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Abstract

Hamiltonian Monte Carlo (HMC) is a powerful tool for Bayesian computation. In
comparison with the traditional Metropolis-Hastings algorithm, HMC offers greater
computational efficiency, especially in higher dimensional or more complex modeling
situations. To most statisticians, however, the idea of HMC comes from a less familiar
origin, one that is based on the theory of classical mechanics. Its implementation,
either through Stan or one of its derivative programs, can appear opaque to beginners.
A lack of understanding of the inner working of HMC, in our opinion, has hindered
its application to a broader range of statistical problems. In this article, we review
the basic concepts of HMC in a language that is more familiar to statisticians, and we
describe an HMC implementation in R, one of the most frequently used statistical
software environments. We also present hmclearn, an R package for learning HMC.
This package contains a general-purpose HMC function for data analysis. We illustrate
the use of this package in common statistical models. In doing so, we hope to promote
this powerful computational tool for wider use. Example code for common statistical
models is presented as supplementary material for online publication.
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1. Introduction

Hamiltonian Monte Carlo (HMC) is one of the newer Markov Chain Monte Carlo (MCMC)
methods for Bayesian computation. An essential advantage of HMC over the traditional
MCMC methods, such as the Metropolis-Hastings algorithm, is its greatly improved compu-
tational efficiency, especially in higher-dimensional and more complex models. But despite
the method’s computational prowess and the existence of excellent introductions (Neal et al.
2011, Betancourt 2017), practitioners still face daunting challenges in applying the method
to their own applications. Difficulties mainly arise in three areas: (1) unfamiliarity with
the theory behind the algorithm, (2) lack of understanding of how the existing software
works, (3) inability to tune the HMC parameters. These difficulties have limited the use of
HMC to those who understand the theory and have the programming skills to implement
the algorithm. But it does not have to be so.

The emergence of modern Bayesian software such as Stan has, to some extent, alleviated
these difficulties. Stan is a powerful and versatile programming language that has a syntax
similar to that of WinBUGS, but uses HMC instead of Gibbs sampling to generate posterior
samples (Gelman et al. 2015). Stan translates its code to a lower-level language to maximize
speed and efficiency. Importantly, it automates the tuning of HMC parameters and thus
significantly reduces the burden of implementation. For R and Python users, packages
have been created that allow Stan be called from those languages. For people who are
familiar with WinBUGS and comfortable with programming in probabilistic terms, Stan
is an ideal choice for HMC implementation. But for beginners who want to learn HMC,
Stan can come across as a “black box”. Other high-performance software, such as PyMC
and Edward (Salvatier et al. 2016, Tran et al. 2016), presents similar challenges. While
scalability and efficiency are often the foremost considerations in software development, a
good understanding of the methodology is more essential to learners of methodology, as it
instills confidence in the practical use of new methods.

The objectives of the current paper are largely pedagogical, i.e., helping practitioners learn
HMC and its algorithmic ingredients. Toward that end, we developed a general-purpose
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R function hmc for the fitting of common statistical models. We also present details of
HMC parameter tuning for those who are interested in writing and implementing their own
programs. Multiple examples are presented, with accompanying R code. We have assembled
all of the learning material, including the necessary HMC functions, example code, and
data in an R package, hmclearn, for convenience of the readers.

2. Markov Chain Monte Carlo: The Basics

MCMC is a broad class of computational tools for integral approximation and posterior
sample generation. In Bayesian analysis, MCMC algorithms are primarily used to simulate
samples for approximation of the posterior distribution.

In Bayesian analysis, estimation and inference of the parameter of interest are made based on
the observed data D together with the a priori information that one has on the parameters
of interest θθθ = (θ1, ..., θk)T ∈ Rk. The posterior distribution f(θθθ|D) combines both the data
and prior information in accordance to the Bayes formula, and it is proportional to the
product of the likelihood function f(D|θθθ) and the prior density π(θθθ) (Carlin & Louis 2008) ,

f(θθθ|D) = f(D|θθθ)π(θθθ)
∫
f(D|θθθ)π(θθθ)dθθθ ,

∝ f(D|θθθ)π(θθθ).

The integral in the denominator is usually difficult to evaluate. But since the denominator
is constant with respect to θθθ, one could work with the unnormalized posterior f(D|θθθ)π(θθθ).
In the absence of an explicit expression of the posterior, approximating it with simulated
samples following f(θθθ|D) becomes a desirable alternative.

2.1. Metropolis-Hastings

Metropolis algorithm is the first widely-used MCMC method for generating Markov Chain
samples following f(θθθ|D). The method originated from a physics application in the 1950’s
(Metropolis et al. 1953), and was further extended near two decades later by Hastings (1970),
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thus giving rise to the name of Metropolis-Hastings (MH) algorithm. We begin with a brief
description of MH, as HMC was built on a similar concept.

MH generates a sequence of values of θθθ that form a Markov chain, whose values can be used
to approximate a posterior density f(θθθ|D). For brevity, we drop D from the expression
and write the posterior simply as f(θθθ). Values in the Markov chain θθθ(t) are indexed by
t= 0,1, ..,N , where θθθ(0) is a user or program-specified starting value.

MH defines a transition probability that assures the Markov chain is ergodic and satisfies
detailed balance and reversibility (Chib & Greenberg 1995). These technical conditions are
put in place to ensure the chain samples from the full support of θθθ without bias.

In MH, values of θθθ(t) in the chain are defined in part by a proposal density q(θθθPROP|θθθt−1),
where θθθPROP is a proposal for the next value in the chain. This proposal density is
conditioned on the previous value θθθ(t−1). A variety of proposal functions can be used, with
random walk proposals being the most common choice.

Algorithm 1 Metropolis-Hastings
1: procedure MH(θθθ(0),f(θθθ), q(θθθ(1)|θθθ(2)),N)
2: Calculate f(θθθ(0))
3: for t= 1, ...,N do
4: θθθPROP← q(θθθPROP|θθθ(t−1))
5: u← U(0,1)
6: α = min

(
1, f(θθθPROP)q(θθθ(t−1)|θθθPROP)

f(θθθ(t−1))q(θθθPROP|θθθ(t−1))

)

7: If α < u, then θθθ(t)← θθθPROP. Otherwise, θθθ(t)← θθθ(t−1)

8: end for
9: return θθθ(1)...θθθ(N)

10: end procedure

In MH, a proposal is accepted with probability

α = min

1, f(θθθPROP)q(θθθ(t−1)|θθθPROP)

f(θθθ(t−1))q(θθθPROP|θθθ(t−1))


 , (1)
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When q is symmetric i.e., q(θθθ(t−1)|θθθPROP) = q(θθθPROP|θθθ(t−1)), this simplifies to

α = min

1, f(θθθPROP)

f(θθθ(t−1))


 ,

which is used in the original Metropolis algorithm.

The denominator in the posterior is constant with respect to θθθ. As such, the ratio of
posterior densities at two different points θθθPROP and θθθ(t−1) can be compared even when the
denominator is unknown, with the denominators being cancelled out. Because a derivation
of the full posterior distribution (numerator and denominator) is not necessary to implement
MH (and HMC, as we will see), data analysts have considerable flexibility to select priors
of their liking.

The acceptance rate α in (1) is an important gauge of the efficiency of an MH algorithm. A
careful examination of α’s roles gives a more intuitive understanding of the algorithm:

1. When f(θθθPROP )≥ f(θθθ(t−1)), the proposal f(θθθPROP ) represents a “more likely” value
than the previous value θθθ(t−1), as quantified by the density functions. When this
occurs, the proposal is always accepted (i.e. with probability 1).

2. When f(θθθPROP )< f(θθθ(t−1)), the proposal θθθPROP has a lower density in comparison
to the previous value, and we accept the proposal at random with probability α∈ (0,1),
which indicates the relative likelihood of observing θθθPROP from f , as compared to
θθθ(t−1). The larger the α, the greater the chance of accepting θθθPROP . If the proposal
is not accepted, the proposal will be discarded and the chain will remain in place
θθθ(t) := θθθ(t−1), and we will start with a new proposal.

With such a scheme, the algorithm frequents regions of higher posterior density, while
occasionally visiting the low density areas (e.g., tails in one-dimensional situations). Provided
the algorithm runs a sufficient number of iterations, the empirical distribution of the MCMC
chain samples should approximate the true posterior density. The simulated values can
therefore be used for estimation and inference based on the posterior distribution. See
Carlin & Louis (2008) Chib & Greenberg (1995) Gelman et al. (2013) for additional details
on MH.
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2.2. Limitations of Metropolis-Hastings

The theoretical requirements for using MH are quite minimal, thus making it an attractive
choice for Bayesian inference. Limitations of MH are primarily computational. With
randomly generated proposals, it often takes a large number of iterations to get into areas
of higher posterior density. Even efficient MH algorithms sometimes accept less than 25% of
the proposals (Roberts et al. 1997). In lower dimensional situations, increased computational
power may compensate the lower efficiency to some extent. But in higher dimensional and
more complex modeling situations, bigger and faster computers alone are rarely sufficient
to overcome the challenge.

Gibbs sampling can be a viable and more efficient alternative to MH in some situations
(Geman & Geman 1987). In fact, several popular software platforms, such as WinBUGS
and JAGS, use Gibbs to generate posterior samples (Lunn et al. 2000, Plummer et al. 2003).
Gibbs’ requirement for explicitly expressed conditional posterior densities, however, has
prevented it from being used in many practical situations. In addition to this restriction,
Gibbs also has its own efficiency limitations (Robert 2001). It is in this context that HMC
emerges as a preferred alternative for Bayesian analysis.

3. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo improves the efficiency of MH by employing a guided proposal
generation scheme. More specifically, HMC uses the gradient of the log posterior to direct
the Markov chain towards regions of higher posterior density, where most samples are taken.
As a result, a well-tuned HMC chain will accept proposals at a much higher rate than the
traditional MH algorithm (Roberts et al. 1997).

It is important to note that although the HMC algorithm frequently samples in regions
of higher density, referred to as the typical set (Betancourt 2017), it still samples the tail
areas properly. While both MH and HMC produce ergodic Markov chains, the mathematics
of HMC is substantially more complex than that of MH. In this paper, we provide a less
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technical introduction of the ideas behind HMC. More technical expositions can be found
elsewhere (Neal et al. 2011, Betancourt 2017).

3.1. The idea

The methods one uses to generate proposals strongly influences the efficiency of MCMC.
Suppose f(θ) is a one-dimensional posterior density function, and − logf(θ) assumes the
shape of an inverse bell-shaped curve as depicted by Figure 1. To generate θ in a region of
high posterior density, one needs to sample θ in the region corresponding to the lower values
of − logf(θ); the region can be reached with the guidance of the gradient of − logf(θ). In a
sense, the approach is analogous to the movement of a hypothetical object on a frictionless
curve, where the object traverses and lingers at the bottom of the valley while occasionally
visiting the higher grounds on both sides. In classical mechanics, such movements are
described by the Hamiltonian equations, where the exchanges of kinetic and potential energy
dictate the object’s location at any given moment.

In a Hamiltonian system, the horizontal and vertical positions are given by (θ,p). In MCMC,
we are interested in θ. The parameter p, which is often referred to as the momentum, is an
auxiliary quantity that we use to simulate θ under the Hamiltonian equations.

3.2. The Hamiltonian Equations

We introduce HMC in a generic MCMC setting, where θθθ follows the posterior density f(θθθ) of
interest, and the momentum p is generated from a parametric distribution. The momentum
matches the dimensionality of θθθ as a vector of length k.

We write the Hamiltonian function as H(θθθ,p), which consists of potential energy U(θθθ) and
kinetic energy K(p): H(θθθ,p) = U(θθθ) +K(p), where p and θθθ ∈ Rk.

In statistical applications of MCMC, we are primarily interested in generating θθθ from a given
distribution f(θθθ). To do so, we let U(θθθ) :=− logf(θθθ). Such a designation would ensure θθθ
generated from the Hamiltonian function follows the desired distribution. For momentum,
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(a) (b)

(c) (d)

Figure 1: One-dimensional HMC example - movement of an object on a smooth, frictionless curve.

(a) We apply a force with randomly generated direction and strength to the object. This object

acquires a certain amount of kinetic energy, which makes it move in the direction of the applied

force. The momentum, proportional to the object’s velocity, changes throughout the path of the

curve. When the object moves up along the curve, the velocity of the object and its momentum

decrease. Its kinetic energy converts to potential energy, while the total energy remains constant.

(b) The object will stop at a point when all of its kinetic energy is converted to potential energy.

The potential energy then makes the object move in the opposite direction, converting its potential

energy back to kinetic energy. (c) At the lowest point of the curve, all of the energy is in the

kinetic form (peak velocity/momentum), which pushes the object up to the left side of the curve.

(d) As the object goes up on the curve, its kinetic energy again converts to potential energy, until

all is in the form of potential energy. Then, the object would stop and then slide back as guided by

its potential energy. Since the surface is frictionless, the total energy remains constant throughout

these repeated movements.

8



we typically assume p∼Nk(0,M), where M is a user-specified covariance matrix.

Under this formulation, we have

H(θθθ,p) =− logf(θθθ) + 1
2pTM−1p. (2)

Over time, HMC travels on trajectories that are governed by the following first-order
differential equations, known as the Hamiltonian equations

dp
dt

=−∂H(θθθ,p)
∂θθθ

=−∂U(θθθ)
∂θθθ

=∇θθθ logf(θθθ),

dθθθ

dt
= ∂H(θθθ,p)

∂p = ∂K(p)
∂p = M−1p,

(3)

where ∇θθθ logf(θθθ) is the gradient of the log posterior density. A solution to the Hamiltonian
equations is a function that defines the path of (θθθ,p) from which specific values of θθθ could be
sampled. Within an MCMC iteration, we sample a value θθθ from this path. The randomness
of the MCMC samples comes from the momentum p∼Nk(0,M) and the specific θθθ value
we choose.

3.3. Solving the Hamiltonian Differential Equations

Solving the Hamiltonian equations, therefore, becomes a critical step in HMC simulation.
A standard approach for solving differential equations is Euler’s method, which produces
a discrete function that approximates the solution at each time t. Values of (θθθ,p) that
satisfy the Hamiltonian equations would be legitimate values for the HMC. But as Neal
et al. (2011) have noted, errors tend to accumulate in Euler’s method, especially after a
larger number of steps. In HMC, one often has to take a larger number of steps to ensure
the new proposal is sufficiently far from the location of the previous sample.

The leapfrog method is a good alternative to the standard Euler’s method for approximating
the solutions to Hamiltonian equations (Ruth 1983). The leapfrog algorithm modifies Euler’s
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method by using a discrete step size ε individually for p and θθθ, with a full step ε in θθθ

sandwiched between two half-steps ε/2 for p,

p(t+ ε/2) = p(t) + (ε/2)∇θθθ logf(θθθ(t)),

θθθ(t+ ε) = θθθ(t) + εM−1p(t+ ε/2),

p(t+ ε) = p(t+ ε/2) + (ε/2)∇θθθ logf(θθθ(t+ ε)).

(4)

For HMC, multiple leapfrog steps are typically required to move a sufficient distance to
the next proposal. Research has shown that discrete approximations remain accurate, even
after many steps, thanks to leapfrog’s symplecticity property (Channell & Scovel 1990,
Betancourt 2017).

For a given momentum vector p within an HMC iteration, the path defined by the Hamilto-
nian equations is deterministic. An exact solution, if achievable, should always be accepted.
But since our solution from the leapfrog is an approximation, a Metropolis style accept/reject
step is added to ensure the newly generated proposal does not deviate too far from the
specified Hamiltonian H(θθθ,p). It is, however, important to note that this accept/reject
step serves a different purpose than that in the traditional MH algorithm. In MH, an
acceptance decision is made based on how likely a new proposal is from the target posterior
density f(θθθ). As such, the MH acceptance decision serves as the sole guidance for the
MCMC chain to regions of high posterior density from random proposals. In contrast, HMC
uses the gradient of the log posterior to guide the Markov chain while H(θθθ,p) remains
theoretically constant. The acceptance decisions for HMC are designed to correct for errors
in the approximation of the joint distribution H(θθθ,p) and ensure the detailed balance and
reversibility requirements of the MCMC chain.

3.4. Hamiltonian Monte Carlo Algorithm

The flowchart in Figure 2 shows the key steps in HMC. Initial values for θθθ and p are required
to start the algorithm. With θθθ(0) and p(0) specified, the leapfrog algorithm is used to find
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approximate solutions to the Hamiltonian equations. The leapfrog solutions define the path
of (θθθ,p) over time within an iteration.

Typically, multiple steps, each of length ε, are taken to generate an HMC proposal. Parameter
L represents the number of steps. While L is often fixed to a positive integer value, some
randomness can be introduced to ensure a valid exploration of the space of (θθθ,p). A generic
HMC is given below in Algorithm 2.

Algorithm 2 Hamiltonian Monte Carlo
1: procedure HMC(θθθ(0), logf(θθθ),M,N,ε,L)
2: Calculate logf(θθθ(0))
3: for t= 1, ...,N do
4: p←N(0,M)
5: θθθ(t)← θθθ(t−1), θ̃θθ← θθθ(t−1), p̃← p
6: for i= 1, ...,L do
7: θ̃θθ, p̃← Leapfrog(θ̃θθ, p̃, ε,M)
8: end for
9: α←min

(
1, exp(logf(θ̃θθ)− 1

2 p̃TM−1p̃)
exp(logf(θ̃θθ(t−1))− 1

2 pTM−1p)

)

10: With probability α, θθθ(t)← θ̃θθ and p(t)←−p̃
11: end for
12: return θθθ(1), ..., θθθ(N)

13: function Leapfrog(θθθ∗,p∗, ε,M)
14: p̃← p∗+ (ε/2)∇θθθ logf(θθθ∗)
15: θ̃θθ← θθθ∗+ εM−1p̃
16: p̃← p̃ + (ε/2)∇θθθ logf(θ̃θθ)
17: return θ̃θθ, p̃
18: end function
19: end procedure

As with other valid MCMC algorithms, HMC’s transition probability is designed to meet
the theoretical requirements for detailed balance and reversibility. These conditions ensure
that our HMC samples provide a valid representation of the posterior distribution. If
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Figure 2: Main Steps of the Hamiltonian Monte Carlo Method
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we denote the transition probability from θθθ(t) to θθθ(t+1) as T (θθθ(t), θθθ(t+1)), then detailed
balance requires that f(θθθ(t))T (θθθ(t), θθθ(t+1)) = f(θθθ(t+1))T (θθθ(t+1), θθθ(t)). The HMC transition
probability includes two components to ensure that detailed balance and reversibility hold
true:

1. the accept/reject step, and

2. the negation of the momentum after the final leapfrog step.

The negated momentum illustrates the reversibility of HMC transitions, which can be
demonstrated by stepping through the leapfrog from the proposed state to the original state.
Tierney (1994) described the theoretical requirements for MCMC algorithms in general,
while Betancourt (2017) provided a detailed exposition specific to HMC.

In Section 4, we describe a general-purpose function hmc in our proposed package. Within
the package, the gradient functions for commonly used generalized linear mixed effect models
under the default priors are provided. The hmc function can also take user-defined posterior
density and gradient functions for non-standard statistical models. In situations where
analytical derivation of gradient functions is infeasible, one could consider using numerical
auto-differencing functions. Automated differencing libraries capable of calculating the
gradient exactly such as the Stan math library (Carpenter et al. 2015), also called Autodiff,
are appropriate for direct use in HMC applications.

3.5. HMC Tuning for Improved Efficiency

The efficiency of an HMC algorithm can be improved through parameter tuning and
reparameterization. HMC tuning involves selection and adjustment of the various HMC
parameters. Two parameters that need to be specified are the step size ε and the number
of leapfrog steps L. Elements in the covariance matrix M may also be adjusted from the
default identity matrix for efficiency improvement.

It is generally a good practice to set ε to a smaller value relative to the magnitude of
the parameter of interest. A smaller ε results in closer approximations and thus higher
acceptance rates. But a small ε must be coupled with a large L to ensure the trajectory
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length εL is large enough to move the simulated parameter to a distant point in the
distribution. On the other hand, if εL is too large the trajectory is likely to circle back,
causing waste in simulation. To tune ε and L is to find the right combinations of these values,
which are usually chosen via monitoring the acceptance rate. Neal et al. (2011) suggested
an optimal acceptance rate is approximately 65%. At the same time, it is often helpful to
examine the trace plots of the MCMC samples for signs of autocorrelation. Slow-moving
chains with stronger autocorrelation often indicate insufficient εL. While ε and L can be
tuned jointly, most analysts choose to select the step size first, then under a given step size,
they fine-tune the number of steps per leapfrog L.

Additional adjustments may be made to the tuning parameters beyond these basic steps.
For example, one could use different values of ε for each of the k parameters in θθθ to increase
the sampling efficiency. The hmc function in hmclearn allows setting ε to a vector instead
of a single number to give analysts the flexibility to use different step sizes for different
parameters. The parameter for the number of steps L must be a natural number. However,
randomly chosen L could be used to guard against periodicity of the Markov chain. The step
size ε may also be randomized. In the hmc function, random ε and L can be automatically
applied via parameter setting. A useful algorithm known as the No U-Turn Sampler (NUTS)
automatically selects L for each sample; NUTS is a commonly used alternative to manual
parameter tuning (Hoffman & Gelman 2014).

The efficiency of sampling in the standard HMC algorithm can also be improved for
multivariate models when the parameters have an orthogonal basis. One common method of
ensuring an orthogonal basis involves applying QR decomposition (Voss 2013) . In statistical
models, QR decomposition is often applied to the design matrix X to create the orthogonal
basis for sampling. After the simulation is complete, the MCMC samples are transformed
back to the original basis for inference.
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4. A Package for Learning HMC

HMC presents considerable challenges to beginners attempting to learn the algorithm.
First, the method can be difficult to comprehend because its idea originated from physics
applications of the Hamiltonian equations. Second, it is often difficult to learn the inner
working of HMC from programs such as Stan, because they are not designed as teaching
tools. In fact, Stan specifies models in a probabilistic syntax and shields users from the
actual HMC steps.

In this paper, we present an R package hmclearn to provide users with the software tools
to learn the intricacies of the HMC, through explicit specification of log posterior and
gradient functions, as well as parameter tuning. It is designed to give user a hands-
on experience for implementing HMC analysis for a broad class of statistical models.
Once users have understood and mastered the essential HMC steps, they could go on
to write their own code for specific applications. To download hmclearn, go to https:
//cran.r-project.org/web/packages/hmclearn/index.html.

The core function in hmclearn is hmc, which is a general-purpose function for MCMC sample
generation by using the HMC method. This function takes user-defined log posterior and
gradient functions as inputs and produces MCMC samples. Here we do not ask for an
explicit specification of prior π(θθθ) as an input function. Instead, we let users define their log
posterior logf(θθθ|||yyy) = logf(yyy|θθθ) + logπ(θθθ), which includes π(θθθ). Such a design reduces the
number of required input functions, while preserving users’ flexibility in choosing different
priors.

Other input parameters to hmc include the number of samples N , the step size ε, the number
of leapfrog steps L, and the Mass matrix M. These are the essential elements to start an
HMC simulation, but the user will typically need to adjust at least some of these parameters
to tailor the simulation to their specific applications. Users are required to provide their
own starting values for θθθ when using the hmc function for their own applications. Examples
of log posterior and gradient functions are provided in hmclearn for various generalized
linear mixed effect models, which can be used as templates for less standard models.
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Running multiple MCMC chains is often desirable to determine if each chain converges to
the same distribution of θθθ. Since modern computers almost universally have multiple core
processors, parallel processing can be an efficient way to run multiple chains at the same
time. To that end, hmclearn includes parameters to enable parallel processing as well as
multiple chains.

Finally, a variety of Bayesian graphical functions are provided based on the bayesplot

package (Gabry & Mahr 2016). Functionalities incorporated in hmclearn include trace plots,
histograms, density plots, and credible interval plots. The integrated functions comprise the
core diagnostic plotting functions typical for MCMC applications. Additional diagnostics
can be programmed directly or called based on the output of the hmc function.

5. HMC in Statistical Models

5.1. A general process

In this section, we discuss the general steps of HMC implementation in statistical models.
We describe the process through examples of generalized linear models. The major steps
required to fit a statistical model are summarized in Figure 3. Following the steps illustrated
in the diagram, one could generate HMC samples with user-specified posterior and gradient
functions, by using the hmc function in the hmclearn package.

5.2. Examples

We present three examples to illustrate how to fit various linear models using HMC. Our
notation for these examples reflects the programming of the sample log posterior and
gradient functions in hmclearn. This programming uses matrix and vector multiplication
instead of for loops, which can be computationally slow in R.

16



  

Yes No 

Derive Log Likelihood 
log 𝑓(𝑦|Θ) 

Specify Priors 
𝜋(Θ) 

Support of Θ ∈ ℝ?  

Transform Θ to ℝ 
E. g. log(∙) 

Simulation Complete 
Θ = (Θ1, … , Θ𝑁) 

 

Specify Model 
𝑔[𝐸(𝑦)] = 𝑋Θ 

logPOSTERIOR 
Function 

Derive Log Posterior 
log 𝑓(Θ|𝑦) = log 𝑓(𝑦|Θ) + log 𝜋(Θ) 

No parameter 
transformation 

Specify Log Posterior 
log 𝑓(Θ|𝑦) 

Derive Gradient of Log Posterior 
∇Θ log 𝑓(Θ|𝑦) 

glogPOSTERIOR 
Function 

Tune Parameters for HMC:  𝜀, 𝐿, 𝑀 
Acceptance Rate (0.60, 0.90) 

HMC: Run N Simulations 

Transform simulated Θ to original support 

hmc 
Function 

Figure 3: Major steps of HMC implementation
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5.2.1. Example 1: Linear Regression

We consider a linear regression model yi = xTi βββ+ εi, where yi is the response for the ith
subject, i= 1, ...,n, and y = (y1, ...,yn)T is a vector of responses. The covariate values for
the ith subject are xTi = (xi0, ...,xiq), where xi0 is frequently set to one as an intercept
term for all subjects. We write the full design matrix as X = (xT1 , ...,xTn )T ∈ Rn×(q+1). The
regression coefficients for the q covariates plus an intercept are written as βββ = (β0, ...,βq)T .
The error term for each subject is εi. All error terms εεε = (ε1, ..., εn)T are assumed to be
independent and normally distributed with mean zero and constant variance σ2

ε .

The log likelihood for linear regression, omitting the constants, can be written as

logf(y|βββ,σ2
ε )∝−

n

2 logσ2
ε −

1
2σ2

ε
(y−Xβββ)T (y−Xβββ).

We specify a multivariate normal prior for βββ with covariance matrix σ2
βI where σ2

β is a
hyperparameter set by the analyst, and an inverse gamma (IG) prior for σ2

ε . The IG prior
has hyperparameters a and b, which are also set by the analyst. We write

π(βββ|σ2
β)∝ exp


−βββ

Tβββ

2σ2
β


 and π(σ2

ε |a,b) = ba

Γ(a)(σ2
ε )−a−1 exp

(
− b

σ2
ε

)
.

The support of σ2
ε is (0,∞). We apply a logarithmic transformation to expand the support

to R. We have
γ = logσ2

ε , σ2
ε = g−1(γ) = eγ ,

π(γ|a,b) = ba

Γ(a) exp
(
−aγ− b

eγ

)
,

logπ(γ|a,b)∝−aγ− be−γ .

The log posterior is proportional to the log likelihood plus the log prior,

logf(βββ,γ|y,X,σ2
β,a,b)∝−

(
n

2 +a
)
γ− e

−γ

2 (y−Xβββ)T (y−Xβββ)− βββ
Tβββ

2σ2
β

− be−γ .

The parameters of interest are defined as θθθ := (β0, ...,βq,γ)T , where k = q+ 2. To fit
this model using hmc, the user must provide a function for the log posterior where the
first function parameter is a vector for the parameters of interest θθθ. Additional function
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parameters can be included for the data and hyperparameters. An example log posterior
function for this model and specification of priors is included in hmclearn.

The Hamiltonian function (2) is composed of the log posterior and the log density function
of the momentum, where p∼Nk(0,M). Writing the Hamiltonian function for our linear
regression model is straightforward once the log posterior is developed,

H(θθθ,p) =H(βββ,γ,p)∝ logf(βββ,γ|y,X,σ2
β,a,b) + 1

2pTM−1p.

With the Hamiltonian function explicitly defined, we can write the Hamiltonian equations
(3) for this particular model.

The steps of the leapfrog algorithm are integrated with hmc in a self-contained function.
This function requires, as an input, a separate standalone function that returns a vector
for the gradient of the log posterior. As with the log posterior function, the first function
parameter must be a vector for θθθ. The gradient functions for the model in this example are
also included in hmclearn,

∇βββ logf(βββ,γ|y,X,σ2
β,a,b)∝ e−γXT (y−Xβββ)−βββ/σ2

β,

∇γ logf(βββ,γ|y,X,σ2
β,a,b)∝−

(
n

2 +a
)

+ e−γ

2 (y−Xβββ)T (y−Xβββ) + be−γ .

We now have everything we need to solve the Hamiltonian equations via the leapfrog
algorithm and generate samples for the posterior f(θθθ). The main hmc function handles the
details of the HMC sample generation process for the user. A description of the function
parameters is in Section A.1 of the Appendix. Additional programming details are provided
with the hmclearn package, including detailed vignettes with additional examples.

For a numerical example we use the warpbreaks dataset (Tippett 1950), which is one of
the sample datasets included with base R. In this example, we estimate the associations
between the yarn’s type of wool and tension and the number of warp breaks per loom. We
write the model as follows

Breaksi =β0 +β1woolBi+β2tensionMi+β3tensionHi+β4woolBi : tensionMi+

β5woolBi : tensionHi+ εi,
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where yi := Breaksi and the ith row of X is xTi = (1,woolBi,tensionMi,tensionHi,woolBi :
tensionMi,woolBi : tensionHi).

To fit this model using hmc, we must first specify the initial values of θθθ for the MCMC chain.
The initial values are provided as a vector of length k = 7, including 6 for βββ and 1 for γ.
We use the default hyperparameters for the sample log posterior and gradient functions in
hmclearn, such that σ2

β = 1e3 and a= b= 1e−4.

The model takes a few seconds to run on a modern laptop. Users have a number of options
to summarize and visualize the HMC samples. The generic summary function provides
quantiles from the posterior samples in a table. Many data visualization options are available
through direct integration with the bayesplot package (Gabry & Mahr 2016). Graphical
options for visualizing the posterior samples include histograms, density plots, and credible
interval plots. General MCMC diagnostics such as trace plots, autocorrelation plots, and R̂
statistics are also readily available. Additional customized analyses can be performed using
the posterior sample output from hmc.

The marginal posterior sample distributions for f(θθθ) are found to be well-behaved and
similar to frequentist estimates. The R code for fitting the model is presented in Section
A.2 of the Appendix.

5.2.2. Example 2: Logistic Regression

We consider a logistic regression model P (yi = 1|xi,βββ) =
[
1 + exp(−xTi βββ)

]−1
, where yi is

the binary response for the ith subject i = 1, . . . ,n, and y = (y1, ...,yn)T is a vector of
responses for all subjects. The covariate values for the ith subject are xTi = (xi0, ...,xiq),
where xi0 is frequently set to one as an intercept term for all subjects. Frequently, xi0
is set to one for all individuals as an intercept term. We write the full design matrix as
X = (xT1 , ...,xTn )T ∈ Rn×(q+1). The regression coefficients for q covariates plus an intercept
are a vector βββ = (β0, ...,βq)T .

The log likelihood for the logistic regression model is

logf(y|X,βββ) = βββTXT (y−1n)−1Tn [log(1 + e−xTi βββ)]n×1,
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where βββ is the regression coefficient vector and the parameter we intend to estimate, and
[log(1+e−xTi βββ)]n×1 indicates an n×1 vector ∀i= 1, . . . ,n. We specify a multivariate normal
prior for βββ with covariance matrix σ2

βI, where σ2
β is a hyperparameter set by the analyst.

The log posterior is proportional to the sum of the log likelihood and log prior of βββ.
Excluding constants, we write the log posterior as

logf(βββ|y,X,σ2
β)∝ βββTXT (y−1n)−1Tn [log(1 + e−xTi βββ)]n×1−

βββTβββ

2σ2
β

.

The parameters of interest are defined as θθθ := βββ = (β0, ...,βq)T , where k = q+ 1. To fit this
model using hmc, the user must provide a log posterior function containing the parameters
of interest θθθ, the observed data, and possibly additional hyperparameters. The log posterior
function for this model and the specification of priors are described in hmclearn.

The Hamiltonian function (2) is composed of the log posterior and the log density function
of the momentum p∼Nk(0,M). Writing the Hamiltonian function for our example model
is straightforward once the log posterior is specified,

H(θθθ,p) =H(βββ,p)∝ logf(βββ|y,X,σ2
β) + 1

2pTM−1p.

With the Hamiltonian function explicitly defined, we can write the Hamiltonian equations
for this particular model. To generate samples from f(θθθ), we then use the leapfrog method to
find a discrete approximation. The leapfrog steps are integrated with hmc in a self-contained
function, using user-supplied gradients.

∇βββ logf(βββ|y,X,σ2
β)∝XT


y−1n+


 e−xTi βββ

1 + e−xTi βββ



n×1


−βββ/σ2

β.

With the gradient function specified, we can solve the Hamiltonian equations via the leapfrog
algorithm, and generate posterior samples following f(θθθ). The main function hmc handles
the implementation of the HMC sample generation process.

We analyzed data of 189 births at a U.S. hospital Hosmer et al. (1989) to examine the risk
factors of low birth weight. Data are available from the MASS package (Venables & Ripley
2013). We prepare the data for analysis as noted in the text.
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The logistic regression model formulation for this application is

logit [P (lowi = 1)] =β0 +β1agei+β2lwti+β3race2blacki+β4race2other+β5smokei+β6ptdi+

β7hti+β8uii+β9ftv21i+β10ftv22plusi.

Here xTi = (1,agei, lwti,race2blacki,race2otheri,smokei,ptdi,hti,uii, ftv21i, ftv22plusi),
where the elements indicate the mother’s age in years age, mother’s weight in pounds at
last menstrual period lwt, black race2black and other races race2other, smoking during
pregnancy smoke, premature birth ptd, hypertension ht, presence of uterine irritability ui,
one physician visit during the first trimester ftv21, and two or more physician visits during
the first trimester ftv22plus.

To fit this model using hmc, the user needs to set the initial values for βββ, a vector of length
k = 11, as well as the value of the hyperparameter σ2

β , which we set at 1e3. In this example,
we set the step size parameter ε to different values for continuous and dichotomous variables.

The R code for fitting the model is presented in Section A.3 of the Appendix. The marginal
posterior sample distributions for f(θθθ) are found to be well-behaved with central locations
similar to frequentist estimates.

5.2.3. Example 3: Poisson regression with random subject effects

Finally, we consider a random effect model for count data

g[E(yi|ui)] = Xiβββ+ ziui,

for i = 1, ...,n subjects, where each subject’s response vector yi = (yi1, ...,yid)T contains
j = 1, ...,d observations. Each individual has a subject-specific random intercept parameter
ui, and u = (u1, ...,un)T . The fixed effects design matrix Xi = (xTi1, ...,xTid)T ∈ Rd×(q+1),
where the jth row of Xi contains the q+ 1 covariate values of that observation, including
a common intercept. The fixed effects regression coefficients for q covariates and a global
intercept are a vector βββ = (β0, ...,βq)T . The random intercept vector is zi = (zi1, ..., zid)T = 1d,
The distribution of yi conditional on ui follows a Poisson distribution with a log link function,
where log[E(yi|ui)] = Xiβββ+ ziuj .
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The subject-level response vectors are combined in a single vector, y = (yTi , ...,yTn )T ∈Rnd×1.
The full fixed-effects design matrix for all subjects is X = (X1, ...,Xn)T ∈ Rnd×(q+1), and
the random effects design matrix is Z = In⊗1d ∈Rnd×n. The log likelihood for the Poisson
mixed effects model, omitting constants, can be written as

logf(y|X,Z,βββ,u)∝−1Tnd
[
exTijβββ+zijui

]

nd×1
+ yT (Xβββ+ Zu),

where βββ is the fixed-effect coefficient vector, ui is the random intercept, and
[
exTijβββ+zijui

]

nd×1
is an nd× 1 vector ∀i = 1, . . . ,n and j = 1, . . .d. We specify multivariate normal priors
βββ|σ2

β ∼N(0,σ2
βI) and u∼N(0,G), where σ2

β is a hyperparameter set by the analyst and G
is parameterized for efficient Bayesian computation.

We parameterize the covariance matrix of G for efficient sampling of hierarchical models
such that G1/2 := λIτττ , where τττ = (τ1, ..., τn)T ∼ N(0,In) (Betancourt & Girolami 2013).
For λ, we assign a 2-parameter half-t prior per the recommendation of Gelman et al. (2006)
for hierarchical models.

One final parameter transformation is necessary before applying HMC. Since the support of
λ is (0,∞), we apply a logarithmic transformation to expand the support to R. We write

ξ = logλ, λ= g−1(ξ) = eξ,

π(ξ|a,b)∝

1 + 1

νξ

(
eξ

Aξ

)2

−(νξ+1)/2

eξ,

logπ(ξ|a,b)∝−νξ + 1
2 log


1 + 1

νξ

(
eξ

Aξ

)2
+ ξ,

where νξ and Aξ are hyperparameters set by the analyst.

Omitting constants, we write the log posterior as

logf(βββ,τττ ,ξ|y,X,Z,σ2
β,νξ,Aξ)∝−1Tnd

[
exTijβββ+eξzijτi

]

nd×1
+ yT (Xβββ+ eξZτττ)− βββ

Tβββ

2σ2
β

−

νξ + 1
2 log


1 + 1

νξ

(
eξ

Aξ

)2
+ ξ− 1

2τ
ττT τττ ,

where the parameters of interest can be written as θθθ := (β0, ...,βq, τ1, ..., τn, ξ)T , with k =
q+n+ 2.
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Assuming p∼Nk(0,M), we write the Hamiltonian function as,

H(θθθ,p) =H(βββ,τττ ,ξ,p)∝ logf(βββ,τττ ,ξ|y,X,Z,σ2
β,νξ,Aξ) + 1

2pTM−1p,

from which we can derive the Hamiltonian equations, and then use the leapfrog method to
find approximate solutions.

We write the gradient functions for readers’ convenience,

∇βββ logf(βββ,ξ,τττ |y,X,Z,σ2
β,νξ,Aξ)∝XT

(
−
[
exTijβββ+eξzijτi

]

nd×1
+ y

)
−βββ/σ2

β,

∇ξ logf(βββ,ξ,τττ |y,X,Z,σ2
β,νξ,Aξ)∝ eξτττTZT

(
−
[
exTijβββ+eξzijτi

]

nd×1
+ y

)
− νξ + 1

1 +νξA
2
ξe
−2ξ + 1,

∇τττ logf(βββ,ξ,τττ |y,X,Z,σ2
β,νξ,Aξ)∝ eξZT

(
−
[
exTijβββ+eξzijτi

]

nd×1
+ y

)
− τττ .

For numerical example, we consider data generated by a study on gopher tortoises (Ozgul
et al. 2009, Fox et al. 2015, Bolker 2018). The mortality of the tortoise populations is
measured by the number of shells. We estimate the associations of the number of shells to
year (2004, 2005, 2006) and seroprevalence of bacterium Mycoplasma agassizii. The random
effects are the intercepts for each of n= 10 sites in Florida. Each site has d= 3 observations,
one for each year. The fixed effects are a global intercept, two indicator variables for the
three years, and seroprevalence of M. agassizii.

The poisson mixed effects model can be written as

log[E(shells)]∝
10∑

i=1

3∑

j=1

[
−e[1,I(2005)ij ,I(2006)ij ,previj ]βββ+eξzijτi+

yij
(
[1, I(2005)ij , I(2006)ij ,previj ]βββ+ eξzijτi

)]
−

βββTβββ

2σ2
β

− νξ + 1
2 log


1 + 1

νξ

(
eξ

Aξ

)2
+ ξ− 1

2τ
ττT τττ ,

(5)

where y := (shells1, ....,shells10)T and shellsi = (shells1,shells2,shells3)T . The fixed effects
design matrix is composed from xTij = [1, I(2005)ij , I(2006)ij ,previj ], and the random effects
design matrix from zij = 1 for site i and 0 otherwise, for all observations j = 1,2,3.

24



To fit this model using hmc, we first specify the initial values of θθθ in a vector of length
k = 15 and use the default hyperparameters σ2

β = 1e3,νξ = 1,and Aξ = 25. The step sizes
are selected as part of the tuning process.

The model took a few seconds to run on a laptop computer. The marginal posterior
sample distributions for f(θθθ) are found to be well-behaved with central locations similar to
frequentist estimates. The R code for fitting the model is presented in Section A.4 of the
Appendix.

In each of the above examples, we set N = 2000 HMC samples including a short burn-in
period. The R̂ statistics for each of the simulations is close to one, indicating that multiple
chains converged to the same distribution for each example. Informally, the relatively
low number of HMC simulations illustrates the efficiency benefits of this algorithm over
traditional MCMC methods, such as the Metropolis algorithm, which often require many
thousands of simulations to achieve a converge. A substantially larger number of simulations
can push Metropolis to have a longer runtime than hmc in hmclearn, even when Metropolis
is programmed in an efficient compiled language like C++.

6. Discussion

Since its becoming of a general-purpose computational method in the early 1990s, MCMC
has fundamentally changed the landscape of Bayesian data analysis (Robert & Casella
2011). Previous confinement to the conjugate families of distributions has been lifted, and
analysts have been freed from the burden of explicitly deriving the posteriors. Over the
past three decades, tremendous progress has been made in refining the MCMC methods,
models are becoming more flexible, algorithms more comprehensive, and software easier
to use. Despite the progress, however, as analysts begin to take on increasingly complex
statistical models, suboptimal efficiency has become a predominant concern, especially in
models involving high dimensional parameters. In many of those situations, the traditional
MCMC is often too slow to be practically useful. One of the newer variants of MCMC
algorithms designed to address the efficiency problem is HMC. With the aid of the posterior
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gradient functions and the Hamiltonian equations, HMC converges substantially faster to
regions of higher posterior density, in comparison with the traditional MCMC. Powerful
statistical software such as Stan has also been developed for practical use.

These exciting developments, however, have not been translated into analytical practice.
Many statistical practitioners remain unfamiliar with these powerful tools and, thus, hesitant
to use them. Some have attempted to generate HMC samples by mimicking the Stan code,
but in the absence of an in-depth understanding of the method and the ideas behind it,
many analysts have not acquired a level of comfort to write HMC code for less standard
analyses. We contend that the best way to learn a new method is through hands-on data
analysis, with common statistical models on a familiar computational platform. With this in
mind, we have put forward an introductory level description of HMC, not with the original
terminology of classical mechanics, but in a more familiar language of statistics. We have
disseminated the components of the HMC algorithm and discussed the implementation
details, from prior specification, posterior and gradient function derivation, to solving the
Hamiltonian differential equations, and to the tuning of HMC parameters. Herein, we
present an R package hmclearn to help beginners to experiment with HMC in a familiar
computing environment. The main function of this package, hmc is designed for general use
– analysts could use it to produce MCMC samples by using user-supplied posterior functions.
We have provided many concrete data examples, in the package as well as in this manuscript,
to help learners study and appreciate the inner workings of the algorithm. In comparison
with commonly used Bayesian data analysis software such as Stan, our package hmclearn
is designed primarily as a teaching tool. As such, the input functions require hands-on
programming, so that the data generation process is made more transparent to its users.
This said, we would not trivialize the potential challenges in implementing a successful
HMC program. The tuning of parameters, for example, often requires much practice and
experience. Notwithstanding such limitations, we hope that this paper provides an intuitive
introduction of a powerful and yet intricate computational tool.
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7. Supplementary Materials

Appendix: R code for HMC examples. (pdf file type)

R-package for learning HMC: R-package hmclearn contains a general-purpose function
as well as utility functions for the model fitting methods described in the article.
Example data sets and code are also made available in the package. The package
hmclearn can be accessed at https://cran.r-project.org/web/packages/hmclearn/index.
html.
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Appendix A. Code for the examples from hmclearn

A.1. Main function: hmc

R package hmclearn contains the functions for generating Hamiltonian Monte Carlo
(HMC) samples. To download hmclearn, go to https://cran.r-project.org/web/

packages/hmclearn/index.html.
The main function of hmclearn is hmc, which is a general-purpose function for

producing posterior samples with user-supplied log-posterior and gradient functions.
Most of the input parameters of hmc have preset values. These defaults which can be
overwritten by custom values.

• N : Number of MCMC samples. Default is 10,000.
• theta.init : Initial values for model parameters.
• epsilon: Stepsize tuning parameter for HMC. Default is 0.01.
• L: Number of Leapfrog steps tuning parameter for HMC. Default is 10.
• logPOSTERIOR: Function to return the log posterior depending on θ, hyperpa-

rameters, and data all provided in a list passed to param.
• glogPOSTERIOR: Function to return the gradient of the log posterior depending

on θ, hyperparameters, and data all provided in a list passed to param.
• varnames: Optional vector of variable names in the model. This is used for

summary and plotting functions.
• randlength: Logical indicator on whether to apply some randomness to the num-

ber of Leapfrog steps L. Default is FALSE.
• Mdiag : Optional vector for the diagonal of the Mass matrix M . The default is

the identity matrix.
• constrain: Optional vector of which variables are bounded as positive only. The

leapfrog routine is adjusted from the default for these parameters. Default is
FALSE for all parameters.
• verbose: Logical indicator on whether to print status updates of hmc. Default is

FALSE.
• param: List of data objects and hyperparameters passed to logPOSTERIOR and

glogPOSTERIOR.
• chains: The number of HMC chains to run. The default is 1, although multiple

chains are recommended.
• parallel : Logical indicator on whether to run parallel processing for multiple

chains. Setting this parameter to TRUE can significantly speedup computation,
but there can be technical complications depending on the user’s platform. De-
fault is FALSE, which means that multiple chains are run sequentially.

Function hmc requires users to provide log posterior function and its gradient,
logPOSTERIOR and glogPOSTERIOR. The prior can be specified as part of the log
posterior. Data can be directly input into these functions, or the objects (e.g. y, X,
and Z) can be passed in a list provided to param. The purpose of this design is to
maximize flexibility regarding the types of models.

The default number of simulations is set to 10, 000. However, the user may opt
to start with a smaller number during tuning. Well-tuned models tend to require
fewer MCMC samples. Initial values for the parameters must be provided by the user.
Caution should be exercised to ensure that the initial values are in the support of θ.

For the interested reader, the main HMC algorithm is in the hmc.fit function, while
hmc is a higher level function whose purpose is to govern serial or parallel processing
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and create the hmclearn object.
Function hmc outputs a single list containing the simulated samples accepted in the

accept/reject step.

A.2. Example 1: Linear Regression

The dataset warpbreaks is available standard with R.

R> head(warpbreaks)

breaks wool tension

26 A L
30 A L
54 A L
25 A L
70 A L
52 A L

R> summary(warpbreaks)

breaks wool tension

Min. :10.00 A:27 L:18
1st Qu.:18.25 B:27 M:18
Median :26.00 H:18
Mean :28.15
3rd Qu.:34.00
Max. :70.00

Variables of interest in this dataset are:

• breaks: the number of breaks (continuous)
• woolB: indicator for wool type B (0/1)
• tensionM: indicator for level of tension M (0/1)
• tensionH: indicator for level of tension H (0/1)
• woolB:tensionM: interaction of wool type B and tension level M (0/1)
• woolB:tensionH: interaction of wool type B and tension level H (0/1)

The dependent variable breaks is stored in y. The design matrix can be constructed
using standard model.matrix function in R.

R> y <- warpbreaks$breaks

R> X <- model.matrix(breaks ~ wool*tension, data=warpbreaks)

The log posterior and gradient functions are based on the likelihood and prior
choices in this example.
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linear_posterior <- function(theta, y, X, a=1e-4, b=1e-4,

sig2beta=1e3) {
k <- length(theta)

beta_param <- as.numeric(theta[1:(k-1)])

gamma_param <- theta[k]

n <- nrow(X)

result <- -(n/2+a)*gamma_param - exp(-gamma_param)/2 *

t(y - X%*%beta_param) %*%

(y - X%*%beta_param) - b*exp(-gamma_param) -

1/2* t(beta_param) %*% beta_param / sig2beta

return(result)

}

g_linear_posterior <- function(theta, y, X, a=1e-4, b=1e-4,

sig2beta=1e3) {
k <- length(theta)

beta_param <- as.numeric(theta[1:(k-1)])

gamma_param <- theta[k]

n <- nrow(X)

grad_beta <- exp(-gamma_param) * t(X) %*%

(y - X%*%beta_param) - beta_param / sig2beta

grad_gamma <- -(n/2 + a) + exp(-gamma_param)/2 *

t(y - X%*%beta_param) %*%

(y - X%*%beta_param) + b*exp(-gamma_param)

c(as.numeric(grad_beta), as.numeric(grad_gamma))

}

The vector of parameters of interest is (β, γ) ∈ θ. The initial values specified in a
vector of length 6 for β plus 1 for γ. The step size is a factor of 10 higher for β than
for log transformed variance.

R> N <- 2e3

R> set.seed(143)

R>

R> eps_vals <- c(rep(2e-1, 6), 2e-2)

R>

R> fm1_hmc <- hmc(N, theta.init = c(rep(0, 6), 1),

R> epsilon = eps_vals, L = 20,

R> logPOSTERIOR = linear_posterior,

R> glogPOSTERIOR = g_linear_posterior,

R> varnames = c(colnames(X), "log_sigma_sq"),

R> param = list(y = y, X = X), chains = 2,

R> parallel = FALSE)

The average acceptance rate over the two chains is 0.96, which is appropriate for a
relatively simple model such as this one. The parallel parameter is set to FALSE to
run each MCMC chain sequentially. This parameter can be set to TRUE to run both
MCMC chains at the same time on multiple cores.
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Figure A1. Histograms from marginal posteriors for example 1.

We summarize the results and plot the histograms of the simulated posteriors. The
R̂ statistics are all close to one, indicating that both chains converged to the same
distribution.

R> summary(fm1_hmc, burnin=200)

2.5% 5% 25% 50% 75% 95% 97.5% rhat

(Intercept) 35.733 37.010 40.464 42.801 45.197 48.346 49.533 1.004
woolB -23.693 -22.183 -17.223 -13.945 -10.517 -5.763 -3.986 1.002
tensionM -27.737 -26.290 -21.391 -18.194 -14.962 -9.883 -8.052 1.006
tensionH -27.473 -25.884 -21.214 -17.708 -14.388 -9.505 -7.604 1.001
woolB:tensionM 4.086 6.469 13.301 17.717 22.481 29.030 31.019 1.006
woolB:tensionH -6.217 -4.112 3.029 7.709 12.492 18.525 20.394 1.000
log sigma sq 4.425 4.484 4.659 4.793 4.937 5.144 5.218 1.000

The posterior distributions can be visualized by using the plot function. See
Fig A1.

R> plot(fm1_hmc, burnin=200)

Note that the Inverse Gamma distribution is not always an optimal prior when the
support is strictly positive. This prior can lead to problematic results when the true
value of the parameter is close to zero. Half-t distributions usually provide a more
stable alternative to Inverse Gamma (Gelman et al. 2006).

In this example, the posterior estimates are comparable to frequentist estimates.
See Fig A2.

R> f <- lm(breaks ~ wool*tension, data = warpbreaks)
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Figure A2. Diagnostic plots comparing HMC (histograms) to frequentist (vertical lines) estimates for exam-

ple 1. The HMC estimates are in line with those from lm.

R> freq.param <- c(coef(f), 2*log(sigma(f)))

R> diagplots(fm1_hmc, burnin=200, comparison.theta=freq.param)

A.3. Example 2: Logistic Regression

The data for this example is from a study of 189 births at a U.S. hospital (Hosmer,
Lemeshow, and Sturdivant 1989). The dependent variable is an indicator of low birth
weight. Data is available from the MASS package (Venables and Ripley 2013). We
prepare the data for analysis as noted in the main text.

R> birthwt2 <- MASS::birthwt

R> birthwt2$race2 <- factor(birthwt2$race,

labels = c("white", "black", "other"))

R> birthwt2$ptd <- ifelse(birthwt2$ptl > 0, 1, 0)

R> birthwt2$ftv2 <- factor(ifelse(birthwt2$ftv > 2, 2, birthwt2$ftv),

labels = c("0", "1", "2+"))

R> X <- model.matrix(low ~ age + lwt + race2 + smoke +

ptd + ht + ui + ftv2,

data = birthwt2)

R> y <- birthwt2$low

Variables of interest in this dataset are:

• low: birth weight less than 2.5kg (0/1)
• age: age of mother (yrs)
• lwt: weight of mother (lbs)
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• race2: factor white/black/other
• smoke: smoking indicator (0/1)
• ptd: premature labor indicator (0/1)
• ht: history of hypertension indicator (0/1)
• ui: uterine irritability indicator (0/1)
• ftv2: number of physician visits factor (0, 1, 2 or more)

Two of the independent variables are continuous with wide ranges of values. The
other nine variables are all dichotomous. In tuning this model, the step size ε is tuned
separately to each of these types of variables. This example illustrates the need to set
the tuning parameters for the specific HMC application.

The log posterior and gradient functions are based on the likelihood and prior
choices in this example.

logistic_posterior <- function(theta, y, X, sig2beta=1e3) {
k <- length(theta)

beta_param <- as.numeric(theta)

onev <- rep(1, length(y))

ll_bin <- t(beta_param) %*% t(X) %*% (y - 1) -

t(onev) %*% log(1 + exp(-X %*% beta_param))

result <- ll_bin - 1/2* t(beta_param) %*%

beta_param / sig2beta

return(result)

}

g_logistic_posterior <- function(theta, y, X, sig2beta=1e3) {
n <- length(y)

k <- length(theta)

beta_param <- as.numeric(theta)

result <- t(X) %*% ( y - 1 + exp(-X %*% beta_param) /

(1 + exp(-X %*% beta_param))) -beta_param/sig2beta

return(result)

}

We set the initial values to zero and hyperparameters to their default values.

R> N <- 2e3

R> continuous_ind <- c(FALSE, TRUE, TRUE, rep(FALSE, 8))

R> eps_vals <- ifelse(continuous_ind, 1e-3, 5e-2)

R>

R> set.seed(143)

R> fm2_hmc <- hmc(N, theta.init = rep(0, 11),

epsilon = eps_vals, L = 10,

logPOSTERIOR = logistic_posterior,

glogPOSTERIOR = g_logistic_posterior,
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param = list(y = y, X = X),

varnames = colnames(X),

chains = 2, parallel = FALSE)

R>

R> fm2_accept/N

[1] 0.8105 0.8215

The average acceptance rate over two chains is 0.82, which is appropriate for a
relatively simple model such as this one. The parallel parameter is set here to run
each MCMC chain sequentially. This parameter can be set to TRUE to run both
MCMC chains at the same time on multiple cores.

We summarize the results and plot the histograms of the simulated posteriors. The
R̂ statistics are all close to one, indicating that both chains converged to the same
distribution.

R> summary(fm2_hmc, burnin=200)

2.5% 5% 25% 50% 75% 95% 97.5% rhat

(Intercept) -1.464 -1.093 0.240 1.150 2.000 3.134 3.557 1.008
age -0.115 -0.106 -0.068 -0.045 -0.020 0.021 0.032 1.010
lwt -0.032 -0.030 -0.022 -0.017 -0.012 -0.006 -0.004 1.005
race2black 0.132 0.309 0.840 1.210 1.596 2.154 2.328 1.000
race2other -0.167 -0.029 0.423 0.737 1.063 1.561 1.708 1.001
smoke -0.121 0.015 0.444 0.752 1.046 1.507 1.627 1.000
ptd 0.530 0.676 1.151 1.474 1.813 2.293 2.452 1.000
ht 0.544 0.807 1.573 2.061 2.553 3.300 3.535 1.005
ui -0.267 -0.117 0.373 0.685 1.018 1.469 1.594 1.000
ftv21 -1.464 -1.332 -0.798 -0.475 -0.167 0.288 0.453 1.007
ftv22+ -0.751 -0.599 -0.146 0.156 0.508 0.980 1.119 1.003

The distributions of the marginal posteriors can be visualized by using the plot
function. See Fig A3.

R> plot(fm2_hmc, burnin=200)

In this example, the posterior estimates are comparable to frequentist estimates.
See Fig A4.

R> f2 <- glm(low ~ age + lwt + race2 + smoke + ptd + ht + ui + ftv2,

data = birthwt2, family = binomial)

R> freq.param2 <- coef(f2)

R> diagplots(fm2_hmc, burnin=200, comparison.theta = freq.param2)

A.4. Example 3: Mixed effects Poisson regression model

The data for this example is from a study on gopher tortoises (Ozgul et al. 2009; Fox,
Negrete-Yankelevich, and Sosa 2015; Bolker 2018).

Variables of interest are:
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Figure A3. Histograms from marginal posteriors for example 2.
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• shells: count of shells
• factor.year.2005: indicator for year 2005 (0/1)
• factor.year.2006: indicator for year 2006 (0/1)
• prev: Seroprevalence to Mycoplasma agassizii (continuous)

The design matrices X and Z must be set up for hmc. The fixed effects matrix X
contains a global intercept and covariates for year 2005 factor.year.2005, year 2006
factor.year.2006, and Seroprevalence prev.

A random intercept is generated for each of the 10 sites in the dataset and stored
as a block diagonal matrix in Z.

R> data(Gdat)

R>

R> Zi.lst <- split(rep(1, nrow(Gdat)), Gdat$Site)

R> Zi.lst <- lapply(Zi.lst, as.matrix)

R> Z <- Matrix::bdiag(Zi.lst)

R> Z <- as.matrix(Z)

R> X <- model.matrix(~ factor(year), data = Gdat)

R> X <- cbind(X, Gdat$prev)

R> colnames(X)[ncol(X)] <- "prev"

R> colnames(X) <- make.names(colnames(X))

R> colnames(X)[1] <- "intercept"

R> y <- Gdat$shells

The log posterior and gradient functions are based on the likelihood and prior
choices in this example.

glmm_poisson_posterior <- function(theta, y, X, Z, n, nrandom=1,

nuxi=1, Axi=25, sig2beta=1e3) {
Z <- as.matrix(Z)

p <- ncol(X)

beta_param <- theta[1:p]

tau_param <- theta[(p+1):(p+n*nrandom)]

xi_param <- theta[(p+n*nrandom+1):(p+n*nrandom+nrandom)]

Dhalf <- diag(exp(xi_param), nrandom, nrandom)

L <- diag(nrandom)

LDhalf <- L %*% Dhalf

LDhalf_block <- kronecker(diag(n), LDhalf)

u_param <- LDhalf_block %*% tau_param

XZbetau <- X %*% beta_param + Z %*% u_param

onev <- rep(1, length(y))

log_likelihood <- -t(onev) %*% exp(XZbetau) + y %*% XZbetau

log_beta_prior <- - 1/2*t(beta_param)%*% beta_param/sig2beta

log_tau_prior <- -1/2 * t(tau_param) %*% tau_param

log_xi_prior <- -(nuxi + 1)/2 * log(1 + 1/nuxi *

exp(2*xi_param) / Axi^2)

result <- log_likelihood + log_beta_prior + log_tau_prior +
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sum(log_xi_prior)

return(as.numeric(result))

}

g_glmm_poisson_posterior <- function(theta, y, X, Z, n, nrandom=1,

nuxi=1, Axi=25, sig2beta=1e3) {
Z <- as.matrix(Z)

p <- ncol(X)

beta_param <- theta[1:p]

tau_param <- theta[(p+1):(p+n*nrandom)]

xi_param <- theta[(p+n*nrandom+1):(p+n*nrandom+nrandom)]

Dhalf <- diag(exp(xi_param), nrandom, nrandom)

L <- diag(nrandom)

LDhalf <- L %*% Dhalf

LDhalf_block <- kronecker(diag(n), LDhalf)

u_param <- LDhalf_block %*% tau_param

XZbetau <- X %*% beta_param + Z %*% u_param

L_block <- kronecker(diag(n), L)

Dhalf_block <- kronecker(diag(n), Dhalf)

g_beta <- t(X) %*% (-exp(XZbetau) + y) -

(beta_param)/sig2beta

g_tau <- t(LDhalf_block) %*% t(Z) %*%

(-exp(XZbetau) + y) - tau_param

zero_v <- rep(0, nrandom)

g_xi <- sapply(seq_along(1:nrandom), function(jj) {
zv <- zero_v

zv[jj] <- 1

bd <- kronecker(diag(n), diag(zv, nrandom, nrandom))

t(L_block %*% bd %*% Dhalf_block %*% tau_param) %*%

t(Z) %*% (-exp(XZbetau) + y)

})
g_xi <- g_xi - (nuxi + 1) / (1 + nuxi*Axi^2 *

exp(-2*xi_param)) + 1

g_all <- c(as.numeric(g_beta),

as.numeric(g_tau),

g_xi)

return(g_all)

}

With the dependent variable and design matrices defined, we run HMC for the
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Poisson mixed effects model. Initial values are set to zero and default hyperparameters
are selected.

R> N <- 2e3

R>

R> set.seed(412)

R> initvals <- c(rep(0, 4), rep(0, 10), 0)

R> eps_vals <- c(3e-2, 3e-2, 3e-2, 1e-3, rep(1e-1, 10), 3e-2)

R>

R> fm3_hmc <- hmc(N = N, theta.init = initvals, epsilon = eps_vals, L = 10,

logPOSTERIOR = glmm_poisson_posterior,

glogPOSTERIOR = g_glmm_poisson_posterior,

varnames = c(colnames(X), paste0("tau", 1:ncol(Z)), "xi"),

param = list(y = y, X = X, Z = Z, n = 10),

chains = 2, parallel = FALSE)

R>

R> fm3_hmc$accept / N

[1] 0.8005 0.8045

The acceptance rate for this model is 0.80 for both chains, which is within the range
of efficiently tuned HMC applications. From the summary function, we note that the
R̂ statistics are all close to one, indicating that both chains converged to the same
distribution.

R> summary(fm3_hmc, burnin=200)

2.5% 5% 25% 50% 75% 95% 97.5% rhat

intercept -1.130 -0.955 -0.390 -0.088 0.178 0.555 0.693 1.000
factor.year.2005 -1.372 -1.260 -0.906 -0.667 -0.432 -0.100 -0.004 1.000
factor.year.2006 -1.013 -0.924 -0.591 -0.383 -0.164 0.120 0.215 1.001
prev 0.006 0.010 0.018 0.023 0.028 0.037 0.040 1.000
tau1 -2.411 -2.135 -1.319 -0.780 -0.246 0.581 0.817 1.000
tau2 -1.730 -1.421 -0.687 -0.184 0.296 1.019 1.221 1.000
tau3 -1.983 -1.755 -1.011 -0.569 -0.081 0.584 0.807 1.000
tau4 -0.568 -0.383 0.308 0.731 1.220 1.915 2.176 1.002
tau5 -1.610 -1.342 -0.560 -0.107 0.307 0.974 1.196 1.000
tau6 -0.560 -0.183 0.577 1.112 1.550 2.268 2.487 1.000
tau7 -1.047 -0.835 -0.175 0.236 0.642 1.227 1.464 1.000
tau8 -1.660 -1.389 -0.654 -0.190 0.232 0.874 1.090 1.001
tau9 -0.752 -0.391 0.427 0.923 1.353 2.053 2.313 1.001
tau10 -2.504 -2.258 -1.500 -0.996 -0.485 0.222 0.489 1.000
xi -2.588 -2.101 -0.781 -0.363 -0.071 0.402 0.554 1.003

In this example, the posterior estimates are comparable to frequentist estimates. We
use the lme4 package (Bates et al. 2007) to provide frequentist parameter estimates
as a comparison to HMC.

fm3 <- glmer(shells ~ prev + factor(year) + (1 | Site),

family = poisson, data = Gdat,
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control = glmerControl(optimizer = "bobyqa",

check.conv.grad = .makeCC("warning", 0.05)))

R> coef(summary(fm3))

Estimate Std. Error z value Pr(> |z|)

(Intercept) -0.058 0.397 -0.145 0.884
prev 0.022 0.008 2.891 0.004
factor(year)2005 -0.654 0.357 -1.830 0.067
factor(year)2006 -0.374 0.323 -1.157 0.247

Next, we store the frequentist fixed effects estimates in R variables.

R> freqvals_fixed <- c(fixef(fm3))

R> freqvals_fixed <- freqvals_fixed[c(1, 3, 4, 2)]

We also compare the random effects parameter estimates with lme4. We apply the
linear transformation back to u for comparison.

R> u.freq <- ranef(fm3)$Site[, 1]

R> lambda.freq <- sqrt(VarCorr(fm3)$Site[1])

R>

R> fm3_hmc$thetaCombined <- lapply(fm3_hmc$thetaCombined, function(xx) {

tau_mx <- as.matrix(xx[, grepl("tau", colnames(xx))])

u_mx <- tau_mx * exp(xx[, "xi"])

u_df <- as.data.frame(u_mx)

colnames(u_df) <- paste0("u", 1:ncol(u_df))

xx <- cbind(xx, u_df, exp(xx[, "xi"))

colnames(xx)[ncol(xx)] <- "lambda"

xx

})

The frequentist estimates for fixed effects and random effects are close to HMC
estimates in this example. See Fig A5 and A6.

R> diagplots(fm3_hmc, burnin = 200, compaison.theta = freqvals_fixed, cols = 1:4)

R> diagplots(fm3_hmc, burnin = 200,

comparison.theta = c(u.freq, lambda.freq), cols = 16:26)
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Figure A6. Diagnostic plots comparing HMC (histograms) to frequentist (vertical lines) estimates of random
effects parameters for example 3. The HMC estimates are in line with those from glmer.
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