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Networks are Everywhere

(c) Email network
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(d) Social network (e) CoIIaboration network (f) Citation network




Graphs are ubiquitous!

® Technological networks:
O Internet
0 Telephone networks
o0 Power grid

O Road, airline and rail
networks

= |Information networks:
0 World Wide Web
0 Blog networks
0 Citation networks

® Social networks:

0 Collaboration networks
0 Organizational networks
O Communication networks

® Biological networks:

0 Networks from
Neuroscience

O Protein-protein interaction
networks

0 Gene regulatory networks
0 Food webs

m Software networks:

0 Call graphs

0O Software
module/component
interaction networks




Even representing text - Graph-of-word

information retrieval is the activity of obtaining

—_—

information resources relevant to an information need

_

from a collection of information resources
— 2 -«

retrieval

from

need
“Graph of word approach for ad-hoc information retrieval”, F. Rousseau, M. Vazirgiannis,

Best paper mention award ACM CIKM 2013




Elements of Learning from Graph data

B Graph models/ graph generators graph generators
(erdos reyni, preferential attachment, kronecker graphs)

B Node base metrics: - Ranking algorithms (Pagerank),
Ranking evaluation measures (Kendal Tau, NDCG),

B Graph exploration/preprocessing: degree distributions,
visualization

B Supervised learning for graphs: link prediction, graph
kernels, graph classification

B Unsupervised learning: clustering, community mining,
degeneracy.

B Learning theory in graphs: model ensembling/selection...




Graphs and Networks

B Graphs allow for modeling dependencies

Nodes




Basic Graph Definitions

« Agraph G=(V, E) consists of a set of nodes V, IVI=n and a
set of edges E, IEl =m

« Graphs can be undirected or directed

Directed Undirected

In-degree: d;, (i) =1l j I (j,i) is edge li

Out-deg: dqy (i) = 11 j I (ij) is edge Il Degree: d(i) = din (i) = dout (i)




Complete Graph

 Definition: A graph G=(V, E) is called complete K, if every
pair of nodes is connected by an edge

* What is the number of
edges of a complete
graph with n nodes?

Complete graph Complete graph
with 3 nodes: with 4 nodes
triangle

* Note that, the notion of complete graphs is of particular
importance for the problem of community detection

— Communities correspond to well-connected subgraphs




Graph Representation: Adjacency Matrix

A graph can be represented by the adjacency matrix W
— Matrix of size n x n, where n is the number of nodes
— W;; >0, ifi and j are connected
— W; =0, if i and j are not connected
— In case of unweighted graphs, W;; =1, if (i, j) is an edge of the graph
— Space proportional to n2

0 11000 00
° e 1 0111000
‘ 1 1001 0 1 1
e'e 0 1001000
. 01110100
a e e 0 00010 00
e 0 01000 0 f

0 01000 10

Undirected graph Adjacency matrix




Graph Representation: Adjacency Lists

« Adjacency lists
— Representation of a graph with n nodes using an array of n lists of
nodes
— List i contains node j if there is an edge (i, j)
— A weighted graph can be represented with a list of node/weight pairs
— Space proportional to @(m+n)
— Checking if (i, j) is an edge takes O(d;) time

ONN0 L
‘ 2 BE o3 | —o[4 E
a 6‘ E 1 |=1»2 | =15 | —1*7 » 8
.' ] |
O (5 O Bl 2 [z [F[e [Ff6
O s §E
n 3 |—tnl8 Adjacency list
= IO
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Paths and Connectivity in Graphs

B Definition: A path in an undirected graph G=(V,E) is a
sequence of nodes vy, v,, ..., v, with the property that each
consecutive pair v, 4, v; is joined by an edge in E

B Definition: An undirected graph is connected if for every pair
of nodes u and v, there is a path between uand v

12



Cycles in Graphs

B Definition: A cycle is a path vy, v,, ..., v, inwhichv;=v,, k> 2
and the first k-1 nodes are all distinct

CycleC=1-2-4-5-3-1

13



Trees

B Definition: An undirected graph is a tree if it is connected and
does not contain a cycle

B Theorem: Let G be an undirected graph with n nodes. Then,
any two of the followingstatements imply the third:
® Gisconnected

® G does notcontaina cycle
® G hasn-1edges e

14



Connected Components

B A connected component is a maximal connected subgraph of
a graph G (there is a path between any pair of nodes)

()

a‘a‘ Connected component containing node 1:
" {(1,2,3,4,5,6,7, 8

O—& © W

Graph with 3 connected components

Question: How can we compute the connected components of a
graph?
A: Apply BFS

15



Connectivity in Directed Graphs

B A plethora of network data from several applications
is from their nature directed

(1] Tube

Twitter

— = — D e :“=. D
\:,----..- _—~ \ i )= " | |.:| l:"':
=\ // Lo |:| [ &

.,\;a - 1”1 WIKIPEDIA F

Web Graph Wikipedia Citation Graph
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Shortest Paths

B Definition: find a path between two nodesin a graph, in such
a way that the sum of the weights of its constituent edges is
minimized

® Many applications (e.g., road networks)
® Single-source shortest path problem

® Single-destination shortest path problem

@® All-pairs shortestpath problem

Many algorithms:
* Dijkstra
» Bellman-Ford

Shortest path (A, C, E, D, F) between vertices A
and F in the weighted directed graph

17



Bipartite Graphs

B Definition: A graph G=(V,E) is called bipartite if the node set
V can be partitioned into two disjoint sets V,, V,, and every
edge (u,v) connects a node of V, to a node of V,,

« Strong modeling capabilities and many
real-world applications

« E.g., Collaborative filteringin
recommender systems

— Model the customer-product space using
a bipartite graph (who-purchased-what)

— If a user A has purchased the same
product with a user B, then it is more
Va Vi likely to purchase another product as B
did, than of a person selected randomly

18



Properties of Real-World Graphs

B Networks arising from real-world applications obey
fascinating properties

B Static networks
® Heavy-tailed degree distribution

® Small diameter

® Giantconnected component (GCC)
® Triangle Power Law
o

Community structure

B Dynamic networks

® Densification

® Small and shrinkingdiameter

19



Degree Distribution

M The probability distribution of the degrees over the network

frequency

degree

* Let C, =number of
nodes with degree k

* Problem: find the
probability distribution
the fits best the
observed data

20



Power-law Degree Distribution

B Let C, = number of nodes with degree k

C. =ckY

with y > 1 and ¢ a constant

M How to recognize a power-law distribution?

InC,=Inc—-vylInk

® PlottingIn C, versusIn k gives a straight line with slope —yIn k

21



Power-law Degree Distribution in Real-Networks (1/2)

Probability P(X=Kk)

(c) World Wide Web

| IIII||I L1

10 10° 10° 10°

Degree (K)

[Newman, 2003]
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Power-law Degree Distribution in Real-Networks (2/2)

Illlllll T T TTTT T TT

10

107

4
10 (a) collaborations . _
in mathematics (b) citations (c) World Wide Web
| | IlIIIII 11 IIIIIII 1 1 | llllllll 1 IIIIII_IJ | l]lllul L1l
1 10 100 1 10 100 1000
1005 TTTIM T TTTIT T T TTTT |? 100 3 100: T T TTTTT T T
10" E 10" E 0k .
10° = 2 ] - :
: T 107 E
10° E = 3 ' N (f) protein .
C  (d) Internet = 10 (e) power grid E 102 interactions -
10-4_ Cond vl ol N Lo L N Lol LS
1 10 100 1000 0 10 20 1 10

Cumulative degree distribution for six different networks [Newman 2003]
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Power-law Degree Exponents

B Power law degree exponent is typically2<y<3

® Web graph [Broder et al., 2000]
" Vin=2.1, Your = 2.4
® Autonomoussystems (Internet graph) [Faloutsos et al., 1999]
- y=24
® Actor collaborations [Barabasiand Albert, 2000]
* Vin=2.3
® Citation graphs[Redner, 1998]
* Yin=3
® MSN messenger graph [Leskovec et al., 2007]
* Yin=2

[Lescovec, ICML, 2009]

24



Summary — Degrees in Real Networks

* The degree distribution is heavily skewed

— Distribution is heavy-tailed (heavier tails compared to
the exponential distribution)

. Pr(X > )
lim — O

T—0C e~ &

— Various names and forms
 Long tail, Zipf’s law, Pareto distribution

25



Triangle Participation Distribution

IOS‘. ‘
A flickr
el
=
>
o
&
Complete graph
with 3 nodes:
triangle o
Ioo o 2 = 4 6
10 10 10 10

# of triangles

* Number of nodes that participate in k triangles vs. k in
log-log scale

« Heavy-tailed distribution

[Tsourakakis, 2008]
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Clustering Coefficient

« Captures the tendency of the nodes of a graph to cluster
together

T(G) = 3 x # of triangles in G / # of connected triplets

« Captures the transitivity of clustering
— If uis connected to v and v is connected tow ...
— ... it is likely that u is also connected to w

* Real-world networks tend to have high clustering
coefficient

— Connections to the existence of clustering and community
structure property

[Frieze, Gionis, Tsourakakis, 2013]
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Community Structure

Example graph with
three communities

Will be covered later on in detall

28



Small-world Phenomenon (1/4)

» Six degrees of separation
— Experiment done by sociologist Stanley Milgram

New Hampshire
VVVVVVV
North Dakota Massachusetts \ Maine
Minnesota

: e G 7~
1960’s v O G
( ) . Neb ﬁo N dais g Connecticu
— Randomly selected people in Nebraska were pud ,, e | R o
asked to send letters to Boston, by contacting = iy s VO \ww"l
somebody with whom they had direct connection cwore Temossas o.ﬂ g
1. People either sent the letter directly to the s " Goorga
recipient
2. Orto somebody they believed had a high
likelihood of knowing the target
» For those letters that reached their o '. 090 .‘ 0F Cof
destination, the average path lengthwas @ Q™0 L5190
O QNP ‘}\\ .1 O/ O
5.5t0 6 A O\ [T
: O NI "}\\‘ﬂf'\" O
— Sort paths are abundant in the networks ®— .g‘,‘%:»/ﬁggg )
— Decentralized routing: people are capable of O O‘Vrf.éé\?:{fla;‘f?.’{\,{‘ O
discovering which links to follow to reach faster (/0 "J”"'G O ‘;{(}q O
the target S O/0¢ Ol O/"N\P \ 4
OO ® ® ® O O 00

[McAuley, 2015]



Small-world Phenomenon (3/4)

« The small-world phenomenon appears in various network
settings
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Small-world Phenomenon (4/4)

* The small-world phenomenon appears in various network

settings

number of paths

|

MSN Messenger

100 _ |

10

15

20 25

distance (hops)

30

Average path length is
6.6
90% of the nodes are

reachable in less than 8
steps

Facebook network:

— Average distance is 4.7
— [Ugander et al., 2011]

[Leskovec, 2009]
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Small Diameter

- Diameter is the largest shortest path in the graph
— Diameter is often sensitive to chains of nodes

O——0—=0 O0—=O0

* |n practice, we use the effective diameter
— Upper bound of the shortest path over 90% of the pairs of nodes

* As an effect of the small-world phenomenon, real
networks have small diameter

[Leskovec, 2009] 32



Network Evolution

« Real-world networks are not static, but they evolve over
time
— New nodes/edges are added and/or deleted

— We are interested in making predictions about the structure of the
network

Apple’s inventor network I <

Nodes: inventors, Edges: collaborations for patents

2007-2008 2009-2010 2011-2012

>
: Fimeevotution——
Source: www.kenedict.com 3




Shrinking Diameter

« Q: How does the diameter change, while the graph evolves
with the addition of nodes and edges?
— Intuition: the diameter should slowly grow (e.g., log N, log log N)

« Diameter shrinks over time

5 10
48 Internet graph 9 L Citation network
2 " 2
O 4.6 X e, Q 8
- i .
- 4.4 = |
Q p S Q Gh-
4.2
5 I ! |
4 I . I 1992 1996 2000 2004
3000 4000 5000 6000

Size of the graph Time

[Leskovec, 2009] 34
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B Graph Exploration and Generation

® Degree distribution— power laws

® Graph generators

B Machine Learning for Graphs

® Community detection

® Supervised learning with Graph Kernels
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Graph Generators - Network Evolution

Goal: Characterize, model and understand the
structure of real networks

* How do real-world networks look like?

1. Empirical: statistical properties of networks (e.g.,
degree distribution, diameter) [Previous part]

2. Generative models of network structure [Current
part]

* Mechanisms that reproduce the underlying generative
processes

36



Why do we Care?

« Creating models for real-world graphs is
important for several reasons

— Help us to understand and reason about the
observed properties

— Create artificial data for simulation purposes
— Predict the evolution of networks

— Privacy preservation: release the parameters of the
generative model, instead of the network itself

37



What is a Network Model?

* Informally, it is a process (randomized or
deterministic) for generating a graph

« Models of static graphs
— Input: a set of parameter I and the size of the graph n
— Output: a graph G(I,n)

* Models of evolving graphs
— Input: a set of parameter I and an initial graph G,
— Output: a graph G; for each time step t

38



Erd6s—Rényi Random Graph Model

* Suppose that we want to generate a network with
n nodes

* The G, ,model:

— Graph with n nodes and edge probability p

— For each pair of nodes (u, v), add the edge (u, v)
independently with probability p

— Family of graphs, in which a graph with m edges
appears with probability

* The G, ,,model: p" (1 — P)(Q)_m
— Select m edges uniformly at random

39



Degree Distribution of the ER Model (1/2)

« Q: Do Erdés—Rényi graphs look realistic?
* The degree distribution is Binomial
— Let C, denote the number of nodes with degree k

n—1 1
Ck:< . )p’“(l—p)" o

« What if n - infinity and we fix the expected
degree =c¢?

If n — oo and np — ¢ (with ¢ > 0) then

k

, | B —
(n—nk)!k!pk(l —p)" T =le ™G

Poisson distribution




Degree Distribution of the ER Model (2/2)

X 0.40
. . . . @ 0.35}
Poisson distribution & '
Q) 0.30}
)
O
< 0.20F
< 5
®  0.15}
13 b
! 2 0.10}
0. 0.05F
0.00=5 5 10 15 20
K
Degree

The degree distribution of ER random graph model is
not realistic for real-world graphs

41
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Preferential Attachment Model — General Idea

* Recall that real-world networks tend to have
power-law (or in general heavy-tailed) degree
distribution

- Barabasi-Albert (BA) model
— Based on the idea of preferential attachment

* Intuition

— Design a graph generating model that produces a small
number of high degree nodes (hubs) and ...

— ... also captures the long-tail (nodes with small degree)

Idea: Consider nodes that are more likely to
connect to high-degree nodes

42



Barabasi-Albert Model (1/2)

« The Barabasi-Albert model:

— Input: some initial subgraph G, and a parameter m
that corresponds to the number of edges per new
node

— The process:

 The nodes arrive one at the time

« Each new node connects to m existing nodes selected
with probability proportional to their degree

« Let [d1, d2, ..., dt] be the degree sequence at time t.
Then the node at t+1 will be connected to node i with
probability d

Pi = Zidi

43



Barabasi-Albert Model (2/2)

« This phenomenon is also known as the rich get richer
effect

— E.g., a web page that already has many incoming
hyperlinks is likely to get more in the future

* The BA model produces graphs with power-law
degree distribution C, = k'Y, where y =3

10°

- Barabasi-Albert graph
« n=100,000 nodes

10° |

s m=4
> 10° "x
g A The BA model holds for several real-
£ 10 \x_ 1 | world networks (flickr, Delicious,
- ” LinkedIn) [Leskovec et al., 2008]

:i.
v ”
a4
LA A 4 A4 22 L4

—
(=]
o

10* 10° 10° 10°
Degree

—
(=]
o
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Network Models and Temporal Evolution

* Most of the existing models (e.g., BA) consider that

— The number of edges grows linearly with respect
to the number of nodes

— The diameter increases based on a factor of log n
or loglogn

* In real networks we have observed

* Densification power law
« Shrinking diameter

How to model the temporal evolution of real-world
networks?

45



Kronecker Model of Graphs (1/4)

 Reminder: Kronecker product of matrices

- A=[a;] ann x

m maitrix

— B =[b;] an p x q matrix

— Then C = AX B is defined as the np x mq matrix

C=A®B

(alalB ai 2B
ag,lB GQ,QB

\an,.l B a’n,.QB

al,mB\
a2 B

an,ij)

 Intuition: repeat the Kronecker product between the

adjacency matrix of an initial graph to get the final

graph

[Leskovec et al., 2010]
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Kronecker Model of Graphs (2/4)

* Kronecker model:
— Start by an initiator adjacency matrix A, of size p x p

— The Kronecker product of two graphs is defined as the
Kronecker product of their adjacency matrices

— The Kronecker graph after k iterations is defined as the graph
with the following adjacency matrix

Ar=A10A,0--- QA =Ar_1 ®A;
N ——  —

k iterations

— Each Kronecker multiplication exponentially increases the
size of the graph

[Leskovec et al., 2010] o



Kronecker Model of Graphs (3/4)

Graph G;
1 1 0 Gy, |Gy |0
1 |1 |1 G, |Gy |Gy
0 1 1 0 G, | G;

[Leskovec et al., 2010]



Kronecker Model of Graphs (4/4)

0 5 10 15 20 25

(0) A(G3) = A(G2) ® A(G1) (B) A(G4) = A(G3) @ A(G1)

Intuition: Recursion and self-similarity

[Leskovec et al., 2010]
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Stochastic Kronecker Model

* In practice, the stochastic Kronecker graph is used
— Start by an initiator matrix 0

a b

c d

— We obtain a graph with n = 2X nodes by repeating k times the
Kronecker product: A g=0X ...X 0

— Consider the value (i, j) of the matrix Ay o as the probability of
existence of the edge (i, J) (applying randomized rounding)

— Typically, 2 x 2 initiator matrices produce good results

[Leskovec et al., 2010]
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Generate Realistic Kronecker Graphs

« Given a network G, how can we find a “good” initiator
matrix 0, such that A;~=0x...2 0?

— Fit the parameters 0 of the model
— |ldea: use maximume-likelihood estimation

argmax P(G|O)
O

After Kronecker products

arg max
G,

[Leskovec et al., 2010]
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Properties of Kronecker Model

* The Kronecker (stochastic) graph model is able to
reproduce a plethora of properties

— Power-law degree distribution
— Small diameter

— Shrinking diameter

— Densification power-law

— Triangle participation

[Leskovec et al., 2010]
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Example: Fitting Kronecker Model to a Graph

4 T T TTTTI T T TTTT T TTTTT T TTTITYH 4

10 - heal grapH _____ G _____ E 10 T 1T I T1 IIIIII I Iﬁggl g'l‘al.Fl)HI”-l----c[).!..l.I”tEt

- Kronecker —=— - B Kronecker —=— +

10° - 10° & E

= " i - E E

é 10° = E o 102 = =

= 3 @) - -

10" £ E 10" & E

100 . vl vl \ 100 i prvnl vl 4 - 1
10° 10" 102 10° 10* 102 10" 102  10® 10* 10°

In-degree, k Node triangle participation

Blog-to-Blog network

[Leskovec et al., 2010]
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Community evaluation measures
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Basics

B The notion of community structure captures the tendency of
nodes to be organized into modules (communities, clusters,

groups)

® Members withina community are more similar among each other

B Typically, the communities in graphs (networks) correspond to
densely connected entities (nodes)

A community corresponds to a group of nodes with more intra-
cluster edges th7 ‘clust es
\

Example graph
with three
communities

\
[Newman ‘03], [Newman and Girval 7], [Fortunato ‘10],

‘ . \
[Danon et al. ‘05], [Coscia et al. 11] * -

—
—— -
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Schematic representation of communities

Example graph with three
communities

J
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Community detection in graphs

B How can we extract the inherentcommunities of graphs?

M Typically, a two-step approach

1. Specify a quality measure (evaluation measure, objective
function) that quantifies the desired properties of communities

2. Applyalgorithmic techniques to assign the nodes of graph into
communities, optimizing the objective function

B Several measuresfor quantifyingthe quality of communities
have been proposed

B They mostly consider that communities are set of nodes with
many edges between them and few connections with nodes

of different communities

® Many possible ways to formalizeit

58



Community evaluation measures

B Focuson
® Intra-cluster edge density (# of edges within community),
® Inter-cluster edge density (# of edges across communities)

® Both two criteria

B We groupthe community evaluation measures accordingto
® Evaluationbased oninternal connectivity
@® Evaluation based on external connectivity
® Evaluation based oninternal and external connectivity

® Evaluation based on network model

[Leskovec et al. ‘10], [Yang and Leskovec ‘12], [Fortunato ‘10]
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Notation

G =(V, E)isan undirected graph, |V| =n, |E|] =m

S is the set of nodesin the cluster

ns = |S| is the numberof nodesin$S

ms is the number of edgesin S, m_ =H(u,v); uES,vESH

¢s is the number of edges on the boundary of S, ¢ = ‘ {(u,v): uES,v%SH
duis the degree of nodeu

f (S) represent theclusteringquality ofset S

PPN K (O Nodes in S (ns)
/ \
* Edgesin S (ms)
\
! Edges in boundary
I > N of S (cs)
) /
\ Ve
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Evaluation based on internal and external connectivity

B Conductance [Chung ‘97]

f(s)=—=

2m_+c,

Measures the fraction of total
edge volume that points outside S

y
B Normalized cut [Shi and Malic '00]

c c
5 —_ S S
73] 2ms+c5+2(m—ms)+c

)

Measures the fraction of total
edge volume that points
outside S normalized by the
size of S | 4
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Evaluation based on internal connectivity

B Triangle participation ratio (TPR) [Yang and Leskovec '12]

‘ {u ; uES,{(v,W): v,WES,(u,v)EE,(u,W)EE,(v,w)EE};«-‘ @H

f(8)=

Fraction of nodes in S that
belong to a triangle
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Evaluation based on network model

B Modularity [Newman and Girvan ‘04], [Newman ‘06]

£15) = (m, ~(m,)

Measures the difference between
the number of edgesin S and the
expected number of edges E(ms)

in case of a configuration model

M Typically, a random graph
model with the same degree

sequence r
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Graph Mining with degeneracy

.7
N

News Members Research Publications Teaching External services Contact
Data Science and Mining Team

Ecole Polytechnique

B Community detection & evaluation

® l|dentifyinggroups of users highly collaboratingamongthem

10 g 10° g 10°
E 2 3
3 310" 3.
3 3 310
5 10 5 5
« @ 10 «
3 —6— Targeted % EPw —6— Targeted
H 5= Rard g | §10 —8—Random
g 107 g1 —o—Targeted g
fra fre —&—Random o
2 2 o 2107 ga
5 ] g
: | :
St 0 2 4 6 8 10 12 S 0 5 15 St 5 10 15
Number of Iterations Number of lterations Number of lterations
V. V. v
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Graph Mining — k-core concept

(-corona

1-corona
1-lamina
2-corona
2-lamina

3-corona
3-lamina

o® 80 @0 O

65
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Community detection and evaluation

Example 27.7-core DBLP co-authorship graph o

L

Ana Fernandez Vilas
Rebeca P. Diaz Redondo
Jose J. Pazos Arias
Jorge Garcia Duque
Martin Lopez Nores
Alberto Gil-Solla

Manuel Ramos Cabrer
Yolanda Blanco-

Fernandez

hitp -/Awww graphdegeneracy.org/
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Community detection and evaluation

Degeneracy in directed graphs

M Directed graphs:
® WIKI -graph
® DBLP & ARXIV — Citation graph

M |s there a degeneracy notion for directed graphs?

B We extend the k-core conceptin directed graphs by
applyinga limitonin/out edges respectively

B Trade off between in/out edges can give us a more specific
view of the cohesiveness and the “social" behavior

67



inlinks

D-core matrix Wikipedia & DBLP

outlinks

0 5 10 15 20 25 30 35 40 45 50

>30k >10k >5k >3k >2k >1k >700 >600 >450 >300 >0

| | | | | |
Wikipedia
The extreme D-core(38,41) contains 237
pages

45

outlinks

Il Il Il Il Il Il Il

OcClI
BCI

Il Il Il

5 10 15 20 25 30 35

40 45 50

>30k >10k >5k >3k >2k >1k >700 >600 >450 >300 >0

DBLP

55

One of the extreme D-cores(38,46) contains

188 authors
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The Extreme DBLP citation graph D-core
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D-Core frontier for individuals

B The frontier of an
individual: defined by outlinks
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Thematic D-core frontiers - Wikipedia

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
1

N T I T T B I Y Y Y A I | Y Y A I T T
0

&

&

Greece 4 Monty Python

I
il I W
&
I

'

Andrew Jackson

5
Thad
5
5

“Andrew Jackson” “Greece” “Monty Python”

71



D-core adopted by aminer.org
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Outline

B Motivating Graph Mining and basic notions

B Graph Exploration and Generation

® Degree distribution— power laws

® Graph generators

B Machine Learning for Graphs

® Community detection - clustering

® Supervised learning with Graph Kernels
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Notations

B Given Graph G=(V,E) undirected:

— Vertex Set V={v,,.....v, }, Edge e; between v; and v,

* we assume weight w;>0 for e;
— |V| : number of vertlces

— d. degree ofv.: d;, = )., e Wy

_U(V) —ZvEVd
— for A CVA V—-A
— Given

A,B C V &A n B — @, W(A, B) — Zv.EA,vjEB Wl]
— D : Diagonal matrix where D(i,i) = d
— W : Adjacency matrix W(i,j) = w
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Graph-Cut

M For k clusters:
—cut(A,,..,Ak) = 1/2¥F  w(4i,A)

» undirected graph:1/2 we count twice each edge

* Min-cut:Minimize the edges’ weight a
cluster shares with the rest of the graph
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Min-Cut

M Easy for k=2 : Mincut(A,,A,)
® Stoer and Wagner: “A Simple Min-Cut Algorithm”

M In practice one vertex is separated from the rest

® The algorithm is drawn to outliers
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Normalized Graph Cuts

B We can normalize by the size of the cluster (size
of sub-graph) :
— number of Vertices (Hagen and Kahng, 1992):

Ratiocut(A,, ...Ak) = ¥¥_, Cutl(:lil:l,Ai)

— sum of weights (Shi and Malik, 2000) :

_ wk Cut(AiA)
Ncut(A,, ...Ak) = X ()

* Optimizing these functions is NP-hard

e Spectral Clustering provides solution to a relaxed
version of the above
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From Graph Cuts to Spectral Clustering

B For simplicity assume k=2:
— Define f:V — R for Graph G :

1 v, €A

* Optimizing the original cut is equivalent to
an optimization of:

lJ 1le(f f])z
Z_wij(1+1)2+ Z wy(—1 — 1)?

VEAVJEA VEAVJEA

= 8+ cut(4,4)
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Graph Laplacian

B How is the previous useful in Spectral
clustering?
Z._ Wij(fi_fj)z
[,j=1
_21] 1Wl]fl Zl] 1Wl]flf]+21,] 1Wl]f]

z df?—2 Z wif f; +ZU B

i,j=1 i,j=1

=2 (Z:j_1 if i© — i‘]Zl Wijfifj>

=2(fTDf — fTWf) = 2fT(D - W)f = 2fTLf
* f:asingle vector with the cluster assignments of the vertices
 L=D-W : the Laplacian of a graph
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Properties of L

BmLis
® Symmetric
@® Positive
® Semi-definite
B The smallest eigenvalue of Lis O

® The corresponding eigenvectoris 1

B L has n non-negative, real valued eigenvalues
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Two Way Cut from the Laplacian

® We could solve min f'Lf where f € {—1,1}"

B NP-Hard for discrete cluster assignments

® Relax the constraint to f € R":
min f'Lf subject to f'f=n

B The solution to this problem is given by:

e (Rayleigh-Ritz Theorem) the eigenvector corresponding
to smallest eigenvalue: 0 and the corresponding
eigenvector (full of 1s) offers no information

B We use the second eigenvector as an
approximation

e f>0 the vertex belongs to one cluster, fi<0 to the other

81



Example

Adjacency Matrix

2nd Eigenvector
0.3r

0.25¢

0.2r

0.15¢

0.1r

"0 50 100 150 200




Multi-Way Graph Partition

B The cluster assignment is given by the smallest k
eigenvectors of L

B The real values need to be converted to cluster
assignments

® We use k-means to cluster the rows

® We can substitute L with L,

(- ) Smallestk A11 | [Aa21 Ak
A1 A1n eigenvectors K-means on
A2 i A2n the rows
I ----- Each row
represents a
AKT i Ak vertex
C 1)
Aln A2n Akn
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Outline

B Motivating Graph Mining and basic notions

B Graph Exploration and Generation

® Degree distribution— power laws

® Graph generators

B Machine Learning for Graphs

® Community detection

® Supervised learning with Graph Kernels
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Machine Learning for Graphs

B Node classification
B Graph clustering
B Link Prediction:

B Graph classification

i:i
class -1 / C@D
class 1

class -1

g T
ivi od

class 1




Motivation — Text categorization

Mathematical aspects  of computer—aid
computer-aided share trading.

We consider problems of O aspect
statistical analysis of share

prices and propose problem
probabilistic characteristics o O
describe the price series. We

discuss  three methods of

mathematical modelling of

Given a text, create a

. ; ) . tatist

price  series  with  given S

probabilistic characteristics. O O graph Where

Edge weights mathemat trade - vertices correpond to
1 R terms
2 gare
2 : - two terms are linked

rice .
5 (2 ® o to each other if they
probabilist analysi

co-occur within a
fixed-size sliding

(Ocharacterist window

seri

del
mode O method

Rousseau et al. “Text categorization as a graph classification problem.”. In ACL'15



Motivation — Protein Function Prediction

For each protein, create a graph that contains information about its

@ structure
@ sequence

@ chemical properties

secondary sequence structure
structure elements

Use graph kernels to

- measure structural similarity between proteins

- predict the function of proteins

Borgwardt et al. “Protein function prediction via graph kernels”. Bioinformatics 21
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Motivation — Chemical compound classification

Represent each chemical compound as a graph

O NH,

F S: Single Bond
D: Double Bond

Use a frequent subgraph discovery algorithm to discover the substructures that
occur above a certain support constraint
Perform feature selection

Use the remaining substructures as features for classification

Deshpande et al. “Frequent substructure-based approaches for classifying chemical compounds”. TKDE 17(8)
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Motivation — Malware detection

Given a computer program, create its control flow graph

processed pages.append(processed page)
visited += 1
links = extract links(html code)
for link in links:
if link not in visited links:
links to visit.append(link)

return create vocabulary(processed pages)

def parse page(html_code):
punct = re.compile( )
soup = BeautifulSoup(html code, t )
text = soup.get text()
processed text = punct.sub( , text)
tokens = processed text.split() —)
tokens = [token.lower() for token in tokens]
return tokens

def create vocabulary(processed pages):
vocabulary = {}
for processed page in processed pages:
for token in processed page:
if token in vocabulary:
vocabulary[token] += 1
else:
vocabulary[token] = 1

return vocabulary

Compare the control flow graph of the problem against the set of control flow
graphs of known malware

If it contains a subgraph isomporphic to these graphs — malicious code inside the
program

Gascon et al. “Structural detection of android malware using embedded call graphs”. In AlSec’13



Graph similarity

Graph classification very related to graph comparison

Example

graph
classification

f(L72)
_|_

k—nn

Although graph comparison seems a tractable problem, it is very complex

We are interested in algorithms capable of measuring the similarity between two
graphs in polynomial time
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Graph Kernels

Definition (Graph Kernel)

A graph kernel k: G x G — R is a kernel function over a set of graphs G

- It is equivalent to an inner product of the embeddings ¢ : X — H of a pair
of graphs into a Hilbert space: k(Gi, G2) = (¢(G1), ¢(Gz))

- Makes the whole family of kernel methods (e.g. SVMs) applicable to graphs
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Graph invariants

We saw that proving that two graphs are isomorphic is not a simple task

It is much simpler to show that two graphs are not isomorphic by finding a
property that only one of the two graphs has. Such a property is called a graph
invariant

Definition (Graph Invariant)

A graph invariant is a numerical property of graphs for which any two isomorphic
graphs must have the same value

Some examples of graph invariants include:
© number of vertices
@ number of edges
© number of spanning trees
Q degree sequence

© spectrum
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Substructures for similarity

]
A large number of graph kernels compare substructures of graphs that are computable in
polynomial time:

@ walks

@ shortest path lengths c Q @

@ cyclic patterns
@ rooted subtrees

@ graphlets

<

Shervashidze et al. “Efficient graphlet kernels for large graph comparison.”. In AISTATS'09
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Graphlet Kernel

The graphlet kernel compares graphs by counting graphlets

A graphlet corresponds to a small subgraph

- typically of 3,4 or 5 vertices

Below is the set of graphlets of size 4

X AUl L
I:LOIIiZZZ

g10 g11

Shervashidze et al. “Efficient graphlet kernels for large graph comparison”. In AISTATS'09



Graphlet Kernel

Let G = {graphlety, graphlet,, ..., graphlet,} be the set of size-k graphlets
Let also fg € N'" be a vector such that its i-th entry is fg ; = #(graphlet; C G)

The graphlet kernel is defined as:

k(G, G) = f¢ fe,

Problems:
o There are (}) size-k subgraphs in a graph
@ Exaustive enumeration of graphlets is very expensive
Requires O(n*) time
@ For labeled graphs, the number of graphlets increases further
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Graphlet Kernel

()

”j O
O O
G1 G2

The vector representations of the graphs above according to the set of graphlets
of size 4 is:

fe, = (0,0,2,0,1,2,0,0,0,0,0)"
sz — (Oa 0707 27 17 570747 07 37 O)T

Hence, the value of the kernel is:

k(G1, Gy) = f¢, fg, = 11
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Shortest Path Kernel

Floyd-transformation

929



Shortest Path Kernel

Given the Floyd-transformed graphs S; = (V4, E1) and S, = (V2, E2) of Gi1 and G, the
shortest path kernel is defined as:

k(G1, G2) = Z Z ksvla)/k (e1, &)

e1€k e€b

where kS;,k is a kernel on edge walks of length 1

@ For unlabeled graphs, it can be:

kévla/k(el, &) =0({(e1),le2)) = { é * E(el)o;efr(v'veizs)e,

where /(e) gives the label of edge e
@ For labeled graphs, it can be:

(e1, &) = { L if fer) = Uex) Al(el) = Uef) N (&) = (&),

(L)
0 otherwise

walk

where e, e? are the two endpoints of e
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Shortest Path Kernel

Floyd-transformations




Shortest Path Kernel

In S; we have:
- 4 edges with label 1
- 4 edges with label 2

- 2 edges with label 3

In S, we have:
- 4 edges with label 1

- 2 edges with label 2

Hence, the value of the kernel is:

k(GLG) =Y Y k(e e

e €k &€k

)=4x4+4x2=24
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Shortest Path Kernel

Computing the shortest path kernel includes:
- Computing shortest paths for all pairs of vertices in the two graphs: O(n®)
- Comparing all pairs of shortest paths from the two graphs: O(n*)

Hence, runtime is O(n*)

Problems:
- Very high complexity for large graphs

- Shortest-path graphs may lead to memory problems on large graphs
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http://graphdegeneracy.org/
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