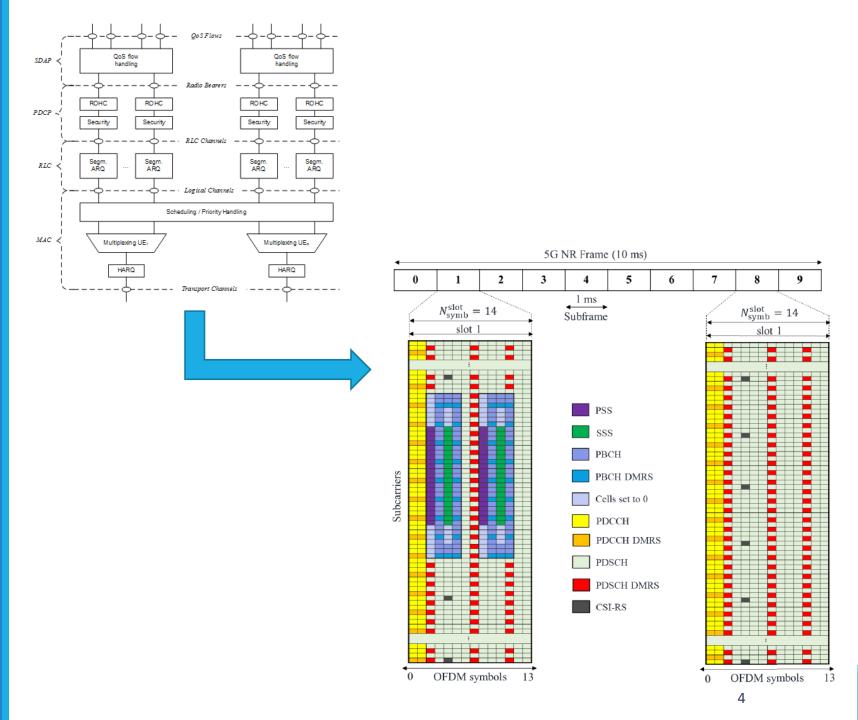
Νέες και Παλιές Προκλήσεις στα Δίκτυα Κινητών Επικοινωνιών

ΤΜΉΜΑ ΠΛΗΡΟΦΟΡΙΚΉΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΊΩΝ, ΕΚΠΑ

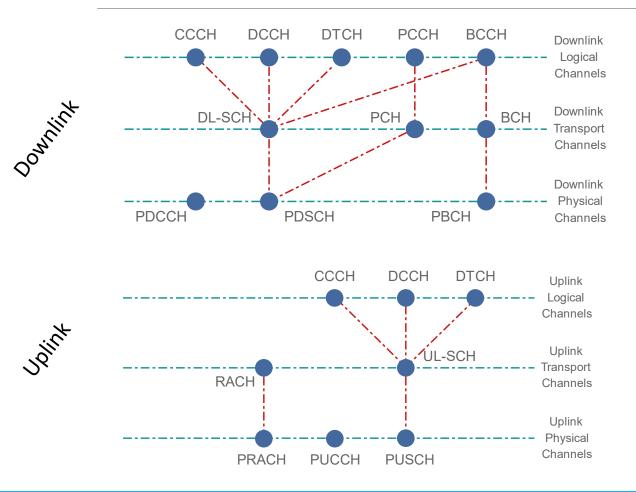
ΔΡ. ΔΗΜΗΤΡΙΟΣ ΤΣΟΛΚΑΣ & ΚΑΘ. ΛΑΖΑΡΟΣ ΜΕΡΑΚΟΣ

Takeaways (Lecture 3)

- API exposure is performed with CAPIF support
- QoS Enforcement
 - QFI concept
 - Network slice selection during the PDU session set up
- 5G New Radio (NR)
 - Deployment options: SA / NSA
 - SDAP protocol is added to realize filtering of 5G quality flows to DRB
 - The protocols stack is Split to allow central management of radio flows (concept of functional split)


Targets of Lecture 4

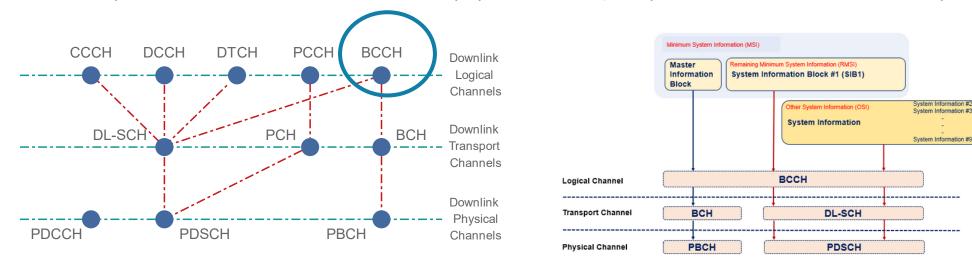
- 5G New Radio (NR)
 - Channels
 - Numerology
 - Key Performance Indicators (KPIs)

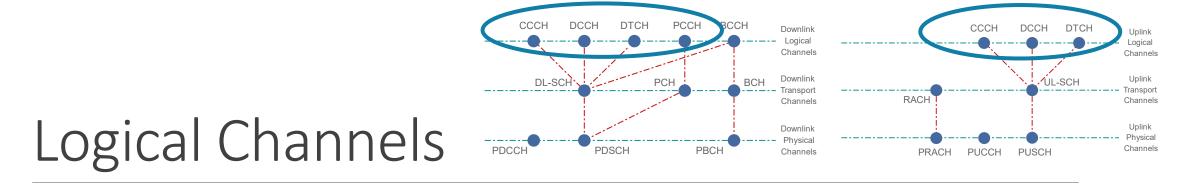

4/3/2022

5G-New Radio

Physical layer numerology

5G NR channels

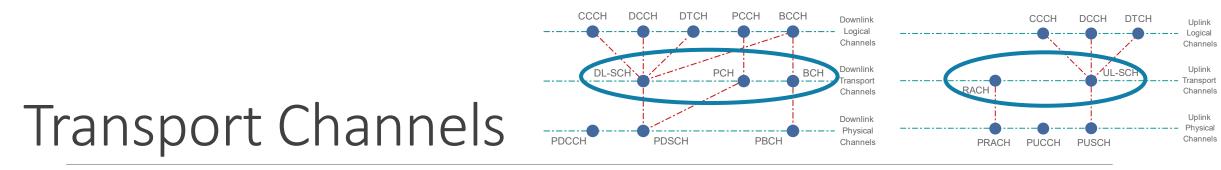



- Logical Channels: Offered by MAC to RLC. <u>Control</u> <u>channels</u> carry CP packets. <u>Traffic channels</u> carry UP packets. Each logical channel maps to an RLC channel coming from RLC layer.
- Transport Channels: Offered by PHY to MAC. MAC layer multiplexes one or more logical channels to a transport channel. Whereas logical channels describe <u>what is carried</u>, transport channels describe <u>how they're carried</u>.
- Physical Channels: Channels that carry information on the air interface. Transport channels map to physical channels. There are also a few <u>standalone</u> physical channels that don't carry higher-layer information.

Logical Channels

Broadcast Control Channel, BCCH: The BCCH is used within the downlink, and it is used for sending broadcast style information to the user equipments within that cell. The system information transmitted by the 5G NR BCCH is divided into different blocks:

- **Master Information Block, MIB**: There is one MIB and this is mapped onto the BCH transport channel and then to the PBCH physical channel (frame information, assists for SIB decoding..)
- **System Information Block, SIB:** There are several system information blocks, SIBs. These are mapped onto the DL-SCH transport channel and then onto the PDSCH physical channel (cell specific information, cell selection priority..)



Paging Control Channel, PCCH: This is a **Downlink** channel. It is used to page the UEs whose location at cell level is not known to the network. As a result, the paging message needs to be transmitted in multiple cells. The PCCH is mapped to the PCH transport channel and then to the PDSCH physical channel.

Common Control Channel, CCCH: This 5G channel is used on both the downlink and uplink for transmitting control information to and from the user equipment or mobiles. The channel is used for <u>initial access</u>, i.e. those mobiles that do not have a <u>radio resource control</u>, RRC connection.

Dedicated Control Channel, DCCH: The DCCH is used within the uplink and downlink to carry dedicated control information between the UE or mobile and the network. It is used by the UE and the network after a radio resource control, <u>RRC connection has been established</u>.

Dedicated Traffic Channel, DTCH: This 5G channel is present in both the uplink and downlink. It is dedicated to one UE and is used for carrying user information to and from a specific UE and the network.

•**Broadcast Channel, BCH:** The BCH 5G channel is used in the downlink only for transmitting the BCCH system information and specifically the Master Information Block, MIB, information. In order that the data can be utilised, it has a specific format.

•**Paging Channel, PCH:** The PCH is used for carrying paging information from the PCCH logical channel. The PCH supports **discontinuous reception, DRX**, to enable the UE to save battery power by waking up at a specific time to receive the PCH. In order that the PCH is received by all mobiles / UEs in the cell, the PCH must be broadcast over the entire cell as a single message, or <u>where beam forming is used</u>, this can be done using several different PCH instances.

•**Downlink Shared Channel, DL-SCH:** As the name indicates, this is a downlink only channel. It is the main transport channel used for transmitting downlink data and it supports all the key 5G NR features. These include: dynamic rate adaptation; HARQ, channel aware scheduling, and spatial multiplexing. The DL-SCH is also used for transmitting some parts of the BCCH system information, specifically the SIB. Each UE has a DL-SCH for each cell it is connected to.

• Uplink Shared Channel, UL-SCH: This is the uplink counterpart to the DLSCH that is, the uplink transport channel used for transmission of uplink data.

•Random-Access Channel, RACH: The RACH is a transport channel, which carries the random access preamble which is used to overcome the message collisions that can occur when UEs access the system simultaneously.

Physical DL Channels

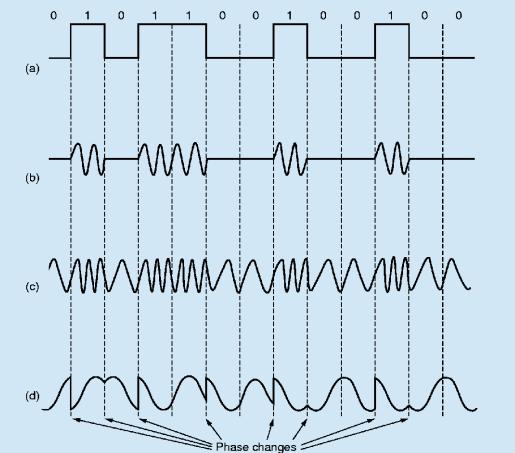
- Physical Broadcast Channel (PBCH): transmits the static part of the system information, known as the Master Information Block (MIB), to all UEs requiring to access the network
 - The <u>PBCH uses **QPSK** modulation</u> and it transmits a cell specific demodulation reference signal DMRS pattern for beamforming
- •**Physical Downlink Control Channel (PDCCH):** specifies the data scheduling and allocation by means of Downlink Control Information (DCI) for every User Equipment (UE) and to configure other aspects such as HARQ retransmissions, link adaptation and MIMO;
 - The <u>PDCCH uses QPSK as its modulation</u> format and polar coding as the coding scheme

• Physical Downlink Shared Channel (PDSCH) that transmits the data content to UEs

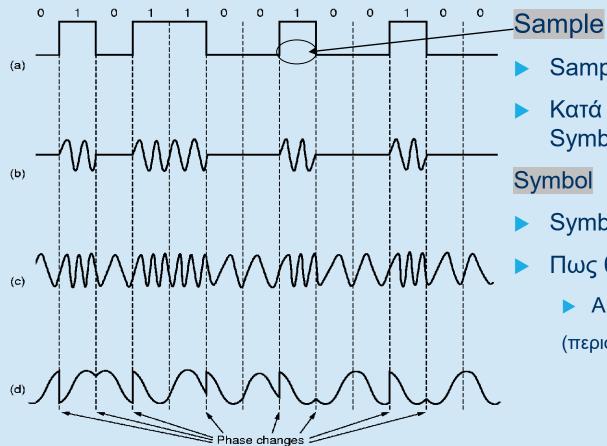
• The *PDSCH uses an adaptive modulation* format dependent upon the link conditions, i.e., signal to noise ratio.

Four types of reference signals:

- •**Primary and Secondary Synchronization Signals (PSS, SSS),** needed by UEs to access the network and, more specifically, to receive radio frame timing information and cell ID;
- Demodulation Reference Signals (DMRS), used for channel estimation to retrieve data in PBCH, PDCCH and PDSCH;
- Phase Tracking Reference Signals (PT-RS) to estimate the phase noise in the PDSCH (only used at FR2);
- Channel State Information Reference Signals (CSI-RS), used to provide CSI needed for link adaptation

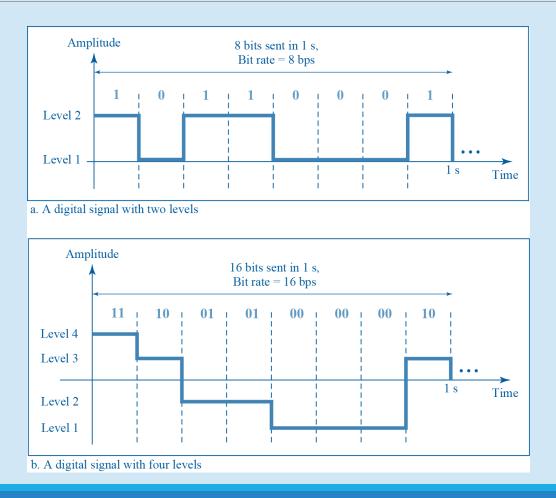

QPSK ?

(a) μη διαμορφωμένο (ψηφιακό) σήμα


(b) διαμόρφωση εύρους (AM)

(c) διαμόρφωση συχνότητας (FM)

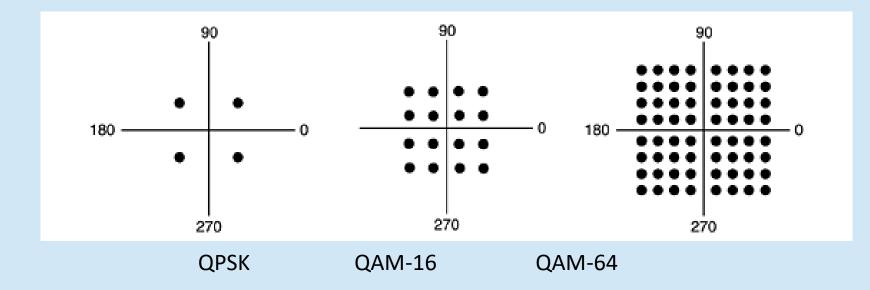
- FSK (frequency shift keying)
 - τεχνική για ψηφιακά σήματα
- (d) διαμόρφωση φάσης (PM) *PSK* (phase shift keying)
 - τεχνική για ψηφιακά σήματα
- f: φέρουσα συχνότητα


- Sample Rate=Samples/sec (Baud Rate)
- Κατά τη διάρκεια ενός Sample στέλνεται ένα Symbol

Symbol

- Symbol= Ελάχιστο τμήμα που φέρει πληροφορία
- Πως θα αυξάνατε το ρυθμό μετάδοσης?
 - Αύξηση των διαθέσιμων Symbols

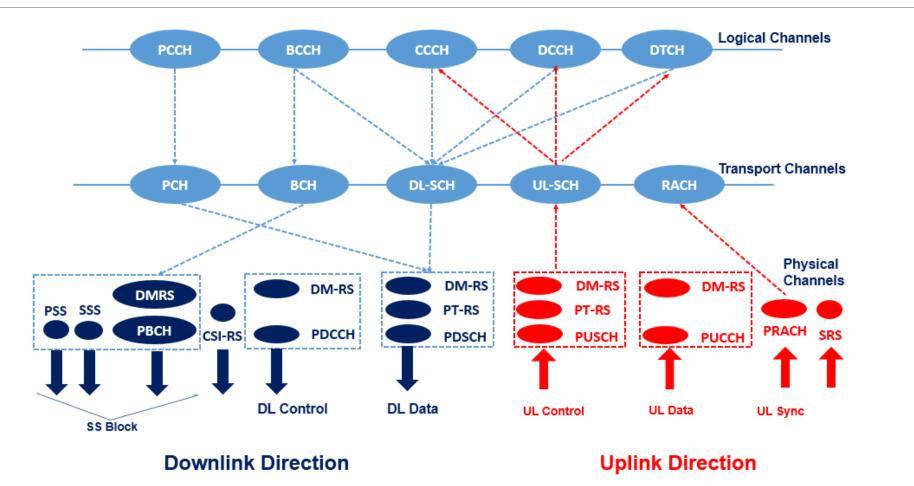
(περισσότερα symbols = περισσότερες στάθμες στο AM)


QPSK ?

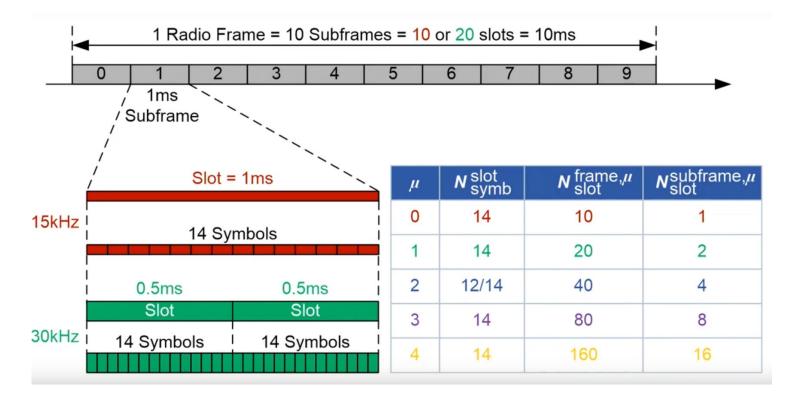
NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

QPSK ?

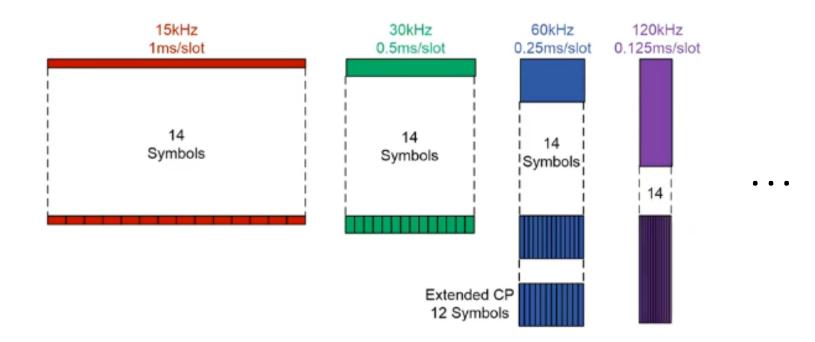
QPSK (Quadrature Phase Shift Keying) = 4 phase shifts, 1 amplitude level, 2 bits/symbol QAM-16 = 4 phase shifts, 4 amplitude levels, 4 bits/symbol QAM-64 = 4 phase shifts, 16 amplitude levels, 6 bits/symbol


Physical UL Channels

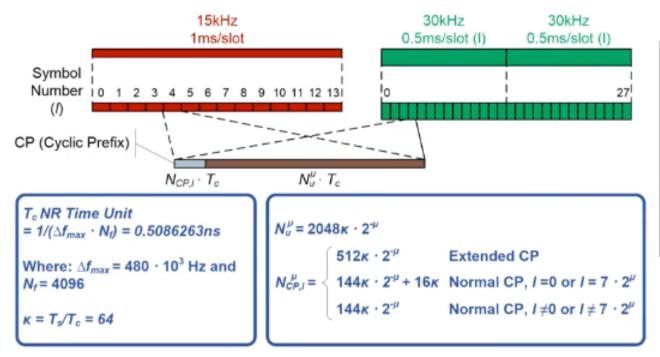
- Physical Random Access Channel (PRACH), used by the UE to request initial access as well as during the beam management process;
- Physical Uplink Control Channel (PUCCH), which carries Uplink Control Information (UCI) and contains different information such as CSI, HARQ or scheduling requests;
- Physical Uplink Shared Channel (PUSCH), which transmits the data content to the gNB.


UL reference signals are used:

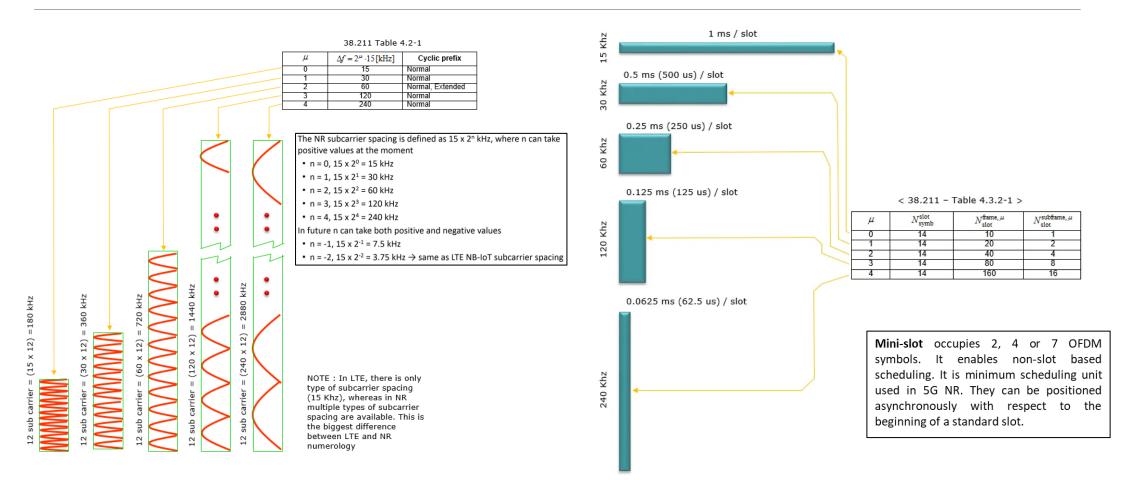
• DMRS, PT-RS and Sounding Reference Signals (SRS), equivalent to CSI-RS in the DL


Mapping among logical/transport/physical channels

Frames / subframes / slots/ OFDM symbols



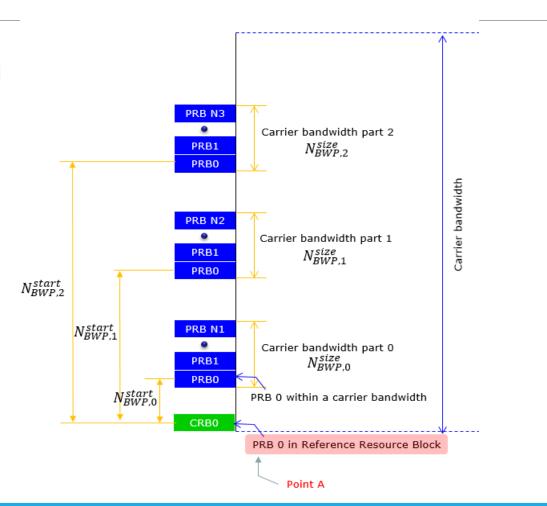
OFDM symbols per slot (with CP normal and extended)



OFDM symbols per slot (with CP normal and extended)

Time units $T_c = 1/(\Delta f_{max} \cdot N_f)$ where $\Delta f_{max} = 480 \cdot 10^3$ Hz and $N_f = 4096$.

Parameters	5G	LTE	LTE-A (5 CCs)	802.	11ac
Carrier Bandwidth [Mhz]	200	20	100	20	160
Subcarrier spacing [kHz]	60	15	15	312.5	312.5
Symbol Length [us]	16.67	66.67	66.67	4	4
FFT size	4096	2048	5×2048	64	512
Effective subcarriers	3300	1200	6000	56	484
TTI duration [ms]	0.25	1	1	variable	variable
Number of GPs	3	2	2	none	none
Number of symbols per frame	14	14	14	n.a	n.a
CP duration [us]	1	4.7 (short)	4.7 (short)	0.4 (short)	0.4 (short)
GAP duration [us]	0.89	66.67 (min)	66.67 (min)	none	none
Overhead (CP+GAP) [%]	6.67	7.25	7.25	11	11
HARQ Process	4	up to 15	up to 75	none	none

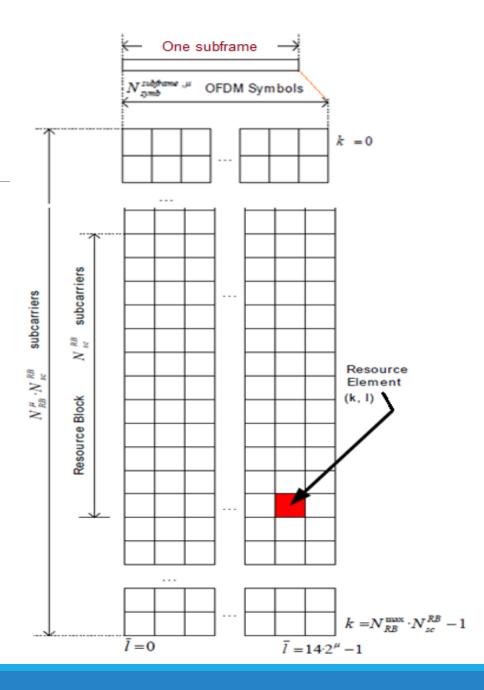


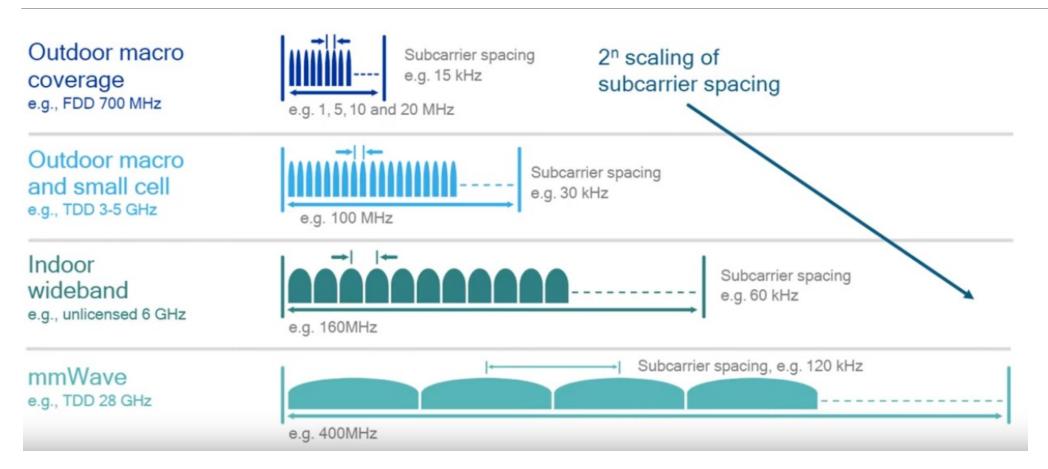
- Resource block = 12 subcarriers
- Resource Element = 1 subcarrier x 1 OFDM symbol

38.211 Table 4.2-1

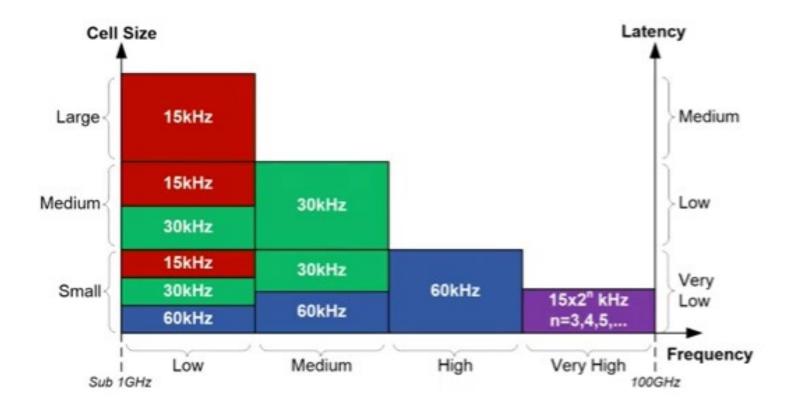
μ	$\Delta f = 2^{\mu} \cdot 15 \text{[kHz]}$	Cyclic prefix
0	15	Normal
1	30	Normal
2	60	Normal, Extended
3	120	Normal
4	240	Normal

•Bandwidth parts (BWP)

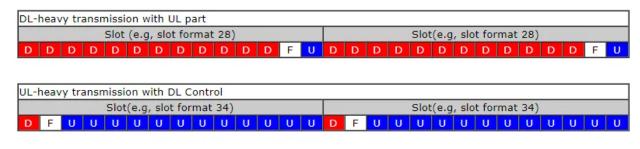



• Resource block = 12 subcarriers

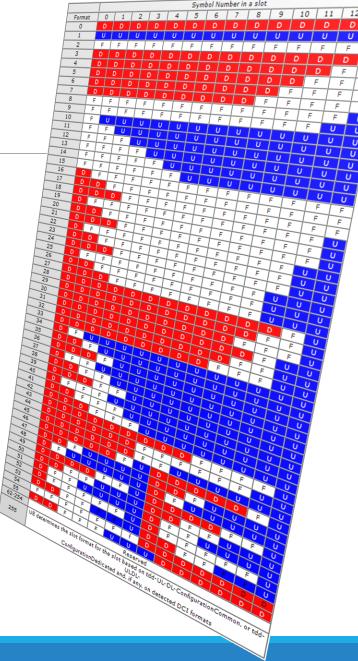
• Resource Element = 1 subcarrier x 1 OFDM symbol

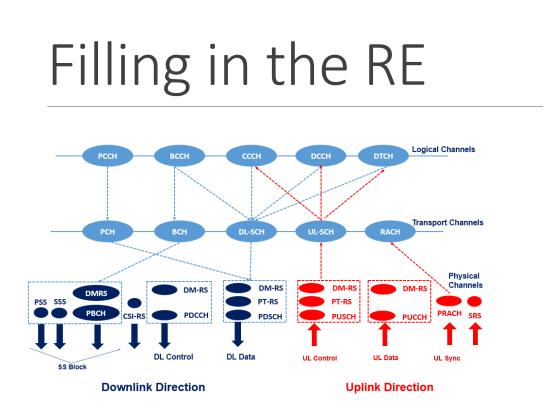

38.211 Table 4.2-1

μ	$\Delta f = 2^{\mu} \cdot 15 \text{[kHz]}$	Cyclic prefix
0	15	Normal
1	30	Normal
2	60	Normal, Extended
3	120	Normal
4	240	Normal

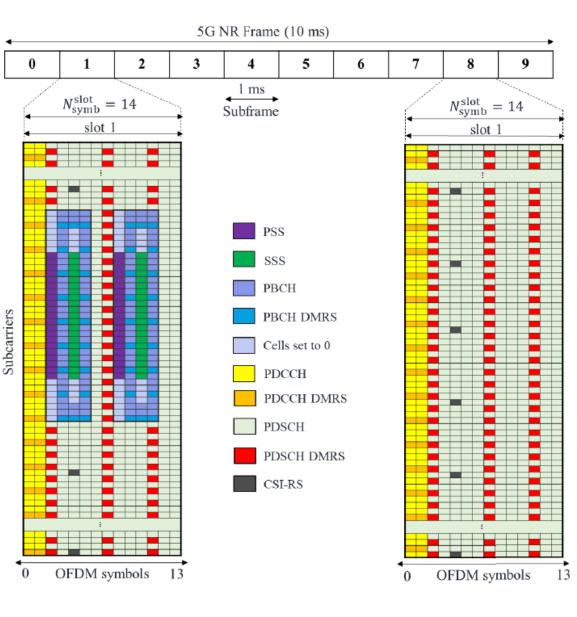


Selecting the numerology


Slot Frame Indicator



Slot	t ag	greg	atio	n f	for	DL-ł	neav	y tra	ansn	nissi	on (e.g,	for e	eMB	3)													
					Slot	t(e.g), slo	ot fo	rma	t 0)									Slot	(e.g	j, slo	ot fo	rmat	: 28)				
D	D	D	D		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	F	U


Slo	t ag	ggı	rega	atior	n <mark>f</mark> or	UL-	neav	y tra	ansm	nissi	on (e.g,	for e	MBE	3)													
							S	ot													S	lot						
D	F	-	U	U	U	U	U	U	U	U	U	U	U	U	D	U	U	U	U	U	U	U	U	U	U	U	U	U

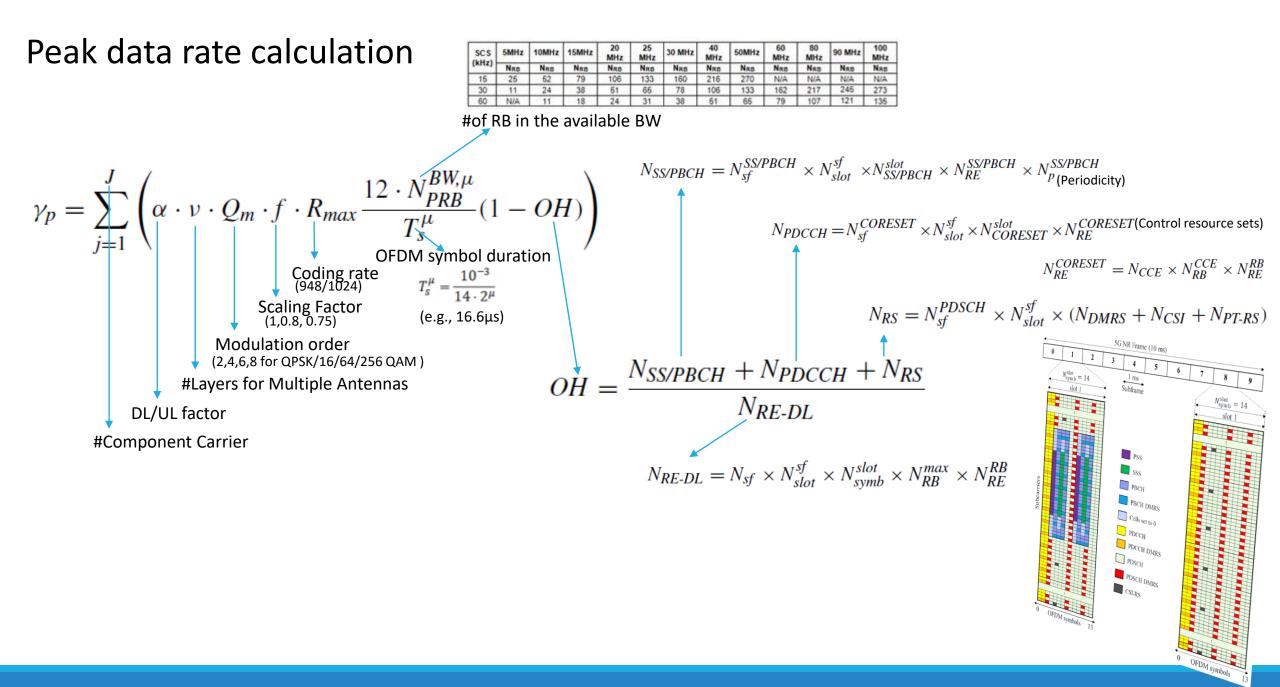
Transmission Time Interval (TTI): It is composed of consecutive OFDM symbols in the time domain in a particular transmit direction

Numerology	Subcarrier Spacing (kHz)	CP type	Supported for Data (PDSCH, PUSCH etc)	Supported for Sync (PSS,SSS,PBCH)	PRACH
N/A	1.25		No	No	Long Preamble
N/A	5		No	No	Long Preamble
0	15	Normal	Yes	Yes	Short Preamble
1	30	Normal	Yes	Yes	Short Preamble
2	60	Normal,Extended	Yes	No	Short Preamble
3	120	Normal	Yes	Yes	Short Preamble
4	240	Normal	No	Yes	

4/3/2022

KPI calculation methodologies

- Inspection
 - Review of functionalities and parameters of the technology under evaluation
- Analysis
 - Mathematical procedures
- Link level Simulations (PHY/MAC, single user)
 - Simulation that target KPIs that dependent on the physical layer and radio channels (e.g., BER).
 - Link-level simulations are used to determine the performance between the gNB and the UE under specific channel conditions
- System level Simulations (Full stack, multiple users)
 - Simulations that are applied to KPIs that depend on instantaneous network conditions such as available infrastructure, radio resources, number of users or radio conditions


Evaluation of selected KPI list

- Bandwidth
- Peak data rate
- Peak spectral efficiency
- User plane latency
- Control plane latency
- Energy Efficiency
- X% percentile spectral efficiency
- User experienced data rate
- Average spectra efficiency
- Area traffic capacity
- Mobility

Bandwidth

In FR1 (450 MHz - 6 GHz), 5G allows bandwidths from 5 MHz to 100 MHz
In FR2 (24.25 GHz - 52.6 GHz), 5G offers values from 50 MHz to 400 MHz

FR	μ	BW (MHz)	N_{RB}^{max}	CA CC	CA BW (GHz)
	0	50	270		0.8
FR1	1	100	273		1.6
	2	100	135	16	1.6
FR2	2	200	264		3.2
TK2	3	400	264		6.4

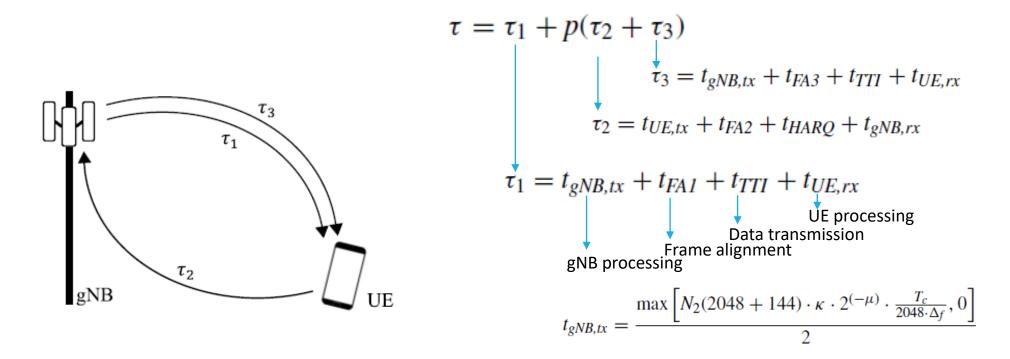
Peak data rate calculation

	μ	Overhead	γ_p SISO	γ_p MIMO	γ_p SISO+CA	γ_p MIMO+CA
	0	0.1037	0.30	2.40	4.81	38.54
DL	1	0.1036	0.60	4.87	9.75	78.05
	2	0.1076	0.59	4.78	9.57	76.62
	0	0.0834	0.30	1.22	4.90	19.60
UL	1	0.0815	0.62	2.49	9.99	39.99
	2	0.0826	0.62	2.49	9.98	39.54

Frequency	SCS	Bandwidth	DL	UL	Efficiency DL	Efficiency UL
range						
FR1	15 kHz	50 MHz	288.9 Mbit/s	309.1 Mbit/s	5.78 bit/s/Hz	6.18 bit/s/Hz
FR1	30 kHz	100 MHz	584.3 Mbit/s	625.0 Mbit/s	5.84 bit/s/Hz	6.25 bit/s/Hz
FR1	60 kHz	100 MHz	577.8 Mbit/s	618.1 Mbit/s	5.78 bit/s/Hz	6.18 bit/s/Hz
FR2	60 kHz	200 MHz	1.08 Gbit/s	1.18 Gbit/s	5.40 bit/s/Hz	5.90 bit/s/Hz
FR2	120 kHz	400 MHz	2.15 Gbit/s	2.37 Gbit/s	5.38 bit/s/Hz	5.93 bit/s/Hz
Comparison with LTE	1					
All bands	15 kHz	20 MHz	100 Mbit/s	100 Mbit/s	5.00 bit/s/Hz	5.00 bit/s/Hz
Comparison with 3G						
All bands	-	5 MHz	21.1 Mbit/s	17.2 Mbit/s	4.22 bit/s/Hz	3.44 bit/s/Hz

Peak Spectral Efficiency

$$\gamma_p = \sum_{j=1}^{J} \left(\alpha \cdot v \cdot Q_m \cdot f \cdot R_{max} \frac{12 \cdot N_{PRB}^{BW,\mu}}{T_s^{\mu}} (1 - OH) \right)$$
$$\eta_p = \frac{\gamma_p}{\alpha \cdot BW}$$

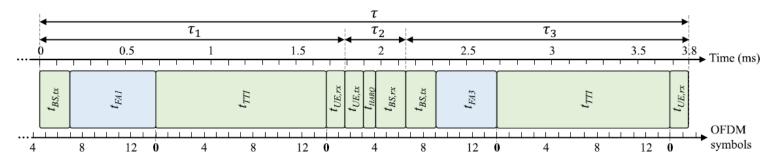

The IMT-2020 requirement is 30 bit/s/Hz in the DL and 15 bit/s/Hz in the UL

		I	DL	τ	UL				
	μ	η_p SISO	η_p MIMO	η_p SISO	η_p MIMO				
	0	6.02	48.17	6.12	24.51				
FR1	1	6.09	48.78	6.24	24.99				
	2	5.98	47.89	6.17	24.71				

ITU-R defined the average SE minimum requirements for all three eMBB test environments for IMT-2020, i.e., 9 bit/s/Hz/TRxP for InH, 7.8 bit/s/Hz/TRxP for UMa and 3.3 bit/s/Hz/TRxP for Rma Hotspot (InH), Dense Urban (UMa) and Rural (RMa)

User Plane Latency

Transmission time (t1) + probability of retransmission (HARQ t2 + Retransmission time t3)



eMBB → 4ms

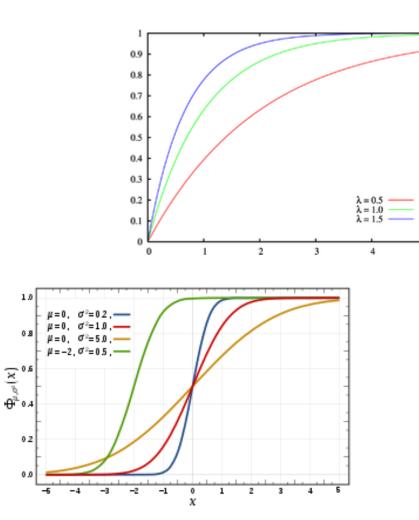
URLLC \rightarrow 1ms

User Plane Latency

Transmission time (t1) + probability of retransmission (HARQ t2 + Retransmission time t3)

The total amount of time needed for the data transmission without HARQ retransmissions, is 1.8 ms

Slot configuration	HARQ probability	$\mu = 0$	$\mu = 1$	$\mu = 2$
	p = 0	0.50	0.27	0.23
2 symbols	p = 0.1	0.58	0.32	0.27
	p=1	1.35	0.77	0.66
	p = 0	0.71	0.38	0.28
4 symbols	p = 0.1	0.82	0.44	0.34
	p=1	1.85	0.95	0.78
	p=0	1.03	0.54	0.36
7 symbols	p = 0.1	1.18	0.62	0.41
	p = 1	2.53	1.29	0.86
	p=0	1.80	0.92	0.55
14 symbols	p=0.1	1.98	1.02	0.63
	p = 1	3.78	1.91	1.30


Support of URLLC

Some key techniques in the PHY/MAC layer to reduce the latency include the following:

- Frequent transmission opportunities that minimize waiting time
 - Frequent monitoring occasions for DL control channel
 - Frequent opportunities for UE to transmit Scheduling Request (SR) on the uplink (UL)
 - Flexible scheduling timing between the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel/Physical Uplink Shared Channel (PDSCH/PUSCH)
- Grant-free (or configured grant) UL transmission
 - gNB to configure periodic UL resources for a UE; when the UE has data, it can transmit on the configured resources without the need for dynamic UL grant
- Flexible transmission duration (short duration for both data and control channel) minislots
- Flexible frame structure for Time Division Duplexing (TDD)
- Short UE processing time
- Short next-generation NodeB (gNB) processing time

https://www.5gamericas.org/wp-content/uploads/2019/07/5G_Americas_URLLLC_White_Paper_Final__updateJW.pdf

5th percentile of user spectral efficiency

Percentiles: Let 0 . The*p* $th percentile of the RV X is the value <math>x_p$ which separates the smallest p% of X's values from the largest (100 - p)%. In probabilistic terms, the *p*th percentile satisfies the equation $P(X \le x_p) = p/100$. Thus we have

$$\frac{p}{100} = P(X \le x_p) \tag{1}$$

$$= P(-\infty < X \le x_p) \tag{2}$$

$$= \int_{-\infty}^{x_p} f_X(x) dx \tag{3}$$

$$= F_X(x_p) \tag{4}$$

From lines 3 and 4 above, we see that we can compute x_p from either the density function f_X or the CDF F_X of X.

Example 1: In example 2.45, pp. 109-110 in your book, the author computes the 50th percentile x_{50} and the 60th percentile x_{60} for the RV with density

$$f_X(x) = \begin{cases} 0.1 e^{-0.1x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

To compute x_{50} using f_X we use (3) above:

$$\frac{50}{100} = \int_{-\infty}^{x_{50}} f_X(x) dx$$
$$= \int_{0}^{x_{50}} 0.1 e^{-0.1x} dx$$
$$= -e^{-0.1x} |_{0}^{x_{50}}$$
$$= 1 - e^{x_{50}}$$

Solving this yields $x_{50} = 6.931$.

5

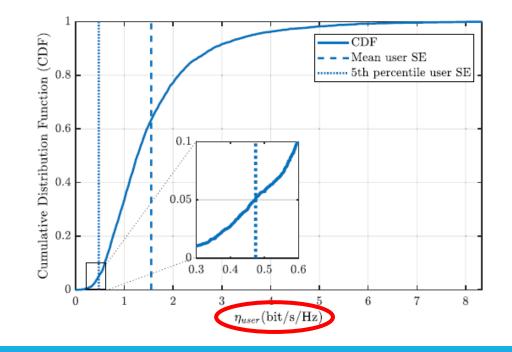
5th percentile <u>of user spectral efficiency</u>

user spectral efficiency

$$r_i = \frac{R_i(T_i)}{T_i \cdot \alpha \cdot BW}$$

The IMT-2020 requirements for 5th percentile user spectral efficiency are 0.3 bit/s/Hz for **InH**, 0.225 bit/s/Hz for **UMa** and 0.12 bit/s/Hz for **RMa**

- Throughput is defined as the rate of correctly received bits.
- For the normalized user throughput, r_i , of user *i*, the correctly received bits $R_i(T_i)$, meaning the bits contained in the Service Data Units (SDUs) delivered to upper layers, are added up over a certain period of time T_i and
- Divided by T_i as well as the effective channel bandwidth, BW

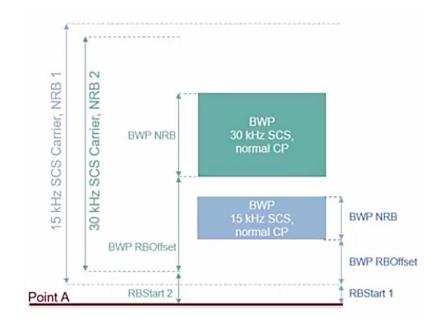

5th percentile <u>of user spectral efficiency</u>

user spectral efficiency

$$r_i = \frac{R_i(T_i)}{T_i \cdot \alpha \cdot BW}$$

The IMT-2020 requirements for 5th percentile user spectral efficiency are 0.3 bit/s/Hz for **InH**, 0.225 bit/s/Hz for **UMa** and 0.12 bit/s/Hz for **RMa**

- Throughput is defined as the rate of correctly received bits.
- For the normalized user throughput, ri, of user *i*, the correctly received bits Ri(Ti), meaning the bits contained in the Service Data Units (SDUs) delivered to upper layers, are added up over a certain period of time Ti and
- Divided by Ti as well as the effective channel bandwidth, BW



5th percentile <u>of user experienced data rate</u>

user spectral efficiency

 $\gamma_{\rm user} = BW \cdot \eta_{\rm user}$

The ITU-R requirements for 5th percentile for DL a minimum requirement of 100 Mbit/s for IMT-2020 in UMa test environment

5th percentile <u>area traffic capacity</u>

Average spectral efficiency

$$C_{\text{area}} = \rho \cdot BW \cdot \eta_{\text{avg}}$$

Density of the reception points

The IMT-2020 requirement for this KPI is 10 Mbit/s/m2 for DL in **InH** test environment

Evaluation of selected KPI list

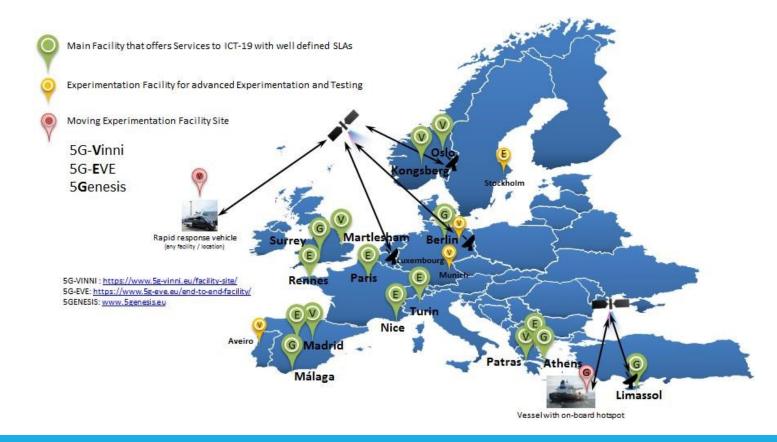
Bandwidth

KPI	IMT-2020	5G NR	Fulfillment
Bandwidth (GHz)	1	6.4	\checkmark
Peak data rate (Gbit/s)	20	78.05	\checkmark
Peak SE (bit/s/Hz)	30	48.78	\checkmark
User plane latency (ms)	1	0.23	\checkmark
Control plane latency (ms)	20	11.6	\checkmark
Energy efficiency (%)	Qualitative	99.73	\checkmark
5th perc. user SE (bit/s/Hz)	0.3	0.47	\checkmark
User exp. data rate (Mbit/s)	100	247.6	\checkmark
Average SE (bit/s/Hz/TRxP)	9	15.5	\checkmark
Traffic capacity (Mbit/s/m ²)	10	37.5	\checkmark
Mobility SE (bit/s/Hz)	0.45	2.64	\checkmark
	Bandwidth (GHz) Peak data rate (Gbit/s) Peak SE (bit/s/Hz) User plane latency (ms) Control plane latency (ms) Energy efficiency (%) 5th perc. user SE (bit/s/Hz) User exp. data rate (Mbit/s) Average SE (bit/s/Hz/TRxP) Traffic capacity (Mbit/s/m ²)	Bandwidth (GHz)1Peak data rate (Gbit/s)20Peak SE (bit/s/Hz)30User plane latency (ms)1Control plane latency (ms)20Energy efficiency (%)Qualitative5th perc. user SE (bit/s/Hz)0.3User exp. data rate (Mbit/s)100Average SE (bit/s/Hz/TRxP)9Traffic capacity (Mbit/s/m²)10	Bandwidth (GHz)1 6.4 Peak data rate (Gbit/s)20 78.05 Peak SE (bit/s/Hz)30 48.78 User plane latency (ms)1 0.23 Control plane latency (ms)20 11.6 Energy efficiency (%)Qualitative99.735th perc. user SE (bit/s/Hz) 0.3 0.47 User exp. data rate (Mbit/s) 100 247.6 Average SE (bit/s/Hz/TRxP)9 15.5 Traffic capacity (Mbit/s/m²) 10 37.5

Online calculators

5G NR: <u>5G NR Throughput calculator</u>, <u>5G NR Link budget calculator</u>, <u>5G NR ARFCN Calculator</u>, <u>5G NR GSCN Calculator</u>, <u>5G NR TBS Calculator</u>, <u>Spectral Efficiency 5G NR calculator</u>, <u>5G NR SSB SSS EPRE Power</u>
Calculator, <u>5G Neighbor planning calculator</u>, <u>QoS for 5G NR</u>
4G LTE: <u>4G LTE Throughput calculator</u>, <u>4G LTE Link budget calculator</u>, <u>4G LTE EARFCN calculator</u>, <u>4G LTE RS</u>
<u>RE Power calculator</u>, <u>4G LTE Users (CCE) calculator</u>, <u>4G LTE Timing Advance Distance Calculator</u>, <u>4G Neighbor planning calculator</u>, <u>QoS for 4G LTE</u>
NB-IoT: <u>NB-IoT Link budget calculator</u>

From theory to practice


In real implementations used for KPIs measurements the performance impact factors can be classified into three main categories, namely:

- The deployment and configuration aspects, referring to the technology that is selected for each domain of the service provisioning chain (Core, Transport, and Radio domains) and, also, to setup configurations, such as the selection of bandwidth size and antenna layers.
- The scenario under which an experiment/measurement is performed, referring to run-time factors that affect the performance values, such as the mobility of end devices, the channel conditions, and the traffic type used.
- The testing/experimentation procedure, referring to the methodology used for collecting measurements and calculating the KPI values, such as experiment repetitions applied, outlier values identification, and mean values calculation process, i.e., factors that affect the reliability of the measurements.

5G experimentation platforms/ testbeds

https://5g-ppp.eu/5g-ppp-platforms-cartography/

https://www.ip45g.de/en/5g-testbeds/

5G experimentation results

Technology Set (identifier)	3GPP Standardization		Radio access configuration							
	3GPP Release	3GPP Architectu re option	Band	BW (MHz)	Pattern	MIMO Layers	Max Modulation	Aggregation		
#TS_Malaga	Rel 15	NSA	5GNR:n78 4GRadio:B7	NR:40 4GRadio:20	NR:TDD 4GRadio:FDD	NR:2x2 4GRadio:4x4	NR:256QAM 4GRadio:256QAM	Single Carrier NR+LTE		
#TS_Athens	Rel 15	NSA	NR:n78 4GRadio:1	NR:50 4GRadio:10	NR:TDD 4GRadio:FDD	NR:2x2 4GRadio:2x2	NR:256QAM 4GRadio:256QAM	Single Carrier NR+LTE		
#TS_Surrey	Rel 15	NSA	5GNR:n78 4GRadio:38	NR:100 4GRadio:20	NR:TDD 4GRadio:TDD	NR:64x64 4GRadio:8x8	NR:256QAM 4GRadio:256QAM	Single Carrier NR+LTE		

КРІ	Tech&SetUp	Scenario	Target KPI		Complementary Measurements	
measurements (identifier)	(identifier)	(identifier)	Name	Mean Value	Best/peak Value	Name &Value of complementary measurements, if any
#KPIset_1	#TS_Malaga	#SC2_Iperf_indoor_UDP	DL Throughput	264.74 Mbps	269.88 Mbps	Mean SINR 21.4 dB, Mean RSRQ -10.8 dB, Mean RSRP -58 dBm
#KPIset_3	#TS_Athens	#SC2_Iperf_indoor_UDP	DL Throughput	369.27 Mbps	372.47 Mbps	Mean RSSI -51 dB, Mean RSRQ -6.5 dB, Mean RSRP -70.48 dBm
#KPIset_10	#TS_SurreyNSA	#SC3_lperf_outdoorNLOS_TCP	DL Throughput	492.08 Mbps	738.08 Mbps	n/a
#KPIset_11	#TS_SurreyNSA	#SC3_lperf_outdoorNLOS_TCP	UL Throughput	59.34 Mbps	73.40 Mbps	n/a
#KPIset_12	#TS_SurreyNSA	#SC4_Iperf_outdoorNLOS_UDP	UL Throughput	119.55 Mbps	125.08 Mbps	n/a