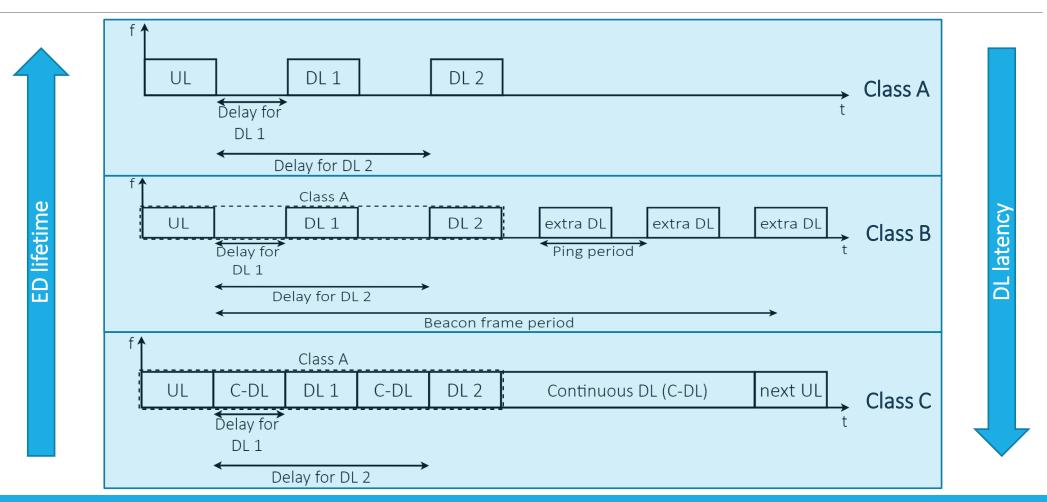
National and Kapodistrian University of Athens

LoRaWAN Protocol Stack



National and Kapodistrian University of Athens

LoRaWAN: star-of-stars topology


End Device (ED) Gateway (GW) Network Server (NS)

National and Kapodistrian University of Athens

LoRaWAN device classes

National and Kapodistrian University of Athens

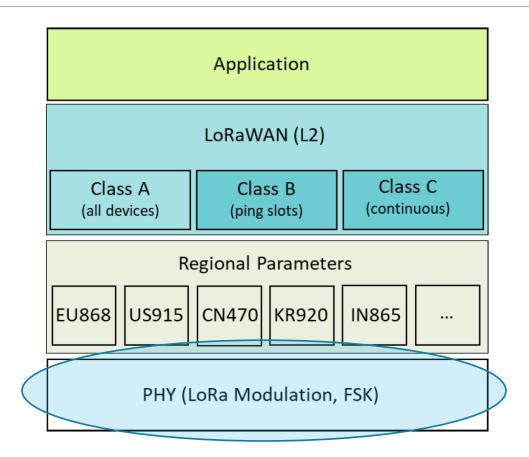
LoRaWAN Protocol Stack

Application			
LoRaWAN (L2)			
			ass C tinuous)
	,		
Regional Parameters			
EU868 US915 CN470 KR920 IN865			
		PHY (LoRa Modulation, FSK)	

* For DL, channels are the same, plus a high power channel of 0.5W at *869.525MHz* with SF9BW125

NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

Mandatory


TTN extra

National and Kapodistrian University of Athens

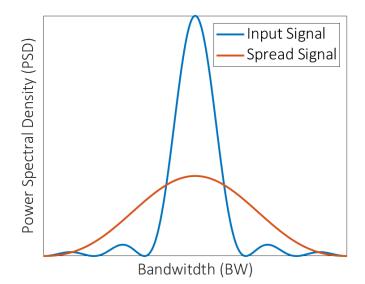
LoRaWAN Protocol Stack

LoRa Basics

LoRa: an implementation of Chirp Spread Spectrum (CSS)

CSS: an implementation of Spread Spectrum (SS)

Duration T_s : the reciprocal of rate, $T_s = \frac{2^{SF}}{R_s}$


Spreading Factor (SF): # of times the signal has been spread

Symbol rate: $R_s = \frac{R_c}{2^{SF}}$, where R_c is the chip rate ($R_c = BW$)

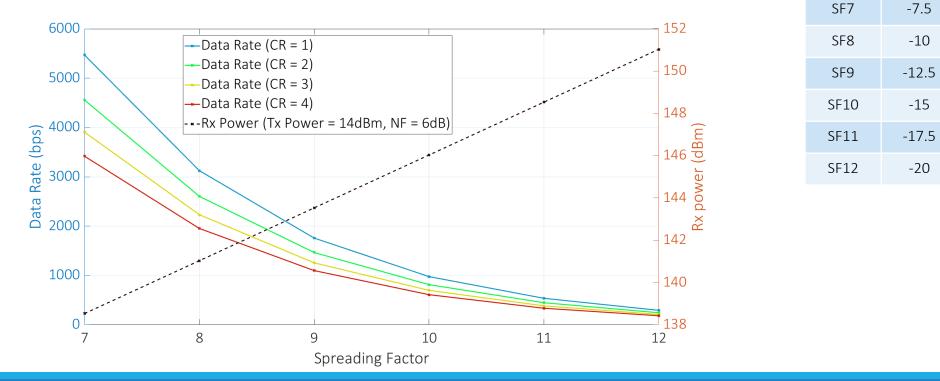
chip: the way to encode information in spread spectrum systems

SF→ chip sequence: # of bits used for a symbol
 o in CSS context: symbol == chirp

• # of ways to encode information: 2^{SF}

Bit Rate: $R_b = \frac{SF}{T_s}$ FEC is implemented in LoRa: Rate Code = $\frac{4}{4+CR}$, CR = {1, 2, 3, 4} Bit Rate: $R_b = SF * \frac{4}{4+CR} * \frac{BW}{2^{SF}}$

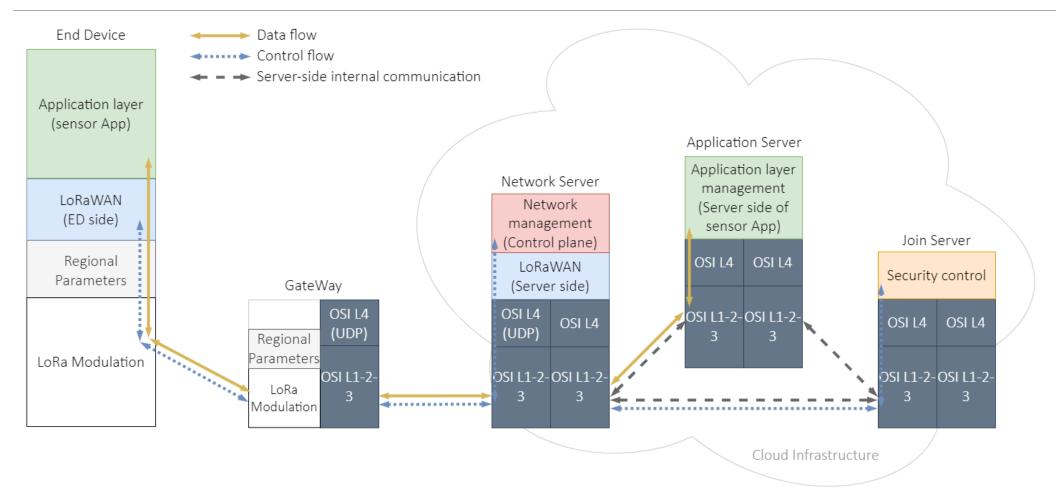
National and Kapodistrian University of Athens


SF

SNR (dB)

The Data Rate V Range trade off

Data Rate:
$$R_b = SF * \frac{4}{4+CR} * \frac{BW}{2^{SF}}$$


Receiver Sensitivity: $S_{(dBm)} = -174 + 10 \log_{10} (BW_{(Hz)}) + NF_{(dB)} + SNR_{(dB)}$

National and Kapodistrian University of Athens

Protocol stack inside architecture's nodes

National and Kapodistrian University of Athens

Research work: challenges

Robust PHY, e.g., [14]

ED activation, e.g., [15]

Transmission's parameters configuration (ADR algorithm): TP, CF, SF, BW, CR ("nuts and bolts"), e.g., [16], [34]

Node (ED, GW) placement, e.g., [17]

Multiple access and transmission scheme, e.g., [18], [19], [20], [21], [28]

Mobility and roaming support, e.g., [22]

ED's energy efficiency, e.g., [23], [32], [34], [35]

Information management, e.g., [24]

End-to-end cross-layer security, e.g., [25], [26], [39]

Combinations

- parameters configuration + node placement = **spatial coverage, range, path loss models**, e.g., [27], [36], [37]
- collective study of EDs' power consumption = system lifetime, e.g., [28]
- robust PHY + parameters configuration + multiple access = successful reception, scalability, e.g., [20], [21], [33], [34], [35], [36], [38]
- advanced information management = **utilization of ML algorithms**, e.g., [29]
- advanced parameters configuration = resource allocation, network slicing, SDN, e.g., [30]
- distributed security = applicability of blockchain protocols, e.g., [31]

National and Kapodistrian University of Athens DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

Research work: methodology

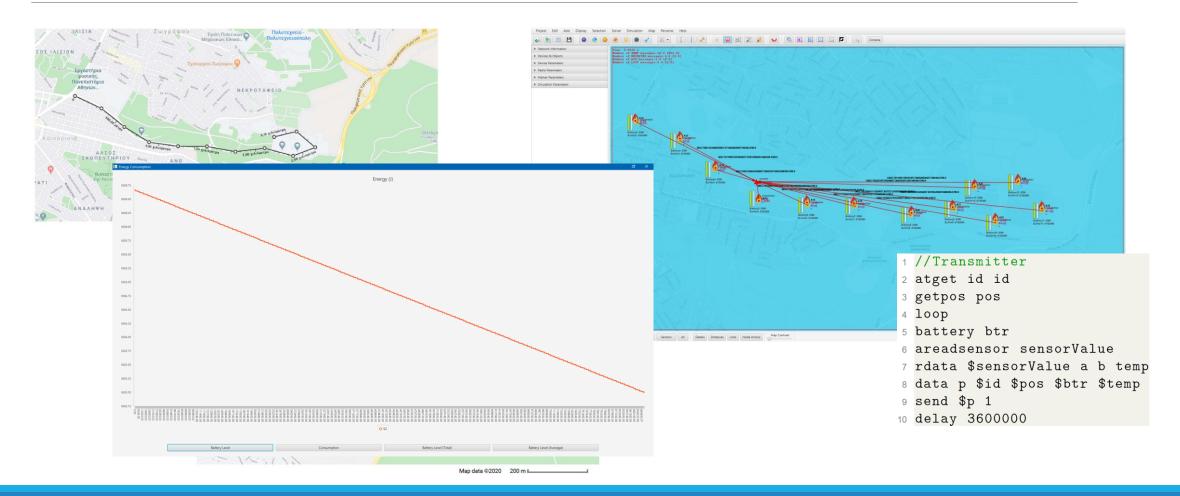
Analytical studies

- Fast Fourier Transform, e.g., [14]
- Markov Chain, e.g., [15]
- Type A, B uncertainty, e.g.,
 [20]
- Kruskal-Wallis testing, e.g., [22]
- Security Analysis, e.g., [25], [26], [39]
- Federated Learning, e.g., [29]
- Game Theory, e.g., [30]
- Markov Decision Process, e.g.,
 [32]
- Stochastic Geometry, e.g., [33]

Simulation studies

- Network-specific
 - **ns-3**, e.g., [17], [28], [30]
 - **OMNeT++**, e.g., [34]
- WSN-specific
 - Cooja
 - TOSSIM
 - CupCarbon
- LoRa/LoRaWAN-specific
 - MATLAB, e.g., [18], [19], [23]
 - **Scilab**, e.g., [15]
 - Python (SimPy)
 - LoRaSim and its successors, e.g., [16], [20]
 - LoRa-FREE, e.g., [21]
 - LoRa-MAB, e.g., [35]
 - Java
 - LoRaSim, e.g., [36]
- Domain-specific
 - ML, e.g., Tensorflow [29]
 - Blockchain, e.g., Ethereum client [31]

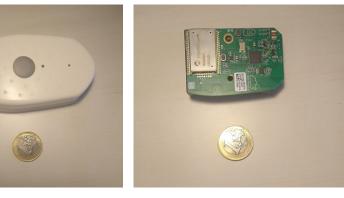
Real Deployments


- Environment of ED and GW (Outdoor/Indoor) – Mobility (none/low/high/medium) – Number of EDs (low/high/medium)
 - Indoor-to-Indoor (I2I) fixed position
 1 GW covering 15 EDs, e.g., [28]
 - O2O Suburban high mobility low number of EDs, I2I – fixed position – medium number of EDs, etc., e.g., [18], [19], [20], [24], [27]
- Advanced scenarios
 - water-to-land, e.g., [27]
 - underground-to-land, e.g., [37]
 - satellite-to-land, e.g., [38]

National and Kapodistrian University of Athens

CupCarbon simulations

National and Kapodistrian University of Athens

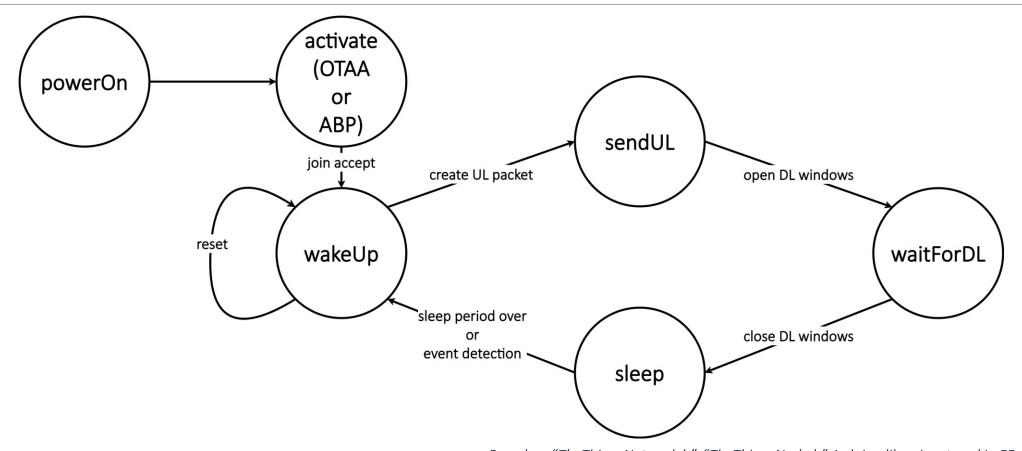

The implemented testbed

The Things Node:

- RN2483 LoRa module
- MEGA32u4 processor
- printed antenna
- MMA8652FC accelerometer
- MCP9804 temperature sensor
- NOA1212 light sensor
- button for event triggering
- LED
- 3 AAA batteries

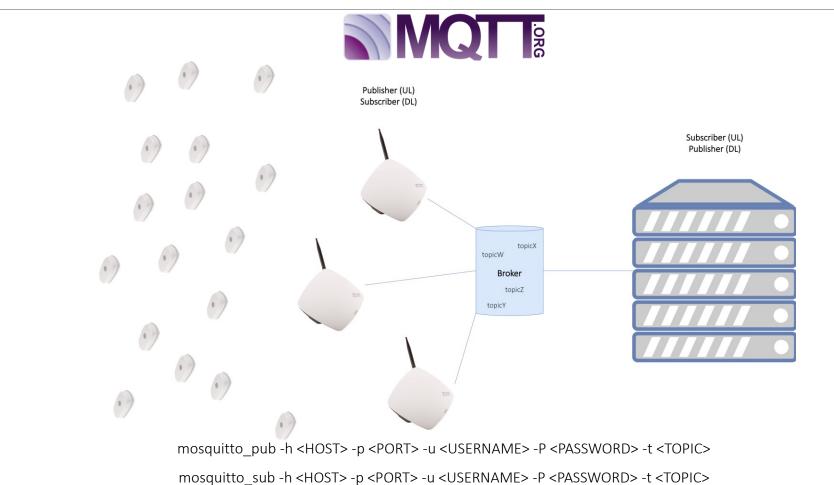
The Things Uno

- RN2483 LoRa module
- MEGA32u4 processor
- printed antenna
- LED



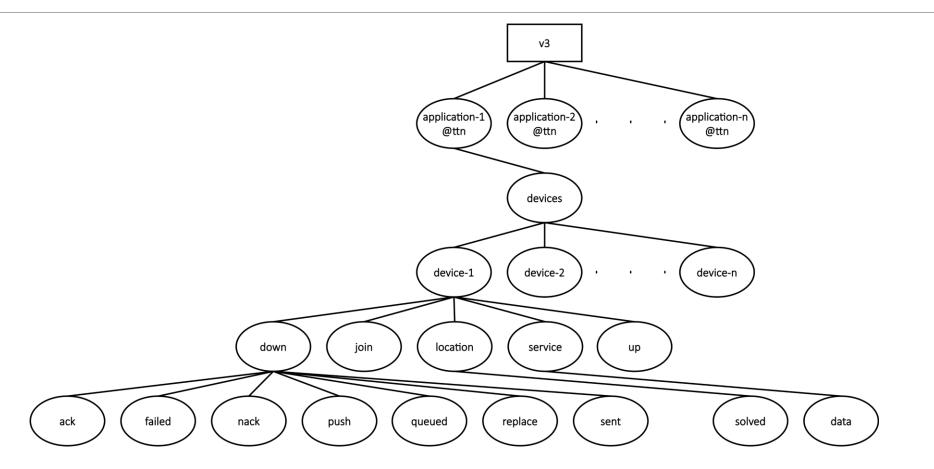
National and Kapodistrian University of Athens

State Transition Diagram


Based on "TheThingsNetwork.h", "TheThingsNode.h" Arduino libraries stored in EDs

National and Kapodistrian University of Athens

Sending UL/DL message



National and Kapodistrian University of Athens

MQTT Tree

University of Athens

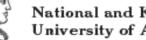
National and Kapodistrian

Wireshark capture

	N. Time Courses Destination Destants I I south Info					
	No. Time Source Destination Protocol Length Info					
TTN NS 2 46 5.530079403 52.169.76.255 192.168.1.11 MQTT 633 Publish Message						
MQTT topic 3 [testing_application_2/devices/testing_node/up]						
4	Frame 46: 633 bytes on wire (5064 bits), 633 bytes captured (5064 bits) on					
	interface any, id O					
5 Linux cooked capture						
6 Internet Protocol Version 4, Src: 52.169.76.255, Dst: 192.168.1.11						
7	Transmission Control Protocol, Src Port: 1883, Dst Port: 35874, Seq: 5, Ack					
	: 1, Len: 565					
8	8 [3 Reassembled TCP Segments (568 bytes): #42(1), #44(2), #46(565)]					
9	9 MQ Telemetry Transport Protocol, Publish Message					
MQTT 10						
QoS class	once delivery (Fire and Forget)					
11	Msg Len: 565					
12	Topic Length: 45					
13	Topic: testing_application_2/devices/testing_node/up					
message	Message: 7b226170705f6964223a2274657374696e675f6170706c69					
decoding						
	→ <mark>t*a</mark> pp_id": "testing_appli					

National and Kapodistrian University of Athens

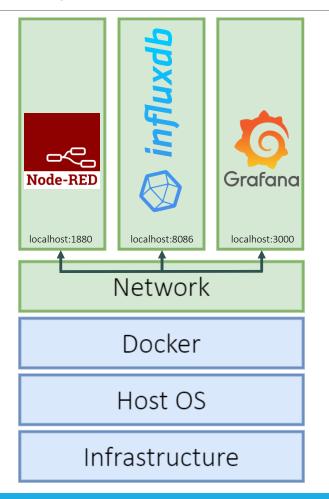
Management Platforms


National and Kapodistrian University of Athens

Storing the data

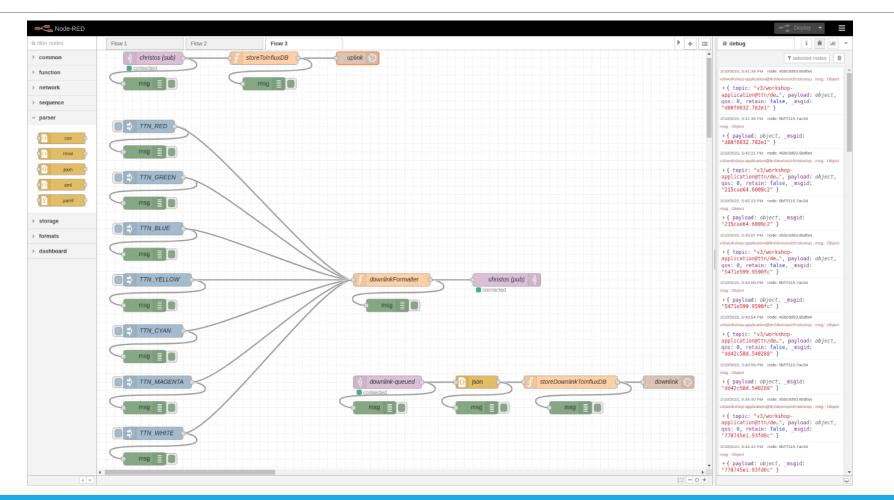
National and Kapodistrian University of Athens

Visualization



National and Kapodistrian University of Athens

Docker setup as Proof-of-Concept

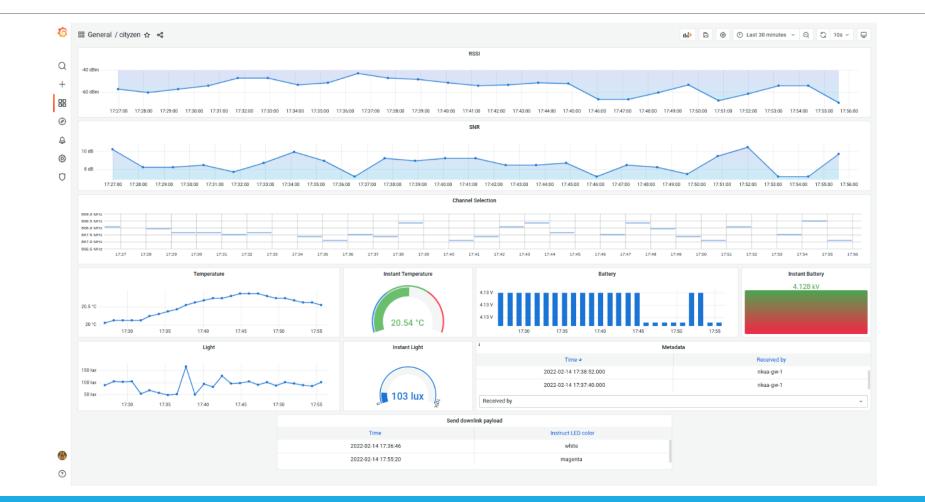

University of Athens

National and Kapodistrian

Node-RED flow

National and Kapodistrian University of Athens

An instance from InfluxDB


le Edit View Search Terminal Tabs Help										
christos@christos-optiplex-7050: ~	×	christos@christos-optiple		christ	tos@christos-			×	christos@christos-optiplex-7050: ~	× म •
22-02-14T14:32:10.369559929Z 0.051456s workshop-application 4136	125000 868.5	-58 4/5 2608E14E -67 4/5 2608E14E	christos interval 379 2	nkua-gw-1	22	ECgAFgeY - 58	7 6.5	19.44 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T14:33:21.861936482Z 0.051456s workshop-application 4136 22-02-14T14:34:33.353174546Z 0.051456s workshop-application 4136	125000 867.1 125000 867.3	-67 4/5 260BE14E -59 4/5 260BE14E	christos interval 380 2 christos interval 381 2	nkua-gw-1 nkua-gw-1	21	ECgAFQeY - 67 ECgAFgeY - 59	7 9.75		p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
22-02-14114:34:35:3531743462 0.0514565 workshop-application 4136	125000 867.5	-57 4/5 2608E14E	christos interval 382 2	nkua-gw-1	22			19.5 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T14:36:56.240383347Z 0.051456s workshop-application 4136	125000 868.1	-66 4/5 260BE14E	christos interval 383 2	nkua-gw-1	21	ECgAFQee -66	7 8.25	19.5 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T14:38:07.731762466Z 0.051456s workshop-application 4136	125000 868.5	-60 4/5 260BE14E	christos interval 384 2	nkua-gw-1	21	ECgAFQee -60	7 6.75	19.5 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T14:39:19.229053869Z 0.051456s workshop-application 4136	125000 868.3	-63 4/5 260BE14E	christos interval 385 2	nkua-gw-1	21	ECgAFQee - 63	7 9.25	19.5 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T14:40:30.619524959Z 0.051456s workshop-application 4136	125000 867.1	-63 4/5 260BE14E	christos interval 386 2	nkua-gw-1	21	ECgAFQee -63	7 8.5	19.5 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T14:41:42.141875787Z 0.051456s workshop-application 4136 22-02-14T14:42:53.60681286Z 0.051456s workshop-application 4136	125000 867.9	-59 4/5 260BE14E -61 4/5 260BE14E	christos interval 387 2 christos interval 388 2	nkua-gw-1	21	ECgAFQee - 59 ECgAFAee - 61			p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
2-02-14114:42:55.000812802 0.0514565 workshop-application 4136	125000 867.3	-52 4/5 2608E14E	christos interval 389 2	nkua-gw-1 nkua-gw-1	20				p-application@ttn/devices/christos/up	
22-02-14T14:45:16.516884942Z 0.056576s workshop-application 4136	125000 868.5	-53 4/5 260BE14E	christos interval 390 2	nkua-gw-1	25	ECgAGOer - 53	7 7.25	19.63 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T14:46:28.0073688Z 0.051456s workshop-application 4136	125000 867.5	-60 4/5 260BE14E	christos interval 391 2	nkua-gw-1	24				p-application@ttn/devices/christos/up	
2-02-14T14:47:39.480870981Z 0.051456s workshop-application 4130	125000 867.9	-71 4/5 260BE14E	christos interval 392 2	nkua-gw-1	24	ECIAGAe9 -71	7 9.25	19.81 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T14:48:50.97004309Z 0.056576s workshop-application 4136	125000 868.3	-67 4/5 260BE14E	christos interval 393 2 christos interval 394 2	nkua-gw-1	25	ECgAGQfE - 67	7 8.75	19.88 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T14:50:02.361248695Z 0.051456s workshop-application 4136 22-02-14T14:51:13.857753138Z 0.051456s workshop-application 4136	125000 867.7	-51 4/5 260BE14E -52 4/5 260BE14E	christos interval 394 2 christos interval 395 2	nkua-gw-1 nkua-gw-1	23	ECGAFWTE - 51	7 9.5	19.88 v3/worksho	p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
2-02-14114:51:15.0577551382 0.051456s workshop-application 4136	125000 867.3	-65 4/5 260BE14E	christos interval 395 2	nkua-gw-1	23	ECGAEwfW - 65	7 10	28 86 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T14:53:36.859565593Z 0.051456s workshop-application 4136	125000 868.3	-53 4/5 260BE14E	christos interval 397 2	nkua-gw-1	25	ECgAGOfd - 53	7 9.5	20.13 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T14:54:48.350203335Z 0.051456s workshop-application 4136	125000 867.9	-54 4/5 260BE14E	christos interval 398 2	nkua-gw-1	25				p-application@ttn/devices/christos/up	
2-02-14T14:55:59.834142494Z 0.051456s workshop-application 4136	125000 868.3	-51 4/5 260BE14E	christos interval 399 2	nkua-gw-1	24				p-application@ttn/devices/christos/up	
22-02-14T14:57:11.333907643Z 0.051456s workshop-application 4136	125000 867.7	-53 4/5 260BE14E	christos interval 400 2	nkua-gw-1	21	ECgAFQfp -53		20.25 v3/worksho	p-application@ttn/devices/christos/up	
12-02-14T14:58:22.815374221Z 0.051456s workshop-application 4136	125000 867.3	-63 4/5 260BE14E -53 4/5 260BE14E	christos interval 401 2	nkua-gw-1	23	ECGAFwfp -63	7 9.25	20.25 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T14:59:34.306753161Z 0.056576s workshop-application 4130 22-02-14T15:00:45.6994126Z 0.051456s workshop-application 4136	125000 867.5	-53 4/5 2608E14E	christos interval 402 2 christos interval 403 2	nkua-gw-1 nkua-gw-1	23	ECIMPWIV -53 ECOAEof8 53	7 10 5	20.31 V3/Worksho 20.44 V3/Worksho	p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
22-02-14115:00:45.09941202 0.0514565 workshop-application 4156	125000 868.3	-55 4/5 2608E14E	christos interval 404 2	nkua-gw-1	22	ECgAFOf8 -55	7 9	20.44 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:03:08.699697993Z 0.051456s workshop-application 4130	125000 867.9	-59 4/5 260BE14E	christos interval 405 2	nkua-gw-1	22	ECIAFggC - 59	7 10	20.5 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:04:20.285101876Z 0.051456s workshop-application 4136	125000 868.5	-53 4/5 260BE14E	christos interval 406 2	nkua-gw-1	22	ECgAFggC - 53	7 7.5	20.5 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:05:31.776071626Z 0.051456s workshop-application 4130	125000 867.9	-72 4/5 260BE14E	christos interval 407 2	nkua-gw-1	18	ECIAEggI -72	2 7 9.75	20.56 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T15:07:54.753022743Z 0.051456s workshop-application 4130	125000 868.3	-58 4/5 260BE14E -66 4/5 260BE14E	christos interval 409 2	nkua-gw-1	18				p-application@ttn/devices/christos/up	
22-02-14T15:09:06.240849006Z 0.051456s workshop-application 4130 22-02-14T15:10:17.732005272Z 0.051456s workshop-application 4130	125000 867.5	-66 4/5 260BE14E -60 4/5 260BE14E	christos interval 410 2 christos interval 411 2	nkua-gw-1 nkua-gw-1	18	ECIAEgt8 -66 ECIAEgt2 -60			p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
22-02-14T15:11:29.227431176Z 0.051456s workshop-application 4130	125000 867.3	-55 4/5 260BE14E	christos interval 412 2	nkua-gw-1	18	ECIAEgr2 - 55		20.38 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:12:40.71722552Z 0.051456s workshop-application 4130	125000 867.9	-63 4/5 260BE14E	christos interval 413 2	nkua-gw-1	18	ECIAEqf2 -63	7 7.5		p-application@ttn/devices/christos/up	
2-02-14T15:13:52.219580095Z 0.051456s workshop-application 4130	125000 868.3	-61 4/5 260BE14E	christos interval 414 2	nkua-gw-1	18	ECIAEgfv -61	79	20.31 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:15:03.714967918Z 0.056576s workshop-application 4130	125000 868.5	-61 4/5 260BE14E	christos interval 415 2	nkua-gw-1	18				p-application@ttn/devices/christos/up	
2-02-14T15:16:15.197810818Z 0.051456s workshop-application 4130	125000 867.5	-65 4/5 260BE14E	christos interval 416 2	nkua-gw-1	18	ECIAEgfp -65	7 7.75	20.25 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T15:17:26.593491048Z 0.051456s workshop-application 4130 22-02-14T15:18:38.10361197Z 0.051456s workshop-application 4130	125000 867.5 125000 868.5	-61 4/5 260BE14E -65 4/5 260BE14E	christos interval 417 2 christos interval 418 2	nkua-gw-1 nkua-gw-1	18				p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
2-02-14115:10:30.105011972 0.051456s workshop-application 4130	125000 867.3	-60 4/5 260BE14E	christos interval 419 2	nkua-gw-1	18	ECIAEgrij -65	7 8 25	20.19 V3/worksho	p-application@ttn/devices/christos/up	
22-02-14T15:21:01.075717196Z 0.056576s workshop-application 4130	125000 867.1	-61 4/5 260BE14E	christos interval 420 2	nkua-gw-1	18	ECIAEgrp -00	7 9	20.25 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:22:12.567165244Z 0.051456s workshop-application 4130	125000 868.3	-60 4/5 260BE14E	christos interval 421 2	nkua-gw-1	17	ECIAEOfi -60	7 9.25	20.19 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:23:24.057696519Z 0.051456s workshop-application 4130	125000 867.1	-63 4/5 260BE14E	christos interval 422 2	nkua-gw-1	79	ECIATwfj -63	7 9.75	20.19 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:24:35.554775466Z 0.051456s workshop-application 4130	125000 867.7	-63 4/5 260BE14E	christos interval 423 2	nkua-gw-1	99	ECIAYwfj -63	7 9.5	20.19 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T15:25:47.046298427Z 0.051456s workshop-application 4130 22-02-14T15:26:58.542200423Z 0.051456s workshop-application 4130	125000 868.3 125000 868.1	-61 4/5 260BE14E -57 4/5 260BE14E	christos interval 424 2 christos interval 425 2	nkua-gw-1 nkua-gw-1	106	ECIAagfd -61	7 9.5	20.13 v3/worksho	p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
22-02-14115:26:58.5422004232 0.0514565 workshop-application 4130	125000 868.1	-57 9/5 260BE14E	christos interval 425 2 christos interval 426 2	nkua-gw-1	91				p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
22-02-14T15:29:21.524524661Z 0.051456s workshop-application 4130	125000 867.7	-57 4/5 260BE14E	christos interval 427 2	nkua-gw-1	107				p-application@ttn/devices/christos/up	
2-02-14T15:30:33.036234828Z 0.051456s workshop-application 4130	125000 867.7	-54 4/5 260BE14E	christos interval 428 2	nkua-gw-1	107	ECIAawfd - 54	7 8.5	20.13 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:31:44.419399517Z 0.051456s workshop-application 4130	125000 867.5	-47 4/5 260BE14E	christos interval 429 2	nkua-gw-1	55	ECIANwfd -47	7 7.75	20.13 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:32:55.908048631Z 0.051456s workshop-application 4130	125000 867.7	-47 4/5 260BE14E	christos interval 430 2	nkua-gw-1	69	ECIARQfp -47	7 8.75	20.25 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:34:07.398415292Z 0.051456s workshop-application 4130	125000 867.3	-53 4/5 260BE14E	christos interval 431 2	nkua-gw-1	59	ECIAOwfv -53	7 10	20.31 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T15:35:18.889242504Z 0.051456s workshop-application 4130 22-02-14T15:36:30.388424292Z 0.051456s workshop-application 4130	125000 867.1	-51 4/5 260BE14E -43 4/5 260BE14E	christos interval 432 2 christos interval 433 2	nkua-gw-1	50	ECIAMgf2 -51	7 9	20.38 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14115:36:30.3884242922 0.0514565 workshop-application 4130	125000 867.5	-43 4/5 260BE14E -47 4/5 260BE14E	christos interval 433 2 christos interval 434 2	nkua-gw-1 nkua-gw-1	53	ECIANQIO -43	7 9,25	20.44 V3/WORKSh0	p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
2-02-14T15:38:53.371762408Z 0.051456s workshop-application 4130	125000 868.3	-48 4/5 260BE14E	christos interval 435 2	nkua-gw-1	52	ECIANAgP -48	7 9	20.63 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:40:04.86110574Z 0.051456s workshop-application 4130	125000 867.1	-51 4/5 260BE14E	christos interval 436 2	nkua-gw-1	96	ECIAYAgV - 51	7 9.25	20.69 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:41:16.35579474Z 0.051456s workshop-application 4130	125000 867.3	-54 4/5 260BE14E	christos interval 437 2	nkua-gw-1	83	ECIAUwgb - 54	7 9.25	20.75 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:42:27.945651449Z 0.051456s workshop-application 4130	125000 868.1	-53 4/5 260BE14E	christos interval 438 2	nkua-gw-1	129	ECIAgQgb -53	7 8.5	20.75 v3/worksho	p-application@ttn/devices/christos/up	
12-02-14T15:43:39.442031854Z 0.051456s workshop-application 4130	125000 868.3	-51 4/5 260BE14E -52 4/5 260BE14E	christos interval 439 2	nkua-gw-1	97				p-application@ttn/devices/christos/up	
22-02-14T15:44:50.935234885Z 0.051456s workshop-application 4130 22-02-14T15:46:02.426679521Z 0.056576s workshop-application 4124	125000 867.7	-52 4/5 260BE14E -66 4/5 260BE14E	christos interval 440 2 christos interval 441 2	nkua-gw-1 nkua-gw-1	106	ECIATWGO - 52 FRwAanno - 66	7 7 7 25	20.88 V3/Worksho 20.88 V3/Worksho	p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
22-02-14115:46:02.4200795212 0.0505705 Workshop-application 4124	125000 868.3	-66 4/5 260BE14E	christos interval 441 2 christos interval 442 2	nkua-gw-1	92	EBwAXAgo - 66	7 8.5	20.88 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T15:48:25.428841376Z 0.056576s workshop-application 4124	125000 867.9	-60 4/5 260BE14E	christos interval 443 2	nkua-gw-1	103				p-application@ttn/devices/christos/up	
22-02-14T15:49:36.925748634Z 0.051456s workshop-application 4124	125000 867.3	-53 4/5 260BE14E	christos interval 444 2	nkua-gw-1	88	EBwAWAgb - 53	7 7.5	20.75 v3/worksho	p-application@ttn/devices/christos/up	
2-02-14T15:50:48.409699231Z 0.051456s workshop-application 4124	125000 867.1	-67 4/5 260BE14E	christos interval 445 2	nkua-gw-1	102	EBwAZggb - 67	7 9.5	20.75 v3/worksho	p-application@ttn/devices/christos/up	
22-02-14T15:51:59.94623574Z 0.051456s workshop-application 4130	125000 868.1 125000 867.5	-61 4/5 260BE14E -54 4/5 260BE14E	christos interval 446 2 christos interval 447 2	nkua-gw-1	97				p-application@ttn/devices/christos/up	
22-02-14T15:53:11.396583743Z 0.051456s workshop-application 4130 22-02-14T15:54:22.87789458Z 0.051456s workshop-application 4124	125000 867.5	-54 4/5 2608E14E	christos interval 447 2 christos interval 448 2	nkua-gw-1 nkua-gw-1	91	FRWAVWOR 54	7 7 25	20.63 V3/Worksho 20.63 V3/Worksho	p-application@ttn/devices/christos/up p-application@ttn/devices/christos/up	
22-02-14115:54:22.077694502 0.0514565 workshop-application 4124	125000 867.1	-54 4/5 2608E14E	christos interval 449 2	nkua-gw-1	183	EBwAZwgI - 69	7 9,75	20.56 v3/worksho	p-application@ttn/devices/christos/up	
ELECT * FROM cityzenDownlink	223000 00772		chicacoa chicervac 449 2		105	Lonning1 105		22130 Vayworksho		
e: cityzenDownlink										
appId devId fPort	ranePayload priori	y qos topic								
	ed NORMAL	0 v3/workshop-application@ttn/device	es/christos/down/queued							
	ed NORMAL	0 v3/workshop-application@ttn/device 0 v3/workshop-application@ttn/device								
	van NORMAL	<pre>0 v3/workshop-application@ttn/device</pre>								
2-02-14T12:24:21.201818826Z workshop-application christos 5	ellow NORMAL	0 v3/workshop-application@ttn/device	es/christos/down/queued							
2-02-14T12:28:48.263256537Z workshop-application christos 5	ellow NORMAL	0 v3/workshop-application@ttn/device	es/christos/down/queued							
	agenta	<pre>0 v3/workshop-application@ttn/device</pre>								
	hite	0 v3/workshop-application@ttn/device								
	hite agenta NORMAL	0 v3/workshop-application@ttn/device	es/christos/down/queued							
2-02-14T15:55:20.151270095Z workshop-application christos 5	agenta NORMAL	0 v3/workshop-application@ttn/device								

National and Kapodistrian University of Athens

Grafana visualization

National and Kapodistrian University of Athens

Experiments based on testbed

- 1. Examine power consumption and the longevity of EDs
 - a. 1 stationary GW, 4 stationary EDs, suburban
 - b. Focus on one ED, transmit a payload of 19 bytes every 2 mins with SF7, CR=4
- 2. Test GWs range capabilities
 - a. GW again stationary, environment again suburban
 - b. Mobile ED, transmitting to find out its location
- 3. Packet delivery ratio
 - a. Same setup as in 1st experiment
 - b. Try to find out percentage of successful transmissions with regards to parameter selection
- 4. Channel selection
 - a. Examine the pseudorandom channel selection in UL transmissions

National and Kapodistrian University of Athens

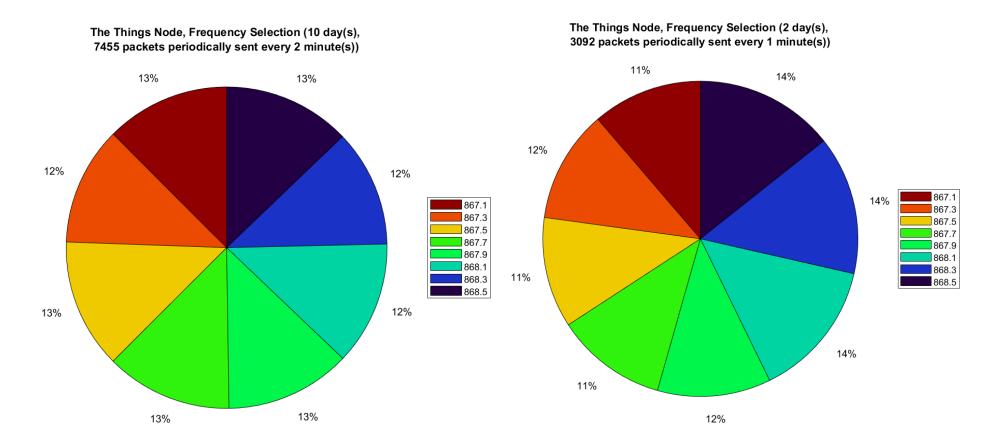
Power Consumption

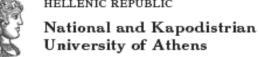
National and Kapodistrian University of Athens

TTN Mapper

National and Kapodistrian University of Athens

Packet Delivery Ratio





National and Kapodistrian University of Athens

Pseudorandom Channel Selection

Part I - Conclusions

- A theoretical and practical study of LoRa/LoRaWAN
- Research directions based on published work
- research challenges
- research methodology

From methodology perspective, we have worked with simulators and real testbed

- both methodologies agree on power consumption behavior
- testbed reveals
 - promising results on range
 - high PDR
 - fair channel selection
- development of a modular and scalable framework via Docker

National and Kapodistrian University of Athens

A first glance on Stochastic Processes

Stochastic Process

• "A collection of random variables $\{X(\tau), \tau \in T\}$, indexed by the parameter τ taking values in the parameter set T. The random variables take values in the set S, called the state-space of the stochastic process."

A plethora of them

• Bernoulli, Poisson, Discrete Time Markov Chains, Continuous Time Markov Chains, Renewal, Regenerative, Diffusion, ...

How to study them

- Definition
- Characterization
- Transient Behavior
- First Passage Times
- Limiting Behavior
- Costs / Rewards
- Applications

[40] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, CRC Press, 3rd Edition, 2017

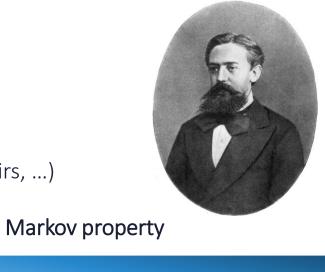
National and Kapodistrian University of Athens

Initial intuition

Law of Large Numbers applies to independent and identically distributed (iid) RVs

Can it be applied to RVs that have some dependency among them?

• How much dependency?


Allow full dependency

• Impossible to compute

iid

One step

• Dependency in pairs (time pairs, space pairs, ...)

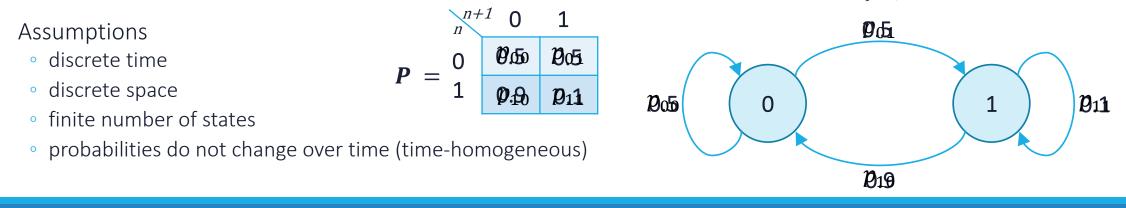
Andrey Andreyevich Markov (1856 – 1922) [Image from Wikipedia]

complete dependency

[41] Joseph K. Blitzstein, Jessica Hwang, Introduction to Probability, CRC Pres, 2nd Edition, 2019

National and Kapodistrian University of Athens

Markov chains primer


Markov property: a step further

 $\circ\,$ Future and Past are independent assuming knowledge of Present ightarrow conditional independence

• $P(X_{n+1} = i_{n+1} | X_n = i_n, X_{n-1} = i_{n-1}, \dots, X_1 = i_1, X_0 = i_0) = P(X_{n+1} = i_{n+1} | X_n = i_n)$

Assuming a space of states S, a Markov chain is a stochastic process, modeled by a graph G with a set of vertices V (practically V is S) and connections among them called edges E, symbolized G = (V, E), that:

- holds the Markov property for every transition p, i.e., edge in E, from a state i to a state j, $\forall i, j \in S$
- every possible transition p_{ij} , i.e., edge in E, is non-negative
- for each of its states in S, i.e., vertices in V, the sum of transitions from (out-edges) is 1, $\sum_{j} p_{ij} = 1$

HELLENIC REPUBLIC National and Kapodistrian

University of Athens

Terminology: States

Accessible: state *j* is accessible from state *i* if there is a valid sequence of transitions leading from *i* to *j*

Communicating: states i and j are said to be communicating, if i is accessible from j and j is accessible from i

Recurrent: starting from one state, there is a positive probability that we get back to this state

- positive recurrent (or recurrent non-null): come back in finite steps
- recurrent null: come back but after infinitely many steps

Transient: by complementarity, if not recurrent

Periodic: a state that occurs in a periodic manner, i.e., $gcd(returns_to_state) \neq 1$

Aperiodic: by complementarity, if not periodic, i.e., gcd(returns_to_state) = 1

Ergodic: Recurrent non-null + Aperiodic

Absorbing: a state that when reached there is no escape from it, i.e., $p_{ii} = 1$

[41] Joseph K. Blitzstein, Jessica Hwang, Introduction to Probability, CRC Pres, 2nd Edition, 2019

National and Kapodistrian University of Athens

Terminology: Chains

Irreducible: All states communicating

• Strongly connected graph (useful property)

Reducible: by complementarity, if not irreducible

Periodic: if at least one state is periodic

• Cyclic graph

Aperiodic: if all states are aperiodic

• Finite recurrent non-null states: aperiodic = irreducible ¹

Ergodic: Irreducible + Aperiodic

• all states are ergodic

Absorbing: chain with at least one absorbing state, that is accessible from any other non-absorbing state

Markov chain on steady state: transition probabilities have reached stationary distribution

Reversible: long-run percentage of transitions from *i* to *j* are equal to the long-run percentage of transitions from *j* to *i*

• intuition: you can look MC backwards in time without noticing any difference

¹ [42] https://brilliant.org/wiki/markov-chains/#markov-chain, Accessed: 22/01/2020

National and Kapodistrian University of Athens

n-1 steps

Chapman – Kolmogorov equation

Probability of reaching state j starting from state i in n steps

- Intuition
 - Reach some state k in n-1 steps and from there transition to j in 1 step (assuming j is accessible from k)
 - Proceed recursively
- Formula: $p_{ij}(n) = \sum_{k=1}^{m} p_{ik}(n-1) * p_{kj}$
- The opposite approach can also work

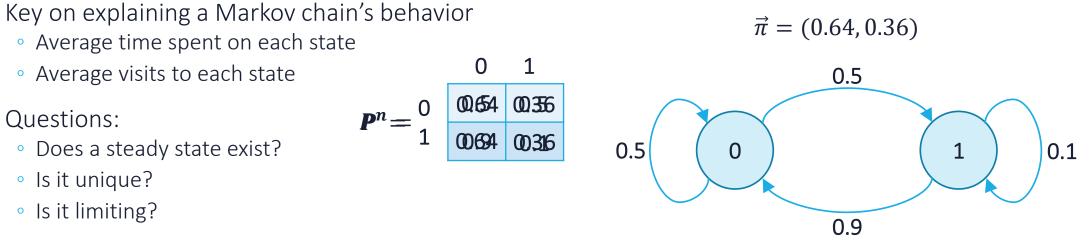
• Transition from i to k in 1 step and from k reach j in n-1 steps (again, assuming accessibility).

• $p_{ij}(n) = \sum_{k=1}^{m} p_{ik} * p_{kj}(n-1)$

Generalization: in m steps transition to intermediate state and in n steps to destination

•
$$p_{ij}(m+n) = \sum_k p_{ik}(m) * p_{kj}(n)$$

[43] D. P. Bertsekas, J. N. Tsitsiklis, *Introduction to Probability*, Athena Scientific, 2nd Edition, 2008 [44] W. Feller, *An Introduction to Probability Theory and its Applications – Volume I*, Wiley, 3rd Edition, 1968 m


1 step

Stationarity

Stationary distribution (steady-state distribution): a row vector $(\vec{\pi})$ describing the long-run probabilities of each state, $\vec{\pi} = \vec{\pi} * P$

For ergodic Markov chains the answer is yes to everything

For other types of Markov chains, the answers may vary, but a steady state does exist for finitely many states

National and Kapodistrian University of Athens

Stationarity calculation

Chapman – Kolmogorov equation for n steps

• Recursive formula: $p_{ij}(n) = \sum_{k=1}^{m} p_{ik}(n-1) * p_{kj}$

From the above expression as $n \rightarrow \infty$:

• $\pi_j = \sum_{k=1}^m \pi_k * p_{kj}$, $\forall j$ (balance equations)

Remember, $\vec{\pi}$ is a distribution row vector

• $\sum_{i=1}^{m} \pi_i = 1$ (normalization equation)

These set of equations (balance equations, normalization equation) form a linear system that gives stationary distribution vector

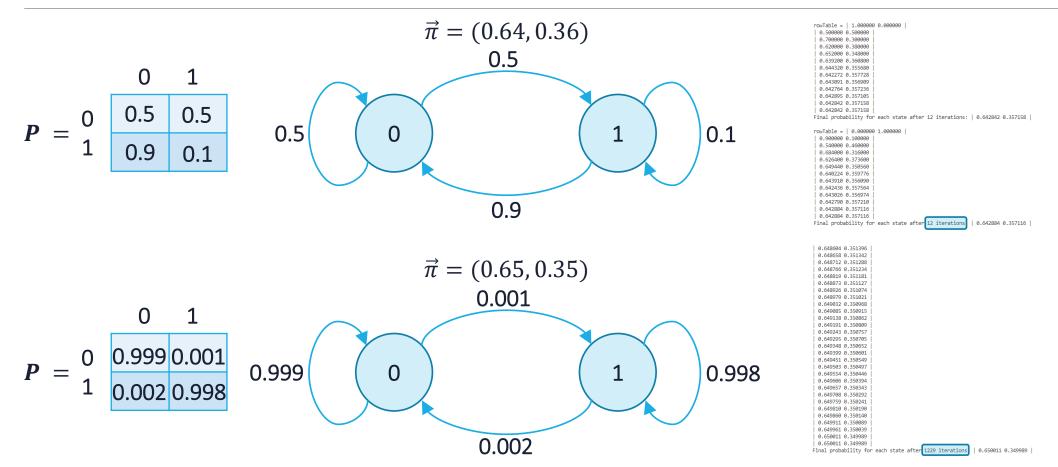
Also called "Steady-state convergence Theorem" or "The Big Theorem of Markov chains" ²

Essentially, to calculate the distribution vector in time n:

- $\vec{\pi}^{(n)} = \vec{\pi}^{(n-1)} * P^1$
- $\circ \quad \vec{\pi}^{(n)} = \vec{\pi}^{(0)} * P^n$

For "large" n, if there is a steady state: $\vec{\pi} = \vec{\pi} * P^n$, $\forall n$

- \circ Remember, each row of P^n equals to stationary distribution vector
 - \circ Iterative self-multiplications of stochastic matrix P lead to stationary distribution


² [45] John Tsitsiklis' lectures on "Probabilistic System Analysis and Applied Probability", fall 2010, via MIT OCW

National and Kapodistrian University of Athens

How to interpret "large" n?

National and Kapodistrian University of Athens

Types of stationarity

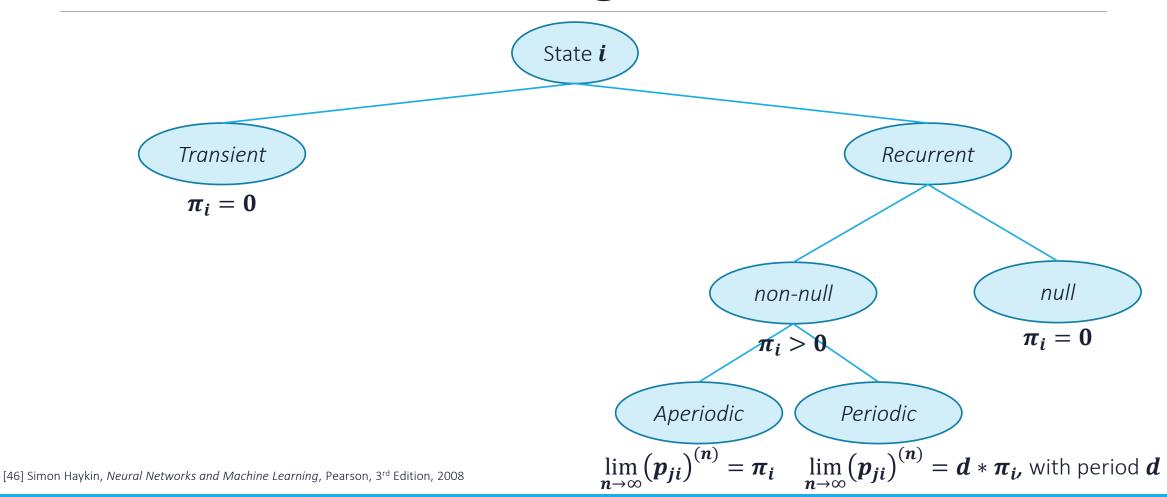
Does a steady state exist?

- If MC has finite state space: YES
- Interpretation: if I assign initial probabilities equal to stationary distribution, then, after achieving stationarity, in every run of the chain I will get the same distribution

Is it unique?

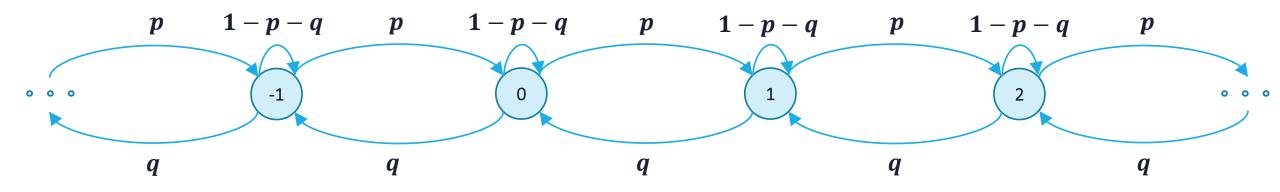
- If MC is irreducible: YES
- If MC has only one absorbing state accessible from all other states: YES
- Interpretation: initial distribution vector does not play a role in the long-run

Is it limiting?


- If MC is irreducible + aperiodic (=ergodic): YES
- Interpretation: The chain converges to this stationarity, meaning that each row of stochastic matrix of n th order (*n* appropriately selected, as discussed before) will converge to stationary distribution

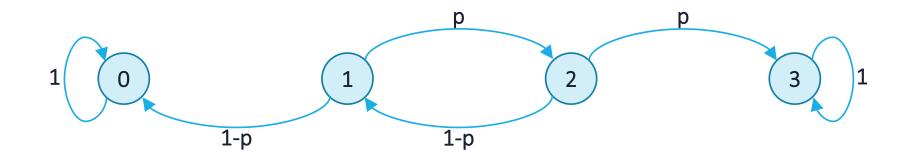
National and Kapodistrian University of Athens

States categorization



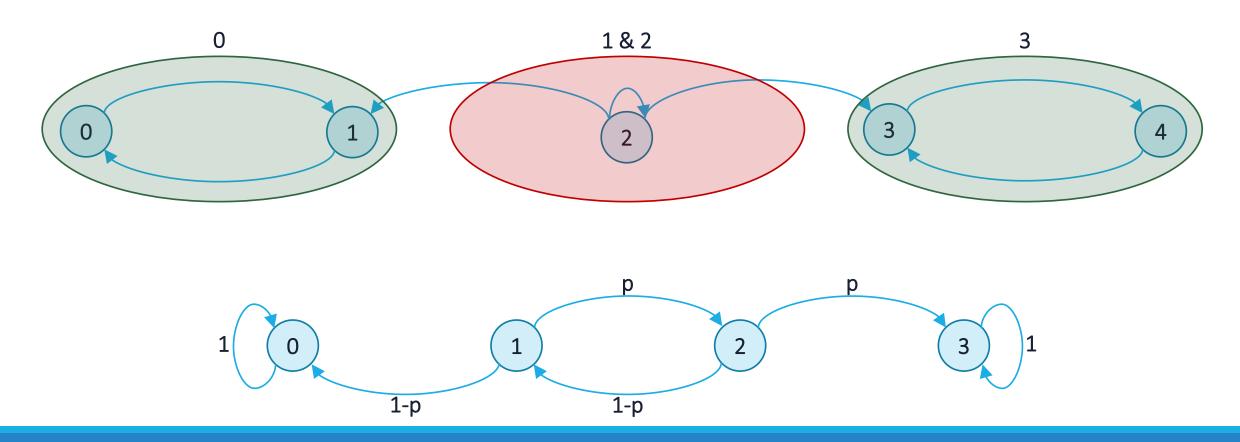
National and Kapodistrian University of Athens

Common Examples – Random Walk



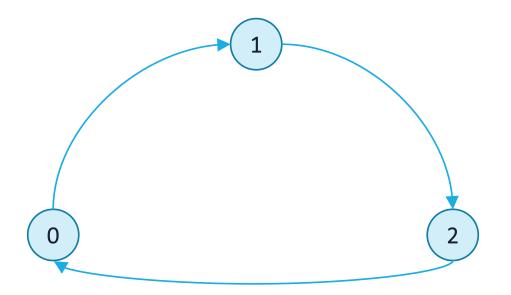
National and Kapodistrian University of Athens

Common Examples – Gambler's Ruin



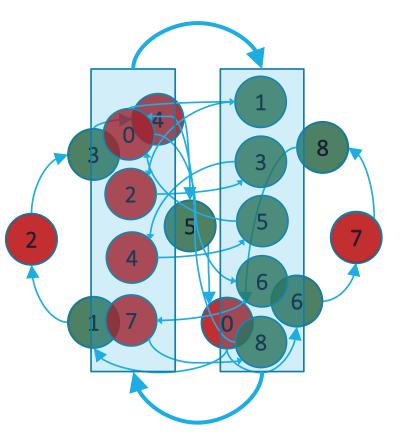
National and Kapodistrian University of Athens

Commorc Example Example Examples ler's Ruin



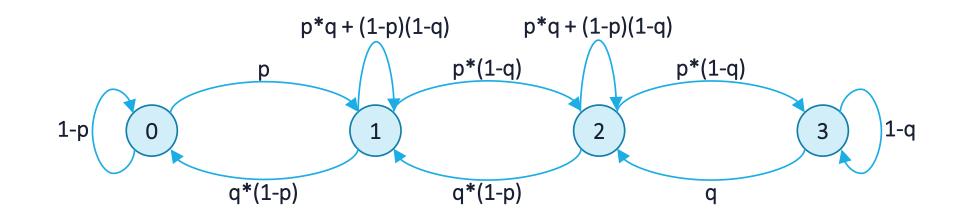
National and Kapodistrian University of Athens

Common Examples – Periodicity

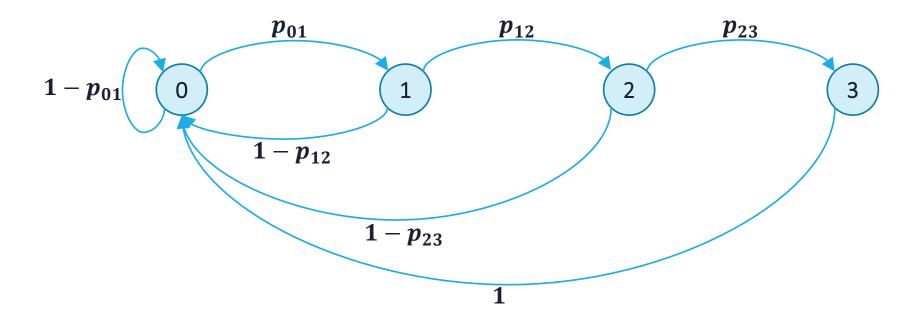


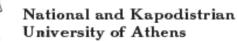
National and Kapodistrian University of Athens

Common Examples in plesiodicity


[45] John Tsitsiklis' lectures on "Probabilistic System Analysis and Applied Probability", fall 2010, via MIT OCW

National and Kapodistrian University of Athens


Common Examples – Birth/Death Chain


National and Kapodistrian University of Athens

Common Examples – Slowly Spreading Chain

[47] John G. Kemeny, "Slowly spreading chains of the first kind," Journal of Mathematical Analysis and Applications, Volume 15, Issue 2, pp. 295-310, 1966, ISSN 0022-247X, https://doi.org/10.1016/0022-247X(66)90121-1. [48] Kanal Laveen, Sastry Ark, "Models for Channels with Memory and Their Applications to Error Control," Proceedings of the IEEE. 66, pp. 724 – 744, 1978, 10.1109/PROC.1978.11013

Usage Examples

Wide area of applications: networks, operating systems, ML, finance, genetics, epidemiology, earthquake study, particle physics, sports analytics, etc.

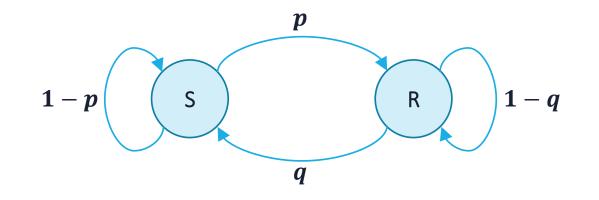
- Even in one domain the field of applications is vast
 - search engine indexing, network caching, wireless network access, network resource utilization, etc.

PageRank: probably the most famous implementation

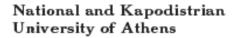
- the way that Google ranks the indexed webpages
- Webpage Rank = $\sum_{i = all in-edges} rank_i$
 - \circ $\,$ a variation counts both in- and out-edges $\,$

Wide use in networks to evaluate nodes' behavior: routers, switches, links

- Modelling of systems, like M/M/1, M/G/1, G/M/1, M/M/m, ...
- Birth-death chains
 - "birth": packet arrival, "death": packet departure ("served")

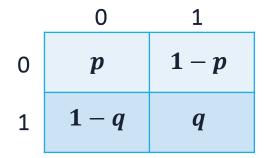

National and Kapodistrian University of Athens

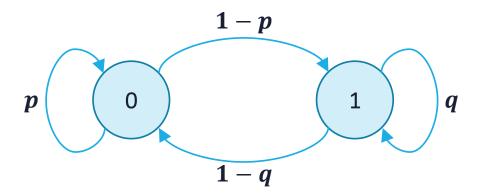
Weather Modeling


Suppose a simple two-weather model: S: Sun, R: Rain

Probability of sun tomorrow according to today's weather

If p is close to 0 and q is close to 1, we observe an area with a nice weather!



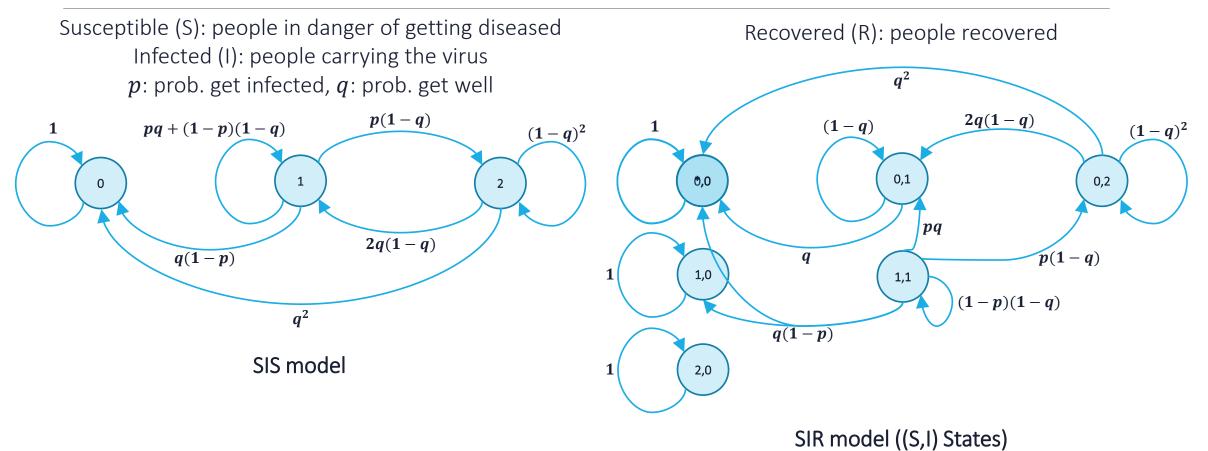

Clinical Trials

2 tested drugs for a disease

Clinical trials on patients

Ethical reasons dictate *play the winner* rule

If p > q after many trials, we select drug 0, otherwise drug 1

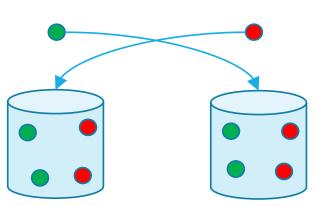

[40] V. G. Kulkarni, *Modeling and Analysis of Stochastic Systems*, CRC Press, 3rd Edition, 2017

National and Kapodistrian University of Athens

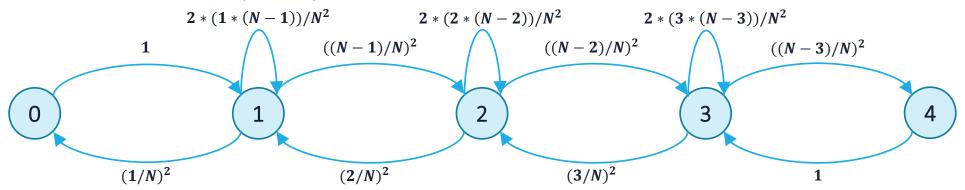
Susceptible - Infected - Recovered Model

[45] John Tsitsiklis' lectures on "Probabilistic System Analysis and Applied Probability", fall 2010, via MIT OCW

National and Kapodistrian University of Athens


Urn Model

Let's play a game!

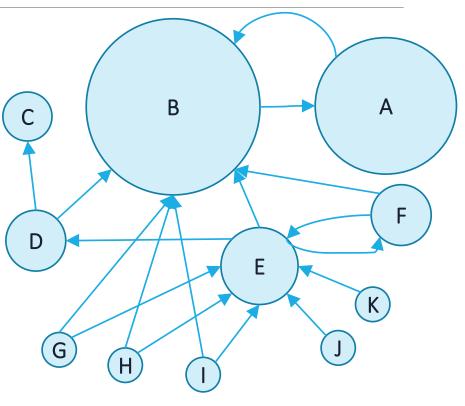

2 * N balls in total, N green, N red

N balls in each urn

Urn 1: *i* greens, the rest are red

Probability of having $k, k \in \{0, ..., 4\}$ greens in Urn 1?

National and Kapodistrian University of Athens


PageRank Algorithm

Intuition: A webpage is important when a lot of webpages cite it (academic citation)

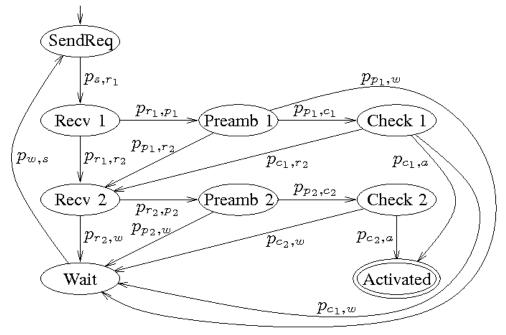
- Extension: It does not matter what *someone* says, but also who is this *someone*
 - how much important this someone is

$$PR(A) = \frac{(1-d)}{N} + d\left(\frac{PR(T1)}{C(T1)} + \dots + \frac{PR(Tn)}{C(Tn)}\right)$$

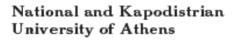
- A: some webpage A
- T1 ... Tn: pages 1...n with a link to page A
- C(A): number of out-links from A
- d: damping factor (1 d: probability of "teleporting" to a random page)
 - $^\circ~$ In Brin's and Page's publication, d=0.85

[PageRank in Wikipedia]

[49] S. Brin, L. Page, "The anatomy of a large-scale hypertextual Web search engine," Computer Networks and ISDN Systems, Volume 30, Issues 1–7, 1998

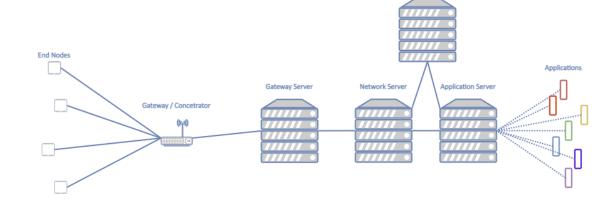

National and Kapodistrian University of Athens

Markov chains in Network Access


Wireless networks with excessive number of end devices trying to access the medium

"Performance analysis of the on-the-air activation in LoRaWAN", J. Toussaint, N. El Rachkidy and A. Guitton, 2016 IEEE 7th Annual IEMCON, Vancouver, BC, 2016

[15] J. Toussaint, N. El Rachkidy and A. Guitton, "Performance analysis of the on-the-air activation in LoRaWAN," in IEMCON, 2016



LoRaWAN primer

Low-Power Wide Area Network (LPWAN): a subdomain of IoT

Interconnection of devices:

- power constraints
- communication in wide areas
- small data rates
- low cost

Security Server

LoRaWAN: a MAC protocol in the space of LPWAN

- open protocol developed by LoRa Alliance
- based on LoRa PHY, proprietary modulation by Semtech

Application							
LoRaWAN (L2)							
Class A (all devices)	Class B (ping slots)	Class C (continuous)					
Regional Parameters EU868 US915 CN470 KR920 IN865							
PHY (LoRa Modulation, FSK)							

National and Kapodistrian University of Athens

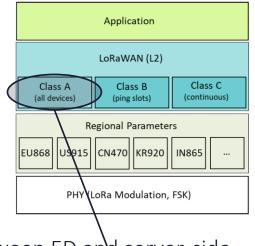
State of the problem

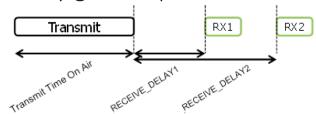
Three main entities:

- End Device (ED)
- Gateway (GW)
- Network Server (NS)

EDs are deployed in massive numbers: how to access the medium?

First time an ED tries to access the channel: during activation

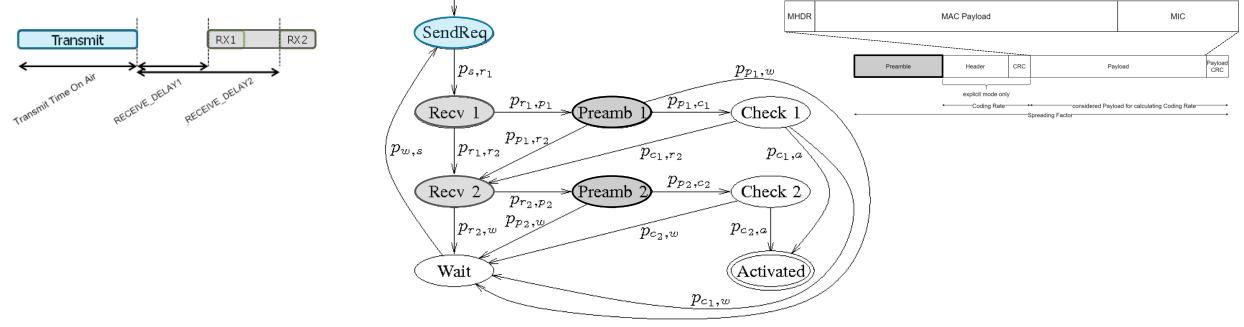

• Activation By Personalization (ABP): hardcoded access keys


• Over The Air Activation (OTAA): based on join request/accept messages between ED and server-side

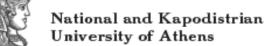
Successful activation is based on successful communication and proper key generation

2 questions:

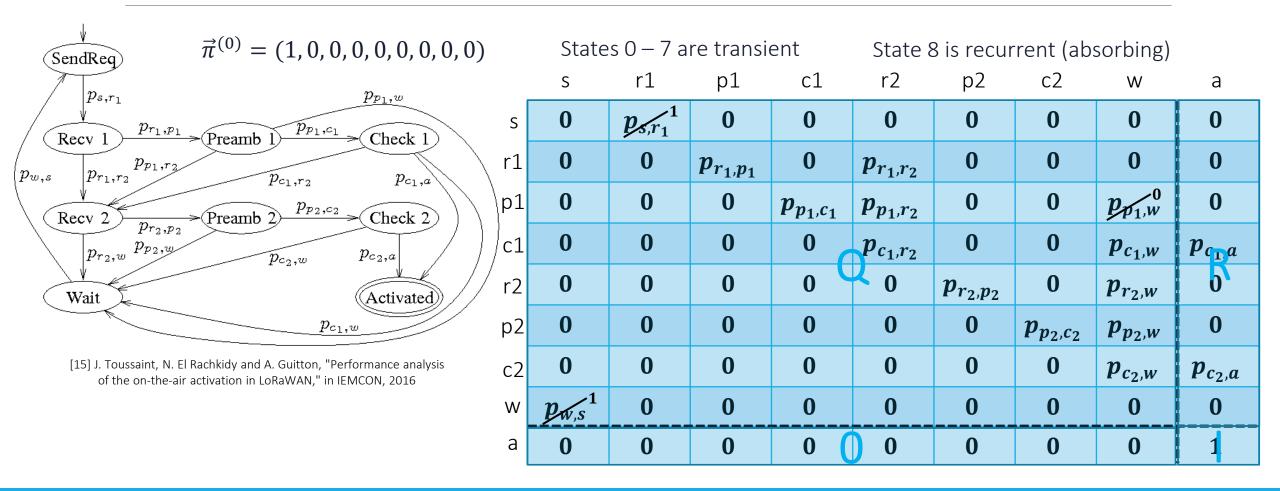
- How much time until successful activation?
- How much energy until successful activation?


National and Kapodistrian University of Athens

Markov chain of the problem


Wireless networks with excessive number of end nodes trying to access the medium

"Performance analysis of the on-the-air activation in LoRaWAN", J. Toussaint, N. El Rachkidy and A. Guitton, 2016 IEEE 7th Annual IEMCON, Vancouver, BC, 2016


[15] J. Toussaint, N. El Rachkidy and A. Guitton, "Performance analysis of the on-the-air activation in LoRaWAN," in IEMCON, 2016

Transition Matrix

National and Kapodistrian University of Athens

Transition Matrix (cont'd)

 $N = (I - Q)^{-1}$: fundamental matrix • Gauss – Jordan elimination

 $N_{i,j}$: Expected number of visits to state j starting from state i

• $V = 1_s * N$, where $1_s = \vec{\pi}^{(0)}$

- Column vector D (expected duration of each state)
- *V* * *D*: expected delay of activation procedure

Column vector *E* (expected energy consumption of each state)

• *V* * *E*: expected energy consumption of activation procedure

0	p_{s,r_1}^{1}	0	0	0	0	0	0	0
0	0	p_{r_1,p_1}	0	p_{r_1,r_2}	0	0	0	0
0	0	0	p_{p_1,c_1}	$p_{p_{1},r_{2}}$	0	0	$p_{p_{1,w}}^{0}$	0
0	0	0	0	$p_{c_{1},r_{2}}$	0	0	$p_{c_{1,W}}$	p _{c₁a}
0	0	0	0	0	$p_{r_{2},p_{2}}$	0	$p_{r_2,w}$	0
0	0	0	0	0	0	p_{p_2,c_2}	$p_{p_{2,W}}$	0
0	0	0	0	0	0	0	$p_{c_{2},w}$	$p_{c_2,a}$
$p_{w,s}^{1}$	0	0	0	0	0	0	0	0
0	0	0	0 (0	0	0	0	1

National and Kapodistrian University of Athens

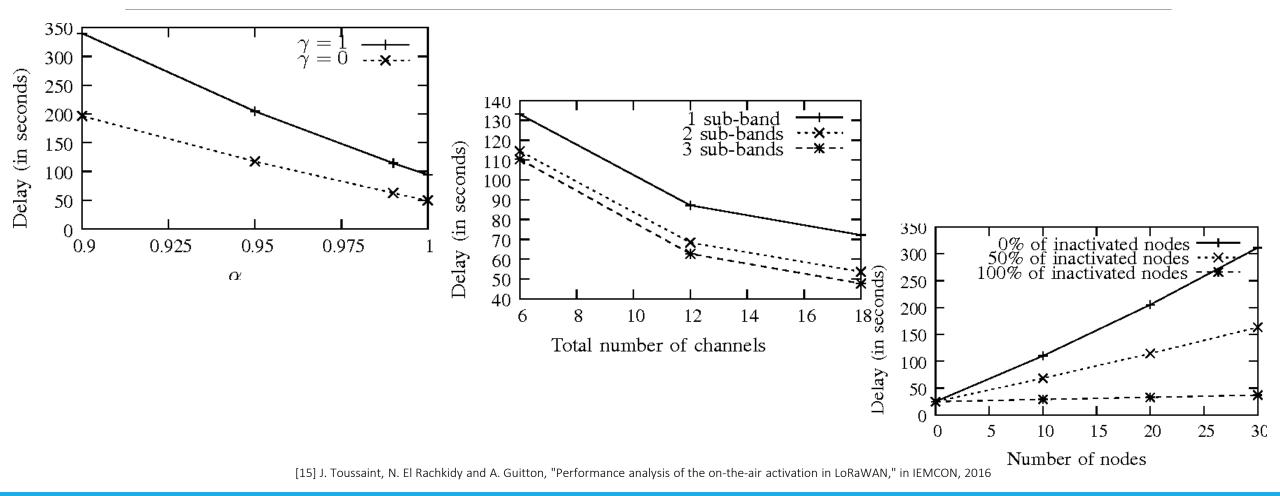
Performance Evaluation

Scilab environment

Key parameters: channel quality a, used receive window γ

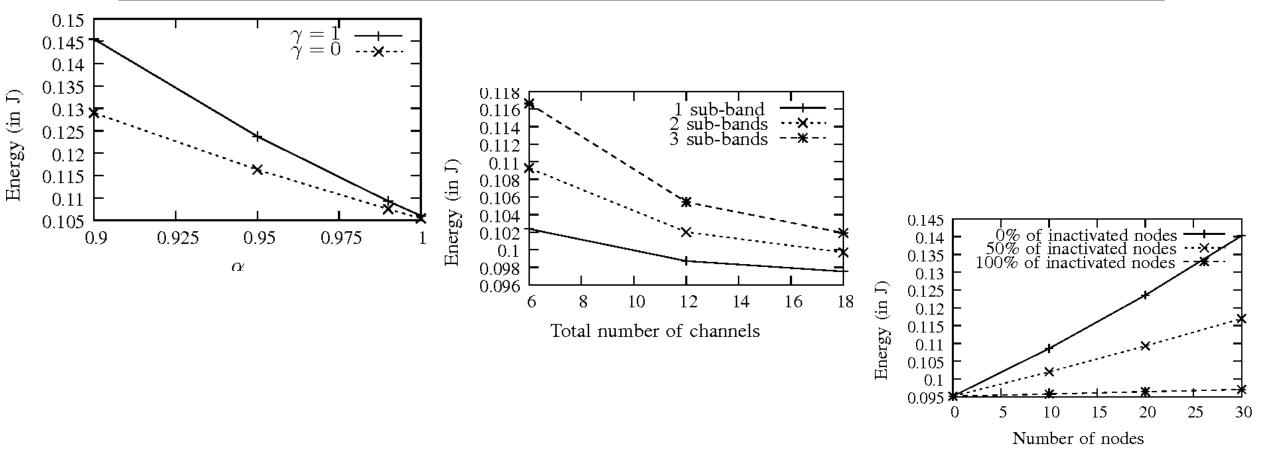
- $a \in [0, 1]$
 - 0: low quality
 - 1: high quality
- $\circ \ \gamma = \{0,1\}$
 - $\circ~$ 0: 2^{nd} receive window
 - 1: 1st receive window

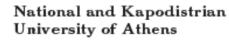
Assumptions for other parameters as well (network saturation, # of channels, # of sub-bands, # of inactivated / activated EDs, duty cycle)


Energy consumption setting from Semtech (SX1272)

National and Kapodistrian University of Athens

Expected delay to activation




National and Kapodistrian University of Athens

Expected energy consumed

[15] J. Toussaint, N. El Rachkidy and A. Guitton, "Performance analysis of the on-the-air activation in LoRaWAN," in IEMCON, 2016

Outlines of the paper

Low channel quality leads to packet losses \rightarrow EDs visit more often state *Wait* \rightarrow delay issues due to duty cycle

More sub-bands \rightarrow more traffic \rightarrow more collisions \rightarrow delay issues

• But Wait state lasts less due to more sub-bands (duty cycle applies to each sub-band)

Wait state duration has greater impact than traffic

Energy follows delay's behavior

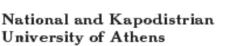
- But in figures that are respect to total number of channels the behavior of the two performance metrics is the opposite
- Little detail
 - Delay Vs total number of channels: absolute difference is steady among the sub-bands but proportion changes
 - Energy Vs total number of channels: absolute difference changes among the sub-bands but proportion is steady

National and Kapodistrian University of Athens

Outlines of the paper (cont'd)

Assumptions: No capture effect, 1 GW, Data Rate 0 - DR0 (Spreading Factor 12 - SF12), EU868 bands

US915 bands


- $\,\circ\,$ dedicated DL channels \rightarrow no DL / UL interference
- $\,\circ\,$ more UL channels \rightarrow less interference
- DRO equals SF10

China matches EU case but EDs have less max. transmission power

• Less energy consumption

DRO = SF12

- higher SF, greater DR changes some of the probabilities in stochastic matrix
- Most important: smaller Time On Air (ToA)
 - smaller collision probability
 - less Wait state duration

Summing up

LPWAN paradigm: a new IoT networking family

LoRa/LoRaWAN: a top-down approach

Research challenges and methodology

Discussion on our simulations and experimental testbed

Stochastic Modeling – Discrete Time Markov Chains: Definitions, Terminology, Key Properties

Modeling of LoRaWAN Access

Christos Milarokostas · chmil@di.uoa.gr

References

[1] Overview of the Internet of things, Recommendation Y.2060, International Telecommunication Union (ITU), Version 1.0, June 2012

[2] Cisco At a Glance Internet of Things, Cisco, 2016

[3] Ericsson Mobility Report June 2020, Ericsson, June 2020

[4] "Low-Power Wide Area Network (LPWAN) Overview," RFC 8376, RFC Editor, May 2018

[5] W. Guibene et al. "Survey on Clean Slate Cellular-IoT Standard Proposals," 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, 2015, pp. 1596-1599, doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.240.

[6] R. S. Sinha et al., "A survey on LPWA technology: LoRa and NB-IoT," ICT Express, vol. 3, no. 1, pp. 14 – 21, 2017

[7] K. Mekki et al., "A comparative study of LPWAN technologies for large-scale IoT deployment," ICT Express, vol. 5, no. 1, pp. 1 – 7, 2019

[8] IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond, ITU-R, September 2015

[9] 5G; Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks, ETSI, ETSI TS 124 502, Version 15.0.0, June 2018

[10] The Surrey Platform (Release B), 5GENESIS, Deliverable D4.11, Version 1.0, January 2020

[11] R. Yasmin et al., "On the Integration of LoRaWAN With the 5G Test Network," 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, 2017.

[12] LoRaWAN[™] 1.0.4 Specification, LoRa Alliance, Technical Specification, October 2020

[13] Low power protocol for wide area wireless networks, ITU-T, Recommendation Y.4480, November 2021

National and Kapodistrian University of Athens

References (cont'd)

[14] L. Vangelista, "Frequency Shift Chirp Modulation: The LoRa Modulation," in IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1818-1821, Dec. 2017, doi: 10.1109/LSP.2017.2762960.

[15] J. Toussaint, N. El Rachkidy and A. Guitton, "Performance analysis of the on-the-air activation in LoRaWAN," 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2016, pp. 1-7, doi: 10.1109/IEMCON.2016.7746082.

[16] Martin C. Bor, Utz Roedig, Thiemo Voigt, and Juan M. Alonso. 2016. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM '16). Association for Computing Machinery, New York, NY, USA, 59–67. <u>https://doi.org/10.1145/2988287.2989163</u>

[17] N. Matni, J. Moraes, H. Oliveira, D. Rosário, and E. Cerqueira, "LoRaWAN Gateway Placement Model for Dynamic Internet of Things Scenarios," Sensors, vol. 20, no. 15, p. 4336, Aug. 2020, doi: 10.3390/s20154336.

[18] T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini, "Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment," Sensors, vol. 19, no. 4, p. 838, Feb. 2019, doi: 10.3390/s19040838.

[19] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita and I. Tinnirello, "Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance," in IEEE Communications Letters, vol. 22, no. 4, pp. 796-799, April 2018, doi: 10.1109/LCOMM.2018.2797057.

[20] L. Beltramelli, A. Mahmood, P. Österberg, M. Gidlund, P. Ferrari and E. Sisinni, "Energy Efficiency of Slotted LoRaWAN Communication With Out-of-Band Synchronization," in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-11, 2021, Art no. 5501211, doi: 10.1109/TIM.2021.3051238.

[21] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and D. Pesch, "TS-LoRa: Time-slotted LoRaWAN for the Industrial Internet of Things," Computer Communications, vol. 153, pp. 1–10, 2020, doi: <u>https://doi.org/10.1016/j.comcom.2020.01.056</u>.

[22] K. Kousias, G. Caso, Ö. Alay, and F. Lemic, "Empirical Analysis of LoRaWAN Adaptive Data Rate for Mobile Internet of Things Applications," in Proceedings of the 2019 on Wireless of the Students, by the Students, and for the Students Workshop, 2019, pp. 9–11. doi: 10.1145/3349621.3355727.

National and Kapodistrian University of Athens

References (cont'd)

[23] A. Ikpehai et al., "Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review," in IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2225-2240, April 2019, doi: 10.1109/JIOT.2018.2883728.

[24] M. Gohar, S. H. Ahmed, M. Khan, N. Guizani, A. Ahmed and A. Ur Rahman, "A Big Data Analytics Architecture for the Internet of Small Things," in IEEE Communications Magazine, vol. 56, no. 2, pp. 128-133, Feb. 2018, doi: 10.1109/MCOM.2018.1700273.

[25] E. Aras, G. S. Ramachandran, P. Lawrence and D. Hughes, "Exploring the Security Vulnerabilities of LoRa," 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), 2017, pp. 1-6, doi: 10.1109/CYBConf.2017.7985777.

[26] M. Eldefrawy, I. Butun, N. Pereira, and M. Gidlund, "Formal security analysis of LoRaWAN," Computer Networks, vol. 148, pp. 328–339, 2019, doi: https://doi.org/10.1016/j.comnet.2018.11.017.

[27] J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen and M. Pettissalo, "On the coverage of LPWANs: range evaluation and channel attenuation model for LoRa technology," 2015 14th International Conference on ITS Telecommunications (ITST), 2015, pp. 55-59, doi: 10.1109/ITST.2015.7377400.

[28] S. Fahmida, V. P. Modekurthy, M. Rahman, A. Saifullah and M. Brocanelli, "Long-Lived LoRa: Prolonging the Lifetime of a LoRa Network," 2020 IEEE 28th International Conference on Network Protocols (ICNP), 2020, pp. 1-12, doi: 10.1109/ICNP49622.2020.9259375.

[29] S. Messaoud, A. Bradai, O. B. Ahmed, P. T. A. Quang, M. Atri and M. S. Hossain, "Deep Federated Q-Learning-Based Network Slicing for Industrial IoT," in IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5572-5582, Aug. 2021, doi: 10.1109/TII.2020.3032165.

[30] S. Dawaliby, A. Bradai and Y. Pousset, "Distributed Network Slicing in Large Scale IoT Based on Coalitional Multi-Game Theory," in IEEE Transactions on Network and Service Management, vol. 16, no. 4, pp. 1567-1580, Dec. 2019, doi: 10.1109/TNSM.2019.2945254.

[31] S. M. Danish, M. Lestas, W. Asif, H. K. Qureshi and M. Rajarajan, "A Lightweight Blockchain Based Two Factor Authentication Mechanism for LoRaWAN Join Procedure," 2019 IEEE International Conference on Communications Workshops (ICC Workshops), 2019, pp. 1-6, doi: 10.1109/ICCW.2019.8756673.

National and Kapodistrian University of Athens

References (cont'd)

[32] A. Biason and M. Zorzi, "On the effects of battery imperfections in an energy harvesting device," 2016 International Conference on Computing, Networking and Communications (ICNC), 2016, pp. 1-7, doi: 10.1109/ICCNC.2016.7440720.

[33] O. Georgiou and U. Raza, "Low Power Wide Area Network Analysis: Can LoRa Scale?," in IEEE Wireless Communications Letters, vol. 6, no. 2, pp. 162-165, April 2017, doi: 10.1109/LWC.2016.2647247.

[34] M. Slabicki, G. Premsankar and M. Di Francesco, "Adaptive configuration of lora networks for dense IoT deployments," NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, 2018, pp. 1-9, doi: 10.1109/NOMS.2018.8406255.

[35] D. -T. Ta, K. Khawam, S. Lahoud, C. Adjih and S. Martin, "LoRa-MAB: A Flexible Simulator for Decentralized Learning Resource Allocation in IoT Networks," 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC), 2019, pp. 55-62, doi: 10.23919/WMNC.2019.8881393.

[36] A. M. Yousuf, E. M. Rochester, B. Ousat and M. Ghaderi, "Throughput, Coverage and Scalability of LoRa LPWAN for Internet of Things," 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), 2018, pp. 1-10, doi: 10.1109/IWQoS.2018.8624157.

[37] B. Zhou, V. S. S. L. Karanam and M. C. Vuran, "Impacts of Soil and Antenna Characteristics on LoRa in Internet of Underground Things," 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6, doi: 10.1109/GLOBECOM46510.2021.9685610.

[38] K. Vogelgesang, J. A. Fraire and H. Hermanns, "Uplink Transmission Probability Functions for LoRa-Based Direct-to-Satellite IoT: A Case Study," 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 01-06, doi: 10.1109/GLOBECOM46510.2021.9685152.

[39] P. Locatelli, P. Spadaccino and F. Cuomo, "Hijacking Downlink Path Selection in LoRaWAN," 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6, doi: 10.1109/GLOBECOM46510.2021.9685973.

[40] V. G. Kulkarni, *Modeling and Analysis of Stochastic Systems*, CRC Press, 3rd Edition, 2017

[41] Joseph K. Blitzstein, Jessica Hwang, Introduction to Probability, CRC Pres, 2nd Edition, 2019

National and Kapodistrian University of Athens

References (cont'd)

[42] https://brilliant.org/wiki/markov-chains/#markov-chain, Accessed: 22/01/2020

[43] D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability, Athena Scientific, 2nd Edition, 2008

[44] W. Feller, An Introduction to Probability Theory and its Applications – Volume I, Wiley, 3rd Edition, 1968

[45] John Tsitsiklis' lectures on "Probabilistic System Analysis and Applied Probability", fall 2010, via MIT OCW

[46] S. Haykin, *Neural Networks and Machine Learning*, Pearson, 3rd Edition, 2008

[47] John G. Kemeny, "Slowly spreading chains of the first kind," Journal of Mathematical Analysis and Applications, Volume 15, Issue 2, pp. 295-310, 1966, ISSN 0022-247X, <u>https://doi.org/10.1016/0022-247X(66)90121-1</u>.

[48] Kanal Laveen, Sastry Ark, "Models for Channels with Memory and Their Applications to Error Control," Proceedings of the IEEE. 66, pp. 724 – 744, 1978, 10.1109/PROC.1978.11013

[49] S. Brin, L. Page, "*The anatomy of a large-scale hypertextual Web search engine*," Computer Networks and ISDN Systems, Volume 30, Issues 1–7, 1998

[Additional reference] Ioannis Stavrakakis' lectures on "Modeling and Analysis of Networks Performance", fall 2020, Department of Informatics and Telecommunications, NKUA

[Additional reference] Athanasia Manou's lectures on "Stochastic Processes", spring 2021, Department of Mathematics, NKUA