A RANDOMIZED CUTTING PLANE METHOD WITH
PROBABILISTIC GEOMETRIC CONVERGENCE*
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Abstract. We propose a randomized method for general convex optimization problems; namely, the minimiza-
tion of a linear function over a convex body. The idea is to generate N random points inside the body, choose the
best one and cut the part of the body defined by the linear constraint. We first analyze the convergence proper-
ties of the algorithm from a theoretical viewpoint, i.e., under a rather classical assumption that an algorithm for
uniform generation of random points in the convex body is available. Under this assumption, the expected rate
of convergence for such method is proved to be geometric. Moreover, explicit sample size results on convergence
are derived. In particular, we compute the minimum number of random points that should be generated at each
step in order to guarantee that, in a probabilistic sense, the method converges at least as fast as the deterministic
center-of-gravity algorithm. From a practical viewpoint, the method can be implemented using Hit-and-Run ver-
sions of Markov-chain Monte Carlo algorithms, and we show how these convergence results can be extended to a
Hit-and-Run implementation. A crucial notion for the Hit-and-Run implementation is that of Boundary Oracle,
which is available for most optimization problems including LMIs and many other kinds of constraints. Preliminary
numerical results for SDP problems are presented confirming that the randomized approach might be competitive
to modern deterministic convex optimization methods.
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1. Introduction. Recent years exhibited a growing interest into randomized algorithms in
computer science, control and optimization; e.g., see [24, 36, 7]. There are numerous reasons for
this interest, from philosophical to computational ones. The present paper continues this line of
research for convex optimization. In particular, we consider a convex minimization problem of the
form

min ¢’z subject to x € X, (1.1)

where the set X C R” is a conver body, i.e., it is full-dimensional and bounded. Specifically, we
assume that there exist two full-dimensional Euclidean balls B, and Bg, of radii 0 < r < R, such
that B, C X C Br. The linear cost function is taken without loss of generality, since any convex
optimization problem can be reduced to this form.

The use of a cutting plane scheme for the solution of convex optimization problems as the one
above dates back to 1960 [17]. A center of gravity version of cutting plane, for a slightly different
problem formulation, was proposed almost simultaneously by Levin and Newman in 1965 [19, 26].
This methods can be viewed as the natural extension to general convex multi-dimensional functions
of the bisection algorithm for one-dimensional unimodal functions, and has been proved to have
extremely appealing features: it works also when the set X' is described by nonsmooth functions,
and its theoretical convergence is among the best known. Unfortunately however, despite its very
attractive theoretical behavior, the center of gravity algorithm has not been used in practice for a
very simple reason: For a generic conver set, computing the center of gravity turns out to be more
difficult than solving the original optimization problem.

As a result, the use of different types of centers, instead of the geometric center, have been
proposed in the literature. Most of the methods proposed for circumventing this problem can
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be classified as exterior-point methods, in that they use the center of a specific localization set,
which is updated at each step and is guaranteed to always contain the feasible set. First of these
techniques is the famous ellipsoid method developed by Shor, Yudin, Nemirovsky in 1970s [33, 39],
and used in 1979 by Khachiyan to show polynomial solvability of LPs [18]. The localization set in
this case is represented by an ellipsoid inscribing &X'. Evolutions of this approach lead to methods
based on the analytic center of a polytope inscribing X, see [13] and references therein for an
excellent survey.

In recent years, the interest on designing implementable methods based on center of gravity
has gained new interest motivated by the randomized scheme proposed in [3]. In this latter work,
the authors compute at each step an approzimate center of gravity of an outer polytope inscribing
X, based on points randomly extracted in the polytope. In the present work, we move a step
further and consider the possibility of randomly extracting points directly in the feasible set X.
This idea has been inspired by the recent results in [28].

The paper is structured as follows. In Section 2, we review the classical deterministic center-
of-gravity (DCG) method of [19, 26] and analyze its properties. The rate of convergence of the DCG
method has been estimated via Griitnbaum theorem (see below) and happened to be geometric. We
provide another result based on Radon theorem [31] which also guarantees geometric convergence.
In Section 3 we introduce a randomized cutting plane (RCP) scheme based on the generation of
random points in the feasible set. Namely, at each iteration, N points are generated, the best
of them z}, (corresponding to minc'z) is chosen and a cut of the half-space {z : ¢’z < ¢z} is
performed.

In the sections to follow, we analyze the probabilistic properties of the algorithm under the
quite standard assumption that a mechanism is available for generating points uniformly in a
convex body. First, in Section 4.1, we explicitly compute the expected rate of convergence of the
RCP algorithm; notably, for N = 1 this rate coincides with that of the DCG algorithm, while it is
shown to improve by a factor of In(N + 1) for N > 1. Then, in Sections 4.2.1-4.2.2, a novel and
different type of probabilistic analysis of the RCP algorithm is provided. In particular, we estimate
the probability that RCP converges slower than DCG and calculate the number N of points to be
generated in RCP to guarantee a better convergence with prescribed (high) probability.

The second part of the paper discusses the practical implementation of the algorithm, which
is based on Hit-and-Run (H&R) versions of the Monte Carlo method, — the procedure aimed at
approximately uniform generation of points in a body via random walks.

The application of H&R to convex optimization has been first proposed in [3]. Note that the
method in [3] differs from the implementable version of RCP presented in Section 5 in the following
crucial aspects:

i) the problem formulation in [3] differs from (1.1), and it is this difference that allows us to
introduce the concept of best point;
ii) the method proposed in [3] updates at each step an outer polytope inscribing X', while
here we update directly the set A’;
ili) in [3], the authors use a so-called Separation Oracle, while we exploit here a Boundary
Oracle for the set X.
Notice that in view of i)-ii), our method can be considered an interior-point algorithm, while the
method in [3] in fact represents a classical exterior-point localization scheme.

The results of numerical experiments with the proposed algorithm for semidefinite program-
ming problems are described in Section 6.

Preliminary results obtained in the two conference papers [8], [9] serve as a basis for the
exposition to follow.
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2. Deterministic Center of Gravity Algorithm. For a convex body X, define its center

of gravity as
/ zdz
x

cg(X) = .
//Y dx

Then, the deterministic cutting plane method based on recursive cutting of the feasible set through
the center of gravity can be stated as follows, see also [8, 28].

Algorithm 1 (DCG algorithm)
Input: X
Output: z*
1 k<0, X, < X;
2 xp < cg(Ak);
3 X1 < {:L‘ €EXy :cl(x—mp) < O};
4: check Stopping Rule; goto 2.

xa

Fic. 2.1. Illustration of the DCG algorithm.

The behavior of the deterministic center of gravity cutting plane is illustrated in Figure 2.1.
The method works as follows. Let Xy = X, and let g be the center of gravity of Xy. Then,
proceed by considering the new set

X = {zeXc(z—20) <0} CA
obtained by cutting off a portion of Xy using the hyperplane
Ho = {xeR” : cT(x—ajo)zo}.

For this convex set X in turn, compute its center of gravity x; = cg(X1) and construct the
hyperplane H; passing through x1, which defines the set X5 C X, etc. As a result, we obtain a
sequence of embedded sets X, C Xp_1 C --- C X1 C Xy and a sequence of points z; having the

property
CT$k+1 < chk.

The convergence analysis of this algorithm can be based on the following proposition due to
Griinbaum [15].
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PROPOSITION 2.1 (Griinbaum). Let X € R™ be a conver body and let zq = cg(X) be its
center of gravity. Consider any hyperplane H = {x ER" : ¢z —2qg) = 0} passing through zg.
This plane divides the set X in the two subsets

X={zecX:cz>clag},
Xy={zxecXx:cz<clag).

Then, the following relations hold for i =1,2

1/n

vol (X)) < (1 - ( o ) ) vol (X) < (1—1/e)vol (X). (2.1)
n+1

From this proposition, it follows that each step of the DCG algorithm guarantees that a given

portion of the feasible set is cut out, namely vol (Xy41) < (1—1/e)vol (X)). A recursive application
of this inequality immediately leads to the volume inequality

vol (X)) < (1 —1/e)*vol (Xy) ~ (0.63)*vol (Xp) (2.2)

which proves that DCG has guaranteed geometric convergence in terms of volumes. Notice that
the volume reduction in (2.2) is completely independent of all problem parameters, including the
dimension n.

A different type of convergence analysis of the DCG algorithm, which provides an estimated
rate of monotone decrease of the cost-function values sequence

fk = Ckaa

can be deduced from the following result by Radon [31] on the measures of symmetry of convex
bodies.

PROPOSITION 2.2 (Radon). Let X € R™ be a convexr body and g = cg(X) be its center of
gravity. Denote by H an arbitrary (n — 1)-dimensional hyperplane through xc, and let Hy and Ha
be the two hyperplanes supporting X and parallel to H. Denote by

min{dist(H, H1); dist(H, Hz)}
max{dist(H, H1); dist(H, Ha)}

r(H) =
the ratio of the distances from H to Hq1 and Ha, respectively. Then

i > .
II%_I{H’I"(H) >1/n

This result immediately applies to the DCG algorithm. Indeed, with H; and H being the two
hyperplanes through the two successive points x; and x4 as described above, and Hs being the

supporting hyperplane through the optimal point z* = argminc 'z, we arrive at the following
estimate:
* n *
fror = < (= 1), (2.3)

where f* is the optimal value of the objective function. In particular, the following lemma is an
immediate consequence of Proposition 2.2.

LEMMA 2.3 (Convergence of DCG). The DCG algorithm computes an a-optimal solution (i.e.
such that fr, — f* < ) in at most

InL2
k= ’Vlnnjfl-‘ =0(nnD/a)

steps, where D = |fo — f*|.
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Proof. The proof immediately follows noting that, from (2.3), we have

k k
f-rs () - s () o

and imposing fr — f* < a. 0

In other words, the method is expected to have a guaranteed geometric rate of convergence.
Notably, to the best of our knowledge, this result has never been used in optimization, in contrast
to similar results on the guaranteed volumetric reduction (in the spirit of Proposition 2.1), which
are typical to various modifications of the ellipsoid method.

However, as already mentioned in the Introduction, this nice convergence property has a
crucial drawback: The practical implementation of the DCG algorithm is hindered by the fact that
computing the center of gravity turns out to be an NP-hard problem, even for the simple case
when X is a polytope, as recently proved by [29]. This motivates the introduction of randomized
version of the method, as detailed in the next section.

3. A Randomized Cutting Plane Algorithm. We propose the following randomized
modification of the DCG scheme.

Algorithm 2 (RCP algorithm)

Input: X
Output: z*
1 k<=0, X, < X;
2: generate Ny uniform random samples in Xy, {2, ... z(V¥)};
3: T & arg minze{m(1>,...7z<Nk>} clw;
4: Xyq1 < {x EXyp:cl(z—mp) < 0};
5: check Stopping Rule; goto 2.

Fic. 3.1. A sketch of the proposed randomized cutting scheme. The cut at step k is performed at the random
point with the smallest cost value (in this case xp = 1(3)). The gray area indicates the set X1 1. The dashed line
is the hyperplane passing through xq, the center of gravity of Xj.

The randomized scheme we propose for computing the query point at step k is very simple
and intuitive. At step k, we generate N samples in Xj; then, the next query point x; is selected
as the random sample providing the minimum to the objective function. The intuition behind
Algorithm 2 is illustrated in Figure 3.1. Clearly, the k-the step of the RCP algorithm will perform
better than a corresponding step of a deterministic DCG method as long as at least one random
point will fall below (in terms of the cost function) the center of gravity g of the set Xj. Notice
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that the number of sample points drawn at each iteration is allowed to depend on the iteration
index k; this is a key feature that we exploit in Section 4.2.2.

In the second part of this paper, we discuss in detail how the proposed scheme can be easily
implemented using techniques based on random walk and present specific applications of this
methodology. In the next section we instead concentrate on deriving the theoretical properties of
the RCP.

It should be noted that a method of a very similar flavor was proposed in [28], with the
cuts being performed through the estimated centers of gravity of the X} sets; however, no formal
theoretical analysis of the overall scheme has been provided in [28].

4. Probabilistic Analysis of RCP. In order to obtain rigorous convergence results, in this
section we make the abstract assumption on the availability of a mechanism for generating uniform
samples in a convex body. Namely, we assume that the following oracle is available:

AssUMPTION 1 (Uniform Generating Oracle). We assume that a uniform generating oracle
UGO is available such that for any conver set X € R™, a call to UGO(X, N) returns N random
i.3.d. points uniformly distributed in X .

We stress out that Assumption 1 is made only for theoretical analysis purposes and is quite
common in the computational geometry community, see e.g. [30].
First, in the next subsection, we are aimed at analyzing the expected behavior of the RCP scheme.

4.1. Expected convergence rate of RCP. In this section, we explicitly evaluate the ex-
pected convergence rate of the RCP algorithm and formally show that it improves by a constant
factor upon that of DCG. To this end, we consider N, = N and let

{zW ... 2™} = UGO(XAy, N)
be N uniform random points in X, and define the following random variables:

fO =@ =1,...,N

) )

and

fup = min_fO. (4.1)

.....

The random variable f[;) represents the so-called first order statistics of @ e.g., see [10]. The key
theorem below proves that, for every convex body X, the expected value of the relative distance
between f[;) and the optimum f* is bounded from below and from above by constants that depend
only on n and N.

THEOREM 4.1. Let X C R" be a conver body. Given ¢ € R", define h = (maxyc'z —

miny ¢'x) and f* =miny ¢'x. Then, it holds that

1 _ Elfm—/]
nN+1 = h

IN

%B(N +1,1/n) (4.2)
< <N1+1> ' (4.3)

Proof. Assume, without loss of generality, that ¢ = [10 --- 0] (that is, ¢’z = x1) and that
r* = argminy ¢ 'z = 0. We begin by proving the upper bound in (4.2). The first step in the proof
of Theorem 4.1 is closely related to the proof of Lemma 4 in [3]. Define the function

1
() = Loty /X_ d

where B(-, -) is the Euler Beta function.
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o

Fic. 4.1. First step of the proof of Theorem 4.1

that represents the (n — 1)-dimensional volume of X’ intersected with the hyperplane ¢ 'z = s, as

a fraction of the n-dimensional volume of X'. Then, define the set X obtained by replacing each
cross-section X N {z : x1 = s} by an (n — 1)-dimensional ball of volume ¢x(s) and centered at
the point [s0 --- 0], as shown in Figure 4.1. The set X, has the same volume as X, and it holds
that ¢x(s) = da,(s). Moreover, if we let S; and Sy be the cross-sections of Xy at s; and sa,
respectively, and let S be its cross-section at a point s = As; + (1 — N)sa, A € [0,1], then, by the
Brunn-Minkowski inequality (e.g., see [12]), we have

vol (8)7™T > vol (AS1 + (1 — A)S2)™T > Avol (81)7 T + (1 — AJvol (So)™T.  (4.4)
Hence, if we denote by 7(s) the radius of the (n — 1)-dimensional ball at s, then (4.4) implies that

r(Asy + (1 — N)sa) > Ar(s1) + (1 — A)r(sz). This, in turn, implies that r(s) is a concave function,
thus X} is a convex set.

Fic. 4.2. Second step of the proof of Theorem 4.1

As a second step, define now the cone K with base area S = 7vol(X), the axis directed
along ¢ and located as shown in Figure 4.2, with h being the height of K. Then, by construction,
we have vol (K) = vol (X) = vol(Xp). Let s* be the coordinate at which the sets Xy and K
intersect, see Figure 4.2. Next, for every s € [0, h], define the sets X*(s) = {x € X : z; > s},
Xf(s) = {x € & : 2y > s} and KT(s) = {x € K : 21 > s}. Then, the following chain of
inequalities holds

, v (s vol (X, (s
P{f" > s} = Olvffuc() - iéﬁxé)))
vol (K*(s))  h"™—s"

vol(K) —  hn»




8 F. DABBENE, P. SHCHERBAKOV AND B.T. POLYAK

where the last inequality follows from the fact that, for s > s*,

vol (X, (s)) < vol (KT (s))

vol(Xy) —  wvol(K)
and, for s < s*,
vol (X7 (s)) _ ., vol (X5 (s)) o Yol (K~ (s)) _ vol(K*(s))
vol (Xp) vol (Xp) — vol (Xp) vol (K)

where X, (s) ={z € Xp:z1 <s}and K~ (s) ={z € L: 21 < s}.

K

K

h

F1G. 4.3. Third step of the proof of Theorem 4.1: the sets K and K1 (s)

As a final step for proving the upper bound in (4.3), notice that fj;; is a positive random
variable, and hence, we may write

E [f[ﬂ = /OhP{f[l] > s}ds = /Oh (p{f(i) > 5}>Nds
fom (45 < | ' = 3”>Nds
[t =s"/h"] - /1(1 _ Ve ta = "By 1 1m).
n 0 n

Finally, applying Theorem 3.4. in [1], we get the following bounds

1 1

N \" 1 1 \"
1-(——] <=B(N+11/n)<|——

<N+1) n ( +’/n)—(N+1) ’

thus proving the inequality in (4.3), with the cone K being the attainable “worst-case” configura-
tion for X.

The lower bound in (4.2) can be proved similarly. Namely, instead of the I above, consider
the “inverted” cone; then with the reasonings identical to those above, it proves to be the “best
case” configuration. We hence derive the following inequality

PO >} > 2 (4.6)

Therefore, we obtain

=L
3
B
—
=~
o
=
\Y

h
s" h
il _ 4.
/0 (h“) =T8T (47)
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which concludes our proof. 0

From Figure 4.4, it is seen that the upper and lower bounds derived in Theorem 4.1 are indeed
tight: the upper bound is attained when the set X has the (“worst-case”) cone configuration (<),
while the lower bound corresponds to the (“best-case”) inverted cone configuration (). In the
figure, we also plot the empirical mean values of f};) (averaged over 10,000 realizations) computed
for these two cones as well as for two intermediate configurations, namely a box and a ball ({s-
and fo-norm balls).

Upper/lower bouds and computed means

3 %n
. 0o
0.05- |\ : BCRE O::ve (XN Qoo @ [T} .
D ...... Q Q- o OO0
[ S - Y
. ‘ p > b S ? ..... [ RRRRE Q- 3 Bl BB [« [ o R - PR [~ B
20 40 60 80 100 120 140 160 180 200
N

Fic. 4.4. Illustration of the derived bounds on the mean for n = 3: cone configuration, upper bound (<);
inverted cone configuration, lower bound (I>); cube configuration (O); ball configuration (o).

REMARK 1 (Connections with Radon’s result). Theorem 4.1 constitutes an important and
non-trivial extension of Proposition 2.2. Indeed, for N = 1, we have E [f[l]] =E [f(i)] = cg(X),
and

1
—B(2,1 = .
B2, 1) =

Analyzing inequality (4.3), we see that for fixed dimension n, as the number of samples N
goes to infinity, the expected value of f|;; does converge to f*, as one may expect. However, we
also observe that for fixed N, the distance (fj) — f*) tends to h as the dimension n grows. Notice
that this fact implies that a simple implementation of a randomized algorithm, where we draw N
samples in X and adopt the best one as a candidate optimizer, is bound to fail as the dimension
grows. Indeed, if we were to impose a relative precision

E[fu—f]/h<a, a<l,

the number of uniform samples to be drawn in X would grow exponentially as
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This is not surprising, since it is well known that in general, an exponential number of samples is
needed to approximate with a given precision the minimum of a function, see [2].} This latter rea-
soning further motivates the randomized cutting plane approach we are proposing. In particular,
the following corollary proves that the RCP scheme possesses expected geometric convergence.

COROLLARY 4.2 (Expected convergence of RCP). The expected number of steps required for
the RCP algorithm with Ny, = N to compute an a—optimal solution (i.e., such that fr, — f* < a)
1 at most

k= [hl(Nl_’_l)nlnR/a—‘ .

Proof. A direct application of Theorem 4.1 shows that at step k we can write

Elfi — 1] < <N1+1) (B lfoes — 7)) < <N1+1) (fo— 1) < (N1+1>R (4.9)

Thus, the corollary is immediately proved imposing E [fr — f*] < a. O

This corollary constitutes one of the main contributions of the present work. It is interesting
to remark that the result is perfectly consistent with intuition; in particular, it is easily verified
that the derived convergence rate reduces to the one in Lemma 2.3 when N = 1, while it improves
by a factor of In (N + 1) when N > 1.

We complete this section on the expected rate of convergence by extending the results of
Theorem 4.1 to the analysis of the variance of the proposed method.

THEOREM 4.3. Let X C R"™ be a convex body. Define h, f*, and fj1; as in Theorem 4.1.
Moreover, without loss of generality assume that f* = 0. Then, it holds that

2

%(E[fﬁ]]) = %B(N+1,2/n) < <Ni1>n (4.10)
%(Var ful) = %(E[fﬁ]]—]EQ[fm]) < (Nil)n (4.11)

Proof. Assume again that ¢ =[10 --- 0] and 2* = argminy c¢'z = 0. Then, f11) is a positive
random variable; hence, we may write

E {fﬁ]} — /Oh ]}D{fﬁ] > stds = /Oh P{f[l] > \/g}ds = /Oh (]P){f(i) > \/g})NdS

h n _ on/2 N
[from (4.5)] < / (hhj> ds
0

2 gl 2
[t = s™2/h"] _ (1—t)Nen—ldt = &B(N-i- 1,2/n),
n Jo n
thus proving the first inequality in (4.10). The second inequality (4.10) can be proved by applying
Theorem 3.4 in [1]. Inequality (4.11) directly follows from (4.10) by simply dropping out the
second term. 0
The theorem above shows that the standard deviation of fj;) decreases as the number of
samples N increases. However, it should be noted that, contrary to the expected value result,
this bound is not tight; indeed, numerical experiments testify to a faster convergence with respect
to N.

1
Hnterestingly, if we apply inequality (4.8) with ah = cg(X), we get N = R#) "—‘ <e.
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4.2. Sample size results. In this section, we perform a different probabilistic analysis of the
proposed randomized scheme. This allows us to derive explicit bounds on the number of samples
to be drawn at each step of the algorithm in order to guarantee with arbitrarily high probability
the desired convergence behavior.

4.2.1. Single step analysis. We first analyze the theoretical behavior of a single step of the
RCP algorithm. To this end, consider the situation at a generic step k and define by zg the center
of gravity of the set X} and by xj the query point returned by line 3 of Algorithm 2. Formally,
define Worsey, as the event of RCP returning at step & a query point which is worse (i.e. above in
terms of cost-function value) than the center of gravity of Xj. The probability of this latter event
can be easily bounded in the following way:

P{Worse,} = P{c'z; >c'zg}

= IP’{CTx(i) >z, i=1,...,Np}
P{c'z® > pg} Ve
(1—-1/e)™,

IN

where the last inequality follows from Proposition 2.1. Hence, we have the following lemma
showing that, by appropriately selecting the number of samples Nj, we can guarantee with a
prescribed arbitrarily high probability that the k-th step of RCP algorithm performs better than
the corresponding DCG step.

LEMMA 4.4 (Single step analysis of RCP). Given a probability level e > 0, set
1
Nk Z 2.2In —.
€

Then, with probability at least 1 — €, it holds

clay < c¢Teg(Xp). (4.12)

Proof. The lemma is easily proved by noticing that

Ini

Ny >—¢—

In 1—11/e

implies (1 —1/e)™ < eand (Iny—37;) 7' 21802 <22 O

The previous lemma shows that one can always guarantee a priori that a single step of the
RCP algorithm will perform at least as good as the corresponding DCG step. In the next section,
we concentrate on the overall behavior of the algorithm and derive a specific bound, based on a
Bonferroni-like inequality, on the number of samples required to guarantee (with high probability)
that the RCP algorithm will expose the same geometric rate of convergence as that of DCG.

4.2.2. Overall analysis of RCP. In the theorem below, the probabilistic behavior of the
RCP algorithm is characterized. In particular, we bound from above the probability that the
algorithm performs worse than DCG.

THEOREM 4.5 (Behavior of RCP). Given a probability level e > 0, choose
1
Ni. > Nyguar(e, k) = 2.2In = + (1.1 + 0.505In k). (4.13)
€

Then, with probability at least (1 — €), the RCP algorithm will expose a better or equal rate of
convergence than DCG.
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Proof. The probability of the algorithm performing worse than DCG is the probability of the
event

Worse,, = {at some step k it holds ¢'zy > ¢'cg(Xy)}.

This probability can be bounded as

P{Worse,.} < P{Worse; UWorse; UWorses - - - }
= Z P{Worsey }
k=1
o0
< (1—1/e)Ne.
k=1

To make this sum finite and equal to the desired probability level ¢, it is sufficient to select the
sequence Nj such that

—Q

@) ”

where ((a) is the Riemann zeta function, for which Y 72, k~* = ((). In fact, in this case we
have

(1—1/e)Ne = a>1, (4.14)

—

€ = €.

~—

SO0 1/e)¥ = Zf

k=1 k=1 (a

Solving equation (4.14) with respect to N, we obtain the bound

N, > 1n<(o¢)1+ alnk+Ini .

i
ey
Choosing, by trial and error, a = 1.1, we get the bound (4.13). d

Table 4.1 shows different values of bound (4.13) for given values of ¢ and k. Note that the
number of required random samples is indeed very low, even for very small values of e.

[Nguar(e,k)] | € =0.01 [ €= 0.005 [ e =0.001 | e =0.0005 | €= 0.00001

k=1 12 13 17 18 27

k=10 13 14 18 19 28

k=100 14 16 19 21 29

k = 1,000 15 17 20 22 30

k = 10,000 16 18 21 23 32
TABLE 4.1

Behavior of the bound Nguar (€, k) for different values of € and k.

5. A Hit-and-Run Implementation of RCP. In the previous sections, the probabilistic
properties of the proposed algorithm have been analyzed in a rather abstract setting which assumed
the existence of a mechanism for generating uniform random samples from the current set Xj. We
now briefly discuss how this assumption can be relaxed using random walks. To this end, we
replace Assumption 1 on UGO with the more realistic one on the availability of a boundary oracle
as follows.

ASSUMPTION 2 (Boundary Oracle). We assume that a boundary oracle (BO) is available such
that, given a direction v € R™ and a point z belonging to a bounded convexr set X € R™, a call to
BO(z, X, v) returns the two points Z, z which are the intersections of the 1D line x + v, X € R,
with the boundary of X.
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In fact, the boundary oracle assumption can be relaxed to the assumption of having a mem-
bership oracle. Indeed, from the latter one, a boundary oracle can be always constructed by means
of a binary search (e.g., see [21]). However, for a wide range of problems, a boundary oracle can
be easily formulated in closed form, and in Section 6 we present a particular BO for sets specified
by LMIs.

The availability of a boundary oracle is crucial for obtaining implementable versions of the
RCP algorithm by means of techniques based on random walks in convex bodies (e.g., see [38] for
a very detailed survey on these methodologies).

In general, the problem of sampling from a convex body X has received increasing attention
in the last decade. The main reason is that it provides an efficient (polynomial-time) way for
estimating the volume of X, see for instance [23, 16, 22|. Specifically, a random walk in X starts
at some point in X and moves to a neighboring point chosen according to a specific randomized
rule that depends on the current point only. Many different techniques have been proposed in the
literature to choose the next point to walk in; for instance, the grid or lattice walk [11], the ball
walk [16] and the Hit-and-Run algorithm.

We adopt the latter methodology as the most promising one, since it has been proven to
possess the best known bounds on the number of steps needed to obtain a random sample. The
H&R algorithm has been proposed by Turchin [37] and independently later by Smith [34] and is
aimed at generating points with approximately uniform distribution in a body. Its properties have
been studied in numerous works by Lovasz and co-authors (e.g., see the survey paper [38]). This
algorithm in its simplest form is recalled next:

Algorithm 3 (H&R algorithm)
Input: zg € X, N
Output: =) random point belonging to X

1: 2 <= Xo;

2: fori=1to N do

3:  generate a uniform random direction v € R",

4 {z,z} =BO(X, z,v),

5.  generate a uniform point z in the segment [z, z],
6: end for;

7. N) < 2.

The random direction v in line 3 can be easily generated as £/||€||2, where £ € R™ is a Gaussian
random variable with zero mean and identity covariance matrix.

Among the attractive features of H&R is the so-called polynomial-time mixing property, which
was proved by Smith in [34] and later refined by various authors (e.g., see [23, 22]). Roughly
speaking, it formulates as follows: Under certain conditions on the geometry of X and the initial
H&R-point, in order to obtain a point such that the total variation? between its distribution and
the uniform distribution on X is bounded by a given constant, the number of steps required
(mixing time) is polynomial in the dimension n.

Using these results, the paper [9] presents theoretical analysis showing how the RCP sample
size bound derived in Section 4 can be immediately extended to the H&R setup. We prefer not to
dwell further on this topic, which has been studied in the recent literature. The interested reader
is referred to the paper [3], which provides a general exposition on the construction of cutting
plane schemes based on H&R and discusses at a theoretical level several implementation issues.

2For two probability distributions P1, Py on the same underlying o-algebra on X, their total variation distance
is defined as

[P — P2|ltv = sup |[P1(A) — P2(A4)].
ACX
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Results along this line are of great theoretical importance, showing that H&R schemes can be
implemented in polynomial time, but they are still unsatisfactory from a practical viewpoint.

The main reason is that the constants involved in the sample size bounds available so far are
usually very large, thus making the method not good in practice. On the other hand, numerical
experience shows that H&R usually performs much better than predicted theoretically. This fact
is acknowledged by most authors and practitioners. For instance, Bertsimas and Vempala in [3]
state that “In practice, drawing random samples from convex sets might be much faster than the
known worst-case bounds; also, sampling convex sets is an active research area and there might
well be faster sampling methods in the future that would directly improve the complexity of the
random walk algorithm.”

This is also the main reason that convinced us to keep separate the analysis of the pure
theoretical setup of Section 4. Equally importantly, in the RCP setup, not only the theoretical
bounds on the number of samples are pessimistic in practice, but the above-mentioned conditions
on the geometry of the feasible set are also very hard to guarantee in the process of cutting. As a
result, implementable H&R-based versions of the algorithm do differ from Algorithm 2 as better
described in Section 6.1.

6. Application to Linear Matrix Inequalities. In this section, we focus our attention at
standard semidefinite programs (SDP) of the form

n
minc'z  subject to  F(z) = Fy + inFi =<0, (6.1)
i=1

where ¢ € R™ and F; € R™™ §=0,...,n, are known symmetric matrices; the notation F' < 0
stands for negative semidefiniteness of the matrix F'. The constraint inequality in (6.1) is called a
linear matrix inequality (LMI), and the convex set

Xy = {,TER” : F({E)jO}

is referred to as the feasible domain of this LMI. To exclude trivialities, we assume that the set
Xpwmr is nonempty and bounded (this is equivalent to assuming that Z?:l x; F; is sign indefinite
for all ).

The optimization problem (6.1) is known to be one of the key problems in modern convex
optimization [4]. It has numerous applications in various fields of system theory, control and opti-
mization, and at present there exist efficient solution techniques based on interior-point methods;
e.g., see [25]. It is because of this generality and availability of “alternative” solvers that we exem-
plify here the use of our method for this widely adopted convex optimization setup and compare
the numerical results with those obtained using one of the “standard” MATLAB-based toolboxes,
SeDuMi [35] together with the most popular interfaces YALMIP [20] and cvx [14].

To apply our method, we need a semidefinite boundary oracle (SDBO) for the set X'y, i.e.,
the intersections of a 1D-line and the boundary of X1\ are to be computed efficiently. This is
accomplished via the following lemma developed in [27], see also the work [5] for a similar result.

LEMMA 6.1 (SDBO). Let A <0 and B = B'. Then, the minimal and the mazimal values of
the parameter A € R retaining the negative definiteness of the matriz A + AB are given by

max\;,
A <0
A=
—00, if all \; > 0;
and
min\;,
— Ai>0
A=

oo,  dfall N <0;
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where \; are the generalized eigenvalues of the pair of matrices (A, —B), i.e., Ae; = —\;Be;.

By means of this lemma, the desired endpoints of the segment [z, Z] are computed as
z=2z+ v and  Z=z+4 ).

In the setup of this paper, assume that z € X m1, and v € R™ is a (random) direction. We then
have

F(z+ M) = F(2) + A(F(v) — Fy) = A+ AB,

and using Lemma 6.1, the desired intersection points of the line and the boundary of X\ are
given by z = z 4+ Av and Z = z + . To compute the intersection points with the boundary of a
current set Xj, the additional linear condition cT(x — 2k—1) < 0 defining the feasible set at step k
is to be taken into account, which is straightforward to implement.

As seen from the aforesaid, this operation should be frequently performed in the process of
iterations. The basis of this operation is finding the eigenvalues of symmetric matrices (which is for
instance efficiently implemented in MATLAB). Hence, the boundary oracle for LMIs is accurate and
“cheap” enough for matrices of quite large dimensions, as confirmed by the numerical simulations
discussed in the next section.

6.1. Numerical Experiments. Prior to reporting on the results of experiments, we discuss
some of the most important implementation issues, including modifications of the basic scheme
that showed to be crucial for the method to perform satisfactorily in practice. We remark again
that, in the spirit of the discussion at the end of Section 5, the implemented procedure differs
from Algorithm 2; it involves certain semi-heuristic tricks and would require a careful theoretical
analysis that we aim to perform in the subsequent papers.

a) Initialization. To implement the H&R procedure, we need to find an initial feasible point
zo € X1wm1- This can be done by solving the auxiliary problem

miny subject to F(z)=<~I

that admits the couple {# = 0,7 = maxeig(F(0))} as initial feasible solution. If the optimal
solution {z*,~v*} of this problem is such that v* > 0, then the original problem (6.1) is infeasible;
otherwise we take xg = x* as initial feasible point. Notice also that, for the specific SDP problem,
we can also easily force the initial feasible point to be at a distance d from the boundary of X'. The
procedure above allows to find a good initial point to pass to the algorithm. However, it should
be noted that, after the first step of this algorithm, by construction, the H&R starting point
lies on the boundary of the new set X1, and therefore we would have d = 0. There are different
ways to avoid this degeneracy. For instance, the initialization procedure described in Section 4.1.1
of [6] can be directly applied to our setup. In our case, we adopted a method based on boundary
points, as better described in point d) below.

b) Number of points. As it follows from the discussion in Section 5, the number N of random
points suggested by Theorem 4.5 has to be enlarged because of the mixing time required for
H&R algorithm. Also, extra points are required to bring the set in near-isotropic position, as
described below. For these reasons, in the present implementation, we decided to lean on N =
N > Nguar(0.01,10000) = 16 points at every iteration.

¢) Isotropization. The theoretical bounds on the required number of H&R points depend ex-
plicitly on the radii of two balls respectively inscribed and inscribing the set X. While these quan-
tities can be assumed to be known at the first steps of the RCP algorithm, this does not hold true
anymore as the algorithm proceeds. Indeed, at step (k—1), the set X} is obtained from the original
set X by cutting a portion defined by the hyperplane Hj_1 = {# € R™ : ¢(z — x4_1) =0}, and
there is no guarantee that it still contains a ball of a given radius. A well-accepted technique (see
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for instance [3]) to overcome this problem, is to perform an affine transformation of X to bring
it in near-isotropic position®.
The procedure for bringing a set in near-isotropic position is quite straightforward: for a

general convex set X, let ™), ... y) be random samples from X. Compute the quantities
1M 1M ,
g=x v and V=23 (0 -gY —p) (6:2)
i=1 i=1

and apply the affine transformation defined by 4 and Y to the set X, obtaining the new set
fi{xeR":Y%x—i—geX}. (6.3)

It was shown by Rudelson [32] that one can bring a set in near-isotropic position with high
probability in O(n log? n). In this paper, we adopted the implicit isotropization technique proposed
by Kannan et al. in [16]. In that case, the set X is left unchanged and the direction vector for
step 2 of Algorithm 3 is taken in the form v = Y'1/25, where Y is computed as (6.2) and the vector
7 € R™ is uniformly distributed on the surface of the unit hypersphere.

d) Heuristics. Various heuristic schemes proved effective in our simulations.

First, as regards the isotropization step, we notice that, as a by-product of H&R algorithm at
the kth iteration, we have 2N points on the boundary of the set X) (endpoints z, Z). The trans-
formation matrix Y in (6.2) is composed from these boundary points. Based on the assumption
that the subsequent sets X} and X41 have “similar” geometry, we perform isotropization of X1
by means of this matrix Y obtained at the previous step.

Moreover, those of the boundary points obtained at the kth step that fall into Xy, were
used to perform the initialization phase of point a). More precisely, the initial point for the
H&R algorithm at the (k4 1)st step was taken as the arithmetic mean of these selected points. If
the cut is performed through the “best” H&R-point as described above, then there exist N, > 1
such points (at least the endpoint of the chord associated with the “best” H&R-point). For the
sake of numerical safety, we performed the cut through the “second best” point to make sure
Ny, > 3 so that averaging yields an interior initial point.

Finally, a negative definite matrix A was considered singular if its largest eigenvalue was
greater than —10710 i.e., maxeig(F(xy)) > —10710 was adopted as stopping rule.

We do not discuss here the choice of other numerical constants involved in computations and
various extra modifications of the basic scheme (e.g., regularization constants, alternative ways
for computing the transformation matrix Y, etc); this would be a subject of a separate paper
primarily focused on implementation issues.

e) Numerical Ezperiments. The method was tested over a range of problems whose data were
generated randomly as described next. Symmetric matrices F; were generated so as to guarantee
nonemptiness of X' \r; for simplicity, we chose Fjy < 0 in the form

M =2rand(m) —1; Fy=—M-M"— eye(m),

so that o = 0 was adopted as the initial point for iterations. The rest of the matrices Fj, i > 0,
were computed as

(a) M =2rand(m/2)— 1;
b)) M=M+MT,
(¢c) F; =blkdiag(M;—M),

3A convex set X € R™ is said to be in isotropic position if, given a uniform random point x € X, it holds

E[z] = 0 and E [zxq = I, i.e., its covariance matrix is identity. We say that a convex set X is in near-isotropic
position if cg(X) = 0 and the covariance matrix of the uniform distribution over X has eigenvalues between %

3
and 5-
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in order to guarantee Xy to be bounded and to ensure the existence of a finite solution. In a
number of examples, step (b) above was implemented as

M = triuM + (triuM)" — diag(diag(M)).

Such data were generated for dimensions of the F; matrices as large as m = 100, and the dimensions
of the design vector = as high as n = 1,000. Without loss of generality, the vector c in the objective
function was taken as c= (10 ... 0).

We note that the test problems chosen are illustrative, thus giving a first impression on the
potentials of our method; of course, a deeper analysis is needed, which will be performed in the
subsequent papers. In the experiments, the method demonstrated pretty stable performance; as far
as the widely used MATLAB-based realizations of interior-point methods (the solvesdp routine
in SeDuMi Toolbox) are concerned, it showed comparable performance, sometimes exceeding
the classical methods in accuracy. To illustrate, we briefly describe some preliminary results of
simulations.

For moderately sized problems with n = 10, m = 10, we obtain 7 to 9 exact digits after 45
to 55 iterations with N = 200 H&R-points at each step. In other words, the observed rate of
convergence (fr — f*)/(fr—1 — f*) was approximately 0.65 to 0.7 as compared to the expected
theoretical rate 0.59 for this dimension n = 10 (see (4.9)). The same accuracy is typically observed
after 30 to 40 steps if N = 500 H&R-points were used.

In the second set of experiments the method was tested on SDP problems having large dimen-
sions of the design vector, n = 1,000 and m = 10. Typically, the method reproduces 7 to 8 exact
decimal digits for the function value after 20 to 30 iterations (N = 1,500 points were used). Hence,
for such high-dimensional problems, a much faster convergence was observed than the predicted
theoretical one 0.992. Also, as a rule, for these high-dimensional problems, the solvesdp routine
exhibits slightly lower accuracy (6 to 7 digits); moreover, sometimes it yields a formally infeasible
point z*, e.g., maxeig(F(x*)) ~2-10~7 > 0 was observed.

The third set of experiments was conducted with problems having worst-case geometry, where
the feasible domain is “pyramid-like” (see Section 4.1). For such sets, the bound on the rate of
convergence of the RCP algorithm given by (4.9) is known to be attained. In the experiments, the
matrices F; were chosen so as to yield

Ximr = {(E e R": ||(EH1 <1,z < O},

so that the minimum function value is f* = —1 and m = 2" by construction. Notably, for such a
geometry, the isotropization procedure described above very often does not bring Xy to near-
isotropic position, and is therefore omitted. As a result, in practice we lean on a much smaller
number N of H&R-points that would be needed to correctly restore the Y matrix.

Specifically, for the worst-case geometry problem with n = 10 optimization variables and quite
large dimension m = 1,024 of the F; matrices, using only N = 40 points yields 6 to 8 exact digits
after 75-85 iterations depending on realization. This means that, in accordance with the theory
developed here, the observed rate of convergence, approximately 0.8, is comparable to 0.69, which
is given by (4.9).

In view of the numerical results above, we mention the paper [28], where a similar randomized
algorithm was proposed. At every step, the cut was performed through the estimated center of
gravity (averaged H&R-points) rather than through the best point as above, and an additional
“projection” step was used that largely accelerated the convergence. The results of numerical tests
with the same data were similar to those reported here; however, no formal theoretical claims were
made in [28] regarding the convergence properties.

7. Conclusions and Future Research. In this paper, we study a novel randomized scheme
for convex optimization. The theoretical behavior of the method is analyzed in the abstract
framework in which a Uniform Generating Oracle is assumed to be available. A novel probabilistic
analysis is carried out, and our method is shown to outperform the classical DCG methods.
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Specifically, we explicitly compute the ezpected rate of convergence of the RCP method and
show that the estimates derived are tight in that they are attainable at “worst-case” geometry sets.
Moreover, we evaluate the accuracy of the estimate provided (in terms of its variance). Next, the
bounds on the number N of random samples required to guarantee with prescribed high probability
the desired convergence behavior of the algorithm are also derived explicitly. It turns out that
this number is very small, thus guaranteeing practical implementability of the proposed scheme.

The final part of the paper is devoted to numerical simulations for the special case of SDP
optimization and comparison of the method with the standard SDP solvers such as SeDuMi. To
the best of our knowledge, this is the first time that a practical implementation of a randomized
method of this type is discussed in such detail.

In the numerical illustrations we limited ourselves to a broad class of semidefinite programs.
It is believed that future versions and modifications of the randomized algorithm presented here
will expose better performance than the presently existing techniques, especially for problems of
very high dimensions, in the presence of uncertainty in the F; matrices, etc.

Specifically, one of the promising applications would be solving SDP problems in the “generic”
form

minTr CX subject to AX+XA'<0 and X =1,

where C, A are given matrices, and optimization is performed with respect to the entries of the
(symmetric) matrix X. It is known that the currently existing solvers cannot deal with high-
dimensional problems, dim X > 200 because of the exceedingly large memory requirements and
the necessity to convert the problem to the canonical form (6.1). Instead, using our method
only requires a boundary oracle, which is straightforward to construct for the feasible set in this
problem on the basis of Lemma 6.1.

It also should be stressed that the applicability of the method is not limited solely to SDP
problems but rather extends to general (possibly nonsmooth) convex optimization problems. As
one of the possibilities, we mention semi-infinite optimization problems; specifically, consider for
instance the classical Chebyshev approximation problem: Given a fixed known polynomial s(t) of
degree m defined for ¢ € [a, b], find a polynomial

n
p(z,t) = Z zitt
i=1

of degree n < m that minimizes the lo-norm distance from s(t), i.e.

i t) —pl(t . 1
min max [s(t) - p(t, )] (7.1)
Rewrite it in the following form:
n
minv  subject to —v < inti_l —s(t) < v forall t€]a,d] (7.2)
i=1
in the variables v, x1,...,x,. This is a convex optimization problem with infinite number of con-

straints, for which there are no interior-point methods available. However, with our randomized
approach, this problem can be solved easily, since a boundary oracle for the feasible set is straight-
forward to construct. Indeed, having a feasible polynomial p(t, z) with = fixed, and a “direction”
polynomial d(¢), the problem reduces to finding the minimal and the maximal values of A € R
retaining the validity of the inequality

—v < p(t,x) + Ad(t) < v.

This problem in turn readily reduces to finding real roots of an appropriate derivative, which is
polynomial in ¢.

We conclude our exposition by noting that preliminary numerical tests conducted with our
method testify to its practical vitality, and it looks quite promising to outperform classical deter-
ministic optimization methods.
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