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Outline

■ Motivating	Graph	Mining	and	basic	notions

■ Graph	Exploration	and	Generation
● Degree	distribution	– power	laws

● Graph	generators

■ Machine	Learning	for	Graphs
● Community	detection

● Supervised	learning	with	Graph	Kernels
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Networks	are	Everywhere

(d) Social network

(b) World Wide Web (c) Email network(a) Internet

(e) Collaboration network (f) Citation network
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Graphs	are	ubiquitous!
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Even	representing	text	- Graph-of-word

information retrieval is the activity of obtaining 

information resources relevant to an information need 

from a collection of information resources

“Graph of word  approach for ad-hoc information retrieval”, F. Rousseau, M. Vazirgiannis, 
Best paper mention award ACM CIKM 2013
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Elements	of	Learning	from	Graph	data

■ Graph	models/	graph	generators graph	generators	
(erdos reyni,	preferential	attachment,	kronecker graphs)

■ Node	base	metrics:	- Ranking	algorithms	(Pagerank),	
Ranking	evaluation	measures	(Kendal	Tau,	NDCG),	

■ Graph	exploration/preprocessing:	degree	distributions,	
visualization

■ Supervised	learning	for	graphs:	link	prediction,	graph	
kernels,	graph	classification

■ Unsupervised	learning: clustering,	community	mining,	
degeneracy.

■ Learning	theory	in	graphs:	model	ensembling/selection…
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Graphs	and	Networks

■ Graphs	allow	for	modeling	dependencies

Nodes

Edges
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Basic	Graph	Definitions

• A graph G=(V, E) consists of a set of nodes V, |V|= n and a 
set of  edges E, |E| = m

• Graphs can be undirected or directed

UndirectedDirected

Degree: d(i) = din (i) = dout (i)
In-degree: din (i) = || j | (j,i) is edge ||
Out-deg: dout (i) = || j | (i,j) is edge ||  
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Complete	Graph

• Definition: A graph G=(V, E) is called complete Kn if every 
pair of nodes is connected by an edge

Complete graph 
with 3 nodes: 
triangle

Complete graph 
with 4 nodes

• What is the number of 
edges of a complete 
graph with n nodes?

• Note that, the notion of complete graphs is of particular 
importance for the problem of community detection
– Communities correspond to well-connected subgraphs
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Graph	Representation:	Adjacency	Matrix

• A graph can be represented by the adjacency matrix W
– Matrix of size n x n, where n is the number of nodes
– Wij > 0, if i and j are connected
– Wij = 0, if i and j are not connected
– In case of unweighted graphs, Wij = 1, if (i, j) is an edge of the graph 
– Space proportional to n2

1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 0 1 0 0 0

5 0 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0

Undirected graph Adjacency matrix
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Graph	Representation:	Adjacency	Lists

• Adjacency lists
– Representation of a graph with n nodes using an array of n lists of 

nodes
– List i contains node j if there is an edge (i, j)
– A weighted graph can be represented with a list of node/weight pairs
– Space proportional to Θ(m+n)
– Checking if (i, j) is an edge takes O(di) time
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Paths	and	Connectivity	in	Graphs

■ Definition: A	path	in	an	undirected	graph	G=(V,E) is	a	
sequence	of	nodes	v1,	v2,	…,	vk with	the	property	that	each	
consecutive	pair	vi-1,	vi is	joined	by	an	edge	in	E

■ Definition:	An	undirected	graph	is	connected	if	for	every	pair	
of	nodes	u and	v,	there	is	a	path	between	u and	v
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Cycles	in	Graphs

■ Definition: A	cycle	is	a	path	v1,	v2,	…,	vk in	which	v1	=	vk,	k	>	2	
and	the	first	k-1 nodes	are	all	distinct

Cycle C = 1 – 2 – 4 – 5 – 3 – 1 
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Trees

■ Definition: An	undirected	graph	is	a	tree	if	it	is	connected	and	
does	not	contain	a	cycle

■ Theorem:	Let	G be	an	undirected	graph	with	n nodes.	Then,	
any	two	of	the	following	statements	imply	the	third:
● G is	connected

● G does	not	contain	a	cycle

● G has	n-1 edges
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Connected	Components

■ A	connected	component	is	a	maximal	connected	subgraph of	
a	graph	G (there	is	a	path	between	any	pair	of	nodes)

Connected component containing node 1: 
{1, 2, 3, 4, 5, 6, 7, 8}

Graph with 3 connected components

Question: How can we compute the connected components of a 
graph?

A: Apply BFS
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Connectivity	in	Directed	Graphs	

■ A	plethora	of	network	data	from	several	applications	
is	from	their	nature	directed

Twitter

Web	Graph Citation	Graph

Online	Social	Networks

Wikipedia

[Image:	http://sites.davidson.edu/mathmovement/]
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Shortest	Paths

■ Definition:	find	a	path	between	two	nodes	in	a	graph,	in	such	
a	way	that	the	sum	of	the	weights	of	its	constituent	edges	is	
minimized
● Many	applications	(e.g.,	road	networks)

● Single-source shortest	path	problem

● Single-destination	shortest	path	problem

● All-pairs	shortest	path	problem

Shortest path (A, C, E, D, F) between vertices A 
and F in the weighted directed graph

Many algorithms:
• Dijkstra
• Bellman-Ford
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Bipartite	Graphs

■ Definition:	A	graph	G=(V,E) is	called	bipartite if	the	node	set	
V can	be	partitioned	into	two	disjoint	sets	Va,	Vb and	every	
edge	(u,v)	connects	a	node	of	Va to	a	node	of	Vb

Va Vb

• Strong modeling capabilities and many 
real-world applications

• E.g., Collaborative filtering in 
recommender systems
– Model the customer-product space using 

a bipartite graph (who-purchased-what)
– If a user A has purchased the same 

product with a user B, then it is more 
likely to purchase another product  as B 
did, than of a person selected randomly
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Properties	of	Real-World	Graphs
■ Networks	arising	from	real-world applications	obey	

fascinating	properties

■ Static	networks
● Heavy-tailed	degree	distribution

● Small	diameter

● Giant	connected	component	(GCC)

● Triangle	Power	Law

● Community	structure

● …

■ Dynamic	networks
● Densification

● Small	and	shrinking	diameter
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Degree	Distribution

■ The	probability distribution of	the	degrees	over	the	network

• Let Ck = number of 
nodes with degree k

• Problem: find the 
probability distribution 
the fits best the 
observed data
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Power-law	Degree	Distribution	

■ Let	Ck=	number	of	nodes	with	degree	k

Ck =	c	k-γ

with	γ	>	1	and	c a	constant

■ How	to	recognize	a	power-law	distribution?

ln Ck =	ln c	– γ ln k
● Plotting	ln Ck versus	ln k gives	a	straight	line	with	slope		– γln k
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Power-law	Degree	Distribution	in	Real-Networks	(1/2)

Degree (k)
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[Newman, 2003]
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Power-law	Degree	Distribution	in	Real-Networks	(2/2)

Cumulative degree distribution for six different networks [Newman 2003]
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Power-law	Degree	Exponents
■ Power	law	degree	exponent	is	typically	2	<	γ	<	3

● Web	graph	[Broder et	al.,	2000]
• γin =	2.1,	γout =	2.4

● Autonomous	systems	(Internet	graph)	[Faloutsos et	al.,	1999]
• γ	=	2.4

● Actor	collaborations	[Barabasi and		Albert,	2000]
• γin =	2.3

● Citation	graphs	[Redner,	1998]
• γin =	3

● MSN	messenger	graph	[Leskovec et	al.,	2007]	
• γin =	2

[Lescovec, ICML, 2009]



25

Summary	– Degrees	in	Real	Networks

• The degree distribution is heavily skewed
– Distribution is heavy-tailed (heavier tails compared to 

the exponential distribution)

– Various names and forms
• Long tail, Zipf’s law, Pareto distribution
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Triangle	Participation	Distribution

• Number of nodes that participate in k triangles vs. k in 
log-log scale

• Heavy-tailed distribution 

Complete graph 
with 3 nodes: 
triangle

# of triangles

Co
un

t flickr

[Tsourakakis, 2008]
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Clustering	Coefficient

• Captures the tendency of the nodes of a graph to cluster 
together
T(G) = 3 x # of triangles in G / # of connected triplets

• Captures the transitivity of clustering
– If u is connected to v and v is connected to w …
– ... it is likely that u is also connected to w

• Real-world networks tend to have high clustering 
coefficient
– Connections to the existence of clustering and community 

structure property

[Frieze, Gionis, Tsourakakis, 2013]
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Community	Structure

• Will be covered later on in detail

Example graph with 
three communities
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Small-world	Phenomenon	(1/4)

• Six degrees of separation
– Experiment done by sociologist Stanley Milgram

(1960’s)
– Randomly selected people in Nebraska were 

asked to send letters to Boston, by contacting 
somebody with whom they had direct connection

1. People either  sent the letter directly to the 
recipient

2. Or to somebody they believed had a high 
likelihood of knowing the target

• For those letters that reached their 
destination, the average path length was 
5.5 to 6
– Sort paths are abundant in the networks
– Decentralized routing: people are capable of 

discovering which links to follow to reach faster 
the target

[McAuley, 2015]
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Small-world	Phenomenon	(3/4)

30

• The small-world phenomenon appears in various network 
settings

Erdős number: # of hops needed to connect the author of a paper to Paul 
Erdős

Source: 
physicsbuzz.physicscentral.com

Source: UCSD

Paul 
Erdős
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Small-world	Phenomenon	(4/4)

• The small-world phenomenon appears in various network 
settings

MSN Messenger

[Leskovec, 2009]

• Average path length is 
6.6

• 90% of the nodes are 
reachable in less than 8 
steps

• Facebook network:
– Average distance is 4.7
– [Ugander et al., 2011]
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Small	Diameter

• Diameter is the largest shortest path in the graph
– Diameter is often sensitive to chains of nodes

• In practice, we use the effective diameter
– Upper bound of the shortest path over 90% of the pairs of nodes

• As an effect of the small-world phenomenon, real 
networks have small diameter

[Leskovec, 2009]
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Network	Evolution

• Real-world networks are not static, but they evolve over 
time
– New nodes/edges are added and/or deleted
– We are interested in making predictions about the structure of the 

network

Source: www.kenedict.com

Apple’s inventor network

Nodes: inventors, Edges: collaborations for patents

Time evolution
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Shrinking	Diameter

• Q: How does the diameter change, while the graph evolves 
with the addition of nodes and edges?
– Intuition: the diameter should slowly grow (e.g., log N, log log N)

• Diameter shrinks over time

[Leskovec, 2009]

Di
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et
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Time
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Size of the graph

Internet graph Citation network
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Outline

■ Motivating	Graph	Mining	and	basic	notions

■ Graph	Exploration	and	Generation
● Degree	distribution	– power	laws

● Graph	generators

■ Machine	Learning	for	Graphs
● Community	detection

● Supervised	learning	with	Graph	Kernels
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Graph	Generators	- Network	Evolution

Goal: Characterize, model and understand the 
structure of real networks

• How do real-world networks look like?
1. Empirical: statistical properties of networks (e.g., 

degree distribution, diameter) [Previous part]

2. Generative models of network structure [Current 
part]
• Mechanisms that reproduce the underlying generative 

processes
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Why	do	we	Care?

• Creating models for real-world graphs is 
important for several reasons
– Help us to understand and reason about the 

observed properties
– Create artificial data for simulation purposes
– Predict the evolution of networks
– Privacy preservation: release the parameters of the 

generative model, instead of the network itself
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What	is	a	Network	Model?

• Informally, it is a process (randomized or 
deterministic) for generating a graph

• Models of static graphs
– Input: a set of parameter Π and the size of the graph n
– Output: a graph G(Π,n)

• Models of evolving graphs
– Input: a set of parameter Π and an initial graph G0

– Output: a graph Gt for each time step t
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Erdős–Rényi Random	Graph	Model

• Suppose that we want to generate a network with 
n nodes

• The Gn, p model:
– Graph with n nodes and edge probability p
– For each pair of nodes (u, v), add the edge (u, v) 

independently with probability p
– Family of graphs, in which a graph with m edges 

appears with probability 

• The Gn, m model:
– Select m edges uniformly at random
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Degree	Distribution	of	the	ER	Model	(1/2)

• Q: Do Erdős–Rényi graphs look realistic?
• The degree distribution is Binomial
– Let Ck denote the number of nodes with degree k

• What if n à infinity and we fix the expected 
degree = c?

Poisson distribution
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Degree	Distribution	of	the	ER	Model	(2/2)

Poisson distribution

Degree

P(
no

de
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as
 d
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Source: Wikipedia

The degree distribution of ER random graph model is 
not realistic for real-world graphs
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Preferential	Attachment	Model	– General	Idea

• Recall that real-world networks tend to have 
power-law (or in general heavy-tailed) degree 
distribution

• Barabasi-Albert (BA) model
– Based on the idea of preferential attachment

• Intuition
– Design a graph generating model that produces a small 

number of high degree nodes (hubs) and …
– … also captures the long-tail (nodes with small degree)

Idea: Consider nodes that are more likely to 
connect to high-degree nodes
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Barabasi-Albert	Model	(1/2)

• The Barabasi-Albert model:
– Input: some initial subgraph G0 and a parameter m

that corresponds to the number of edges per new 
node

– The process:
• The nodes arrive one at the time
• Each new node connects to m existing nodes selected 

with probability proportional to their degree
• Let [d1, d2, …, dt] be the degree sequence at time t. 

Then the node at t+1 will be connected to node i with 
probability
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Barabasi-Albert	Model	(2/2)

• This phenomenon is also known as the rich get richer 
effect
– E.g., a web page that already has many incoming 

hyperlinks is likely to get more in the future
• The BA model produces graphs with power-law

degree distribution Ck = k-γ, where γ = 3
• Barabasi-Albert graph
• n = 100,000 nodes
• m = 4

The BA model holds for several real-
world networks (flickr, Delicious, 
LinkedIn) [Leskovec et al., 2008] 
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Network	Models	and	Temporal	Evolution

• Most of the existing models (e.g., BA) consider that
– The number of edges grows linearly with respect 

to the number of nodes
– The diameter increases based on a factor of log n

or    log log n
• In real networks we have observed

• Densification power law
• Shrinking diameter

How to model the temporal evolution of real-world 
networks?
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Kronecker Model	of	Graphs	(1/4)
• Reminder: Kronecker product of matrices

– A = [aij] an n x m matrix
– B = [bij] an p x q matrix
– Then C = A ⊠ B is defined as the np x mq matrix

• Intuition: repeat the Kronecker product between the 
adjacency matrix of an initial graph to get the final 
graph

[Leskovec et al., 2010]
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Kronecker Model	of	Graphs	(2/4)

• Kronecker model:
– Start by an initiator adjacency matrix A1 of size p x p
– The Kronecker product of two graphs is defined as the 

Kronecker product of their adjacency matrices
– The Kronecker graph after k iterations is defined as the graph 

with the following adjacency matrix

– Each Kronecker multiplication exponentially increases the 
size of the graph

[Leskovec et al., 2010]
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Kronecker Model	of	Graphs	(3/4)

[Leskovec et al., 2010]

1 1 0

1 1 1

0 1 1

G1 G1 0

G1 G1 G1

0 G1 G1

Graph G1 Graph G2 = G1 ⊠ G1 
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Kronecker Model	of	Graphs	(4/4)

[Leskovec et al., 2010]

Intuition: Recursion and self-similarity
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Stochastic	Kronecker Model

• In practice, the stochastic Kronecker graph is used
– Start by an initiator matrix θ

– We obtain a graph with n = 2k nodes by repeating k times the 
Kronecker product: Ak,θ = θ ⊠ ... ⊠ θ

– Consider the value (i, j) of the matrix Ak,θ as the probability of 
existence of the edge (i, j) (applying randomized rounding)

– Typically, 2 x 2 initiator matrices produce good results

[Leskovec et al., 2010]

a b

c d
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Generate	Realistic	Kronecker Graphs

[Leskovec et al., 2010]

• Given a network G, how can we find a “good” initiator 
matrix θ, such that AG ~= θ ⊠ ... ⊠ θ?
– Fit the parameters θ of the model
– Idea: use maximum-likelihood estimation

arg max(     I |   )
G1

After Kronecker products
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Properties	of	Kronecker Model

• The Kronecker (stochastic) graph model is able to 
reproduce a plethora of properties
– Power-law degree distribution
– Small diameter
– Shrinking diameter
– Densification power-law
– Triangle participation
– … 

[Leskovec et al., 2010]
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Example:	Fitting	KroneckerModel	to	a	Graph

[Leskovec et al., 2010]

Blog-to-Blog network



54

References

■ J.	Leskovec. Modeling	Large	Social	and	Information	Networks.	Tutorial	
at	ICML,	2009.

■ J.	McAuley.	Data	Mining	and	Predictive	Analytics,	UCSD,	2015.

■ D.	Easley	and	J.	Kleinberg.	Networks,	Crowds,	and	Markets:	Reasoning	
About	a	Highly	Connected	World.	Cambridge	University	Press,	2010.

■ J.	Leskovec,	D.	Chakrabarti,	J.	Kleinberg,	C.	Faloutsos,	Z.	Ghahramani.	
Kronecker Graphs:	An	approach	to	modeling	networks.	JMLR,	2010.



55

2.	Community	evaluation	measures	

3.	
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Basics

■ The	notion	of	community	structure	captures		the	tendency	of	
nodes	to	be	organized	into	modules	(communities,	clusters,	
groups)
● Members	within	a	community	are	more	similar among	each	other

■ Typically,	the	communities	in	graphs	(networks)	correspond	to	
densely	connected	entities	(nodes)

A	community	corresponds	to	a	group	of	nodes	with	more	intra-
cluster edges	than	inter-clustersedges

[Newman	‘03],	[Newman	and	Girvan	‘04],	[Schaeffer	‘07],	[Fortunato	‘10],	
[Danon	et	al.	‘05],	[Coscia	et	al.	11]

Example	graph	
with	three	
communities
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Schematic	representation	of	communities

Example	graph	with	three	
communities
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Community	detection	in	graphs

■ How	can	we	extract	the	inherent	communities	of	graphs?

■ Typically,	a	two-step	approach
1. Specify	a	quality	measure	(evaluation	measure,	objective	

function)	that	quantifies	the	desired	properties	of	communities

2. Apply	algorithmic	techniques to	assign	the	nodes	of	graph	into	
communities,	optimizing	the	objective	function

■ Several	measures	for	quantifying	the	quality	of	communities	
have	been	proposed

■ They	mostly	consider	that	communities	are	set	of	nodes	with	
many	edges	between	them	and	few	connections	with	nodes	
of	different	communities
● Many	possible	ways	to	formalize	it
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Community	evaluation	measures

■ Focus	on
● Intra-cluster	edge	density	(#	of	edges	within	community),

● Inter-cluster	edge	density	(#	of	edges	across	communities)	

● Both	two	criteria

■ We	group	the	community	evaluation	measures	according	to
● Evaluation	based	on	internal	connectivity

● Evaluation	based	on	external	connectivity

● Evaluation	based	on	internal	and	external	connectivity

● Evaluation	based	on	network	model

[Leskovec	et	al.	‘10],	[Yang	and	Leskovec	‘12],	[Fortunato	‘10]
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Notation

■ G	=	(V,	E)	is	an	undirected	graph,	|V|	=	n,	|E|	=	m

■ S is	the	set	of	nodes	in	the	cluster

■ ns =	|S|	is	the	number	of	nodes	in	S

■ ms is	the	number	of	edges	in	S,	

■ cs is	the	number	of	edges	on	the	boundary	of	S,	

■ du is	the	degree	of	nodeu

■ f	(S)	represent		the	clustering	quality	of	set	S

( ){ }SvSuvums ∈∈= ,:,

( ){ }SvSuvucs ∉∈= ,:,

S

Nodes	in	S	(ns)

Edges	in	S	(ms)

Edges	in	boundary	
of	S	(cs)
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Evaluation	based	on	internal	and	external	connectivity

■ Conductance	[Chung	‘97]

■ Normalized	cut	[Shi	and	Malic ’00]

ss

s

cm
cSf
+

=
2

)(

S

Measures	the	fraction	of	total	
edge	volume	that	points	outside	S

( ) ss

s

ss

s

cmm
c

cm
cSf

+−
+

+
=

22
)(

Measures	the	fraction	of	total	
edge	volume	that	points	

outside	S	normalized	by	the	
size	of		S	
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Evaluation	based	on	internal	connectivity	

■ Triangle	participation	ratio	(TPR)	[Yang	and	Leskovec	’12]

S

Fraction	of	nodes	 in	S	that	
belong	to	a	triangle

( ) ( ) ( ) ( ){ }{ }
sn

EwvEwuEvuSwvwvSuu
Sf
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=

,,,,,,,:,,:
)(
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Evaluation	based	on	network	model

■ Modularity	[Newman	and	Girvan	‘04],	[Newman	‘06]

( )( )ss mEmSf −=
4
1)(

S

Measures	the	difference	between	
the	number	of	edges	in	S	and	the	
expected	number	of	edges	E(ms)	
in	case	of	a	configuration	model

■ Typically,	a	random	graph	
model	with	the	same	degree	
sequence
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Graph	Mining	with	degeneracy

■ Community	detection	&	evaluation
● Identifying	groups	of	users	highly	collaborating	among	them

64
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Graph	Mining	– k-core	concept

3-shell

2-shell

1-shell

B

G

C

D

EA

0-shell

n = 34, m = 36

F

1-corona
1-lamina
2-corona
2-lamina
3-corona
3-lamina

0-corona

65
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Community	detection	and	evaluation

Ana Fernandez Vilas
Rebeca P. Diaz Redondo
Jose J. Pazos Arias
Jorge Garcia Duque
Martin Lopez Nores
Alberto Gil-Solla
Manuel Ramos Cabrer
Yolanda Blanco-
Fernandez

Example 27.7-core DBLP co-authorship graph

http://www.graphdegeneracy.org/
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Community	detection	and	evaluation

■ Directed	graphs:	
● WIKI	- graph
● DBLP	&	ARXIV – Citation	graph	

■ Is	there	a	degeneracy	notion	for	directed	graphs?
■ We	extend	the	k-core	concept	in	directed	graphs	by	

applying	a	limit	on	in/out edges	respectively
■ Trade	off	between	in/out	edges	can	give	us	a	more	specific	

view	of	the	cohesiveness	and	the	“social"	behavior

Degeneracy in directed graphs



68

D-core	matrix	Wikipedia	&	DBLP

Wikipedia
The extreme D-core(38,41) contains 237 

pages 

DBLP
One of the extreme D-cores(38,46) contains 

188 authors

diagonal
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The	Extreme	DBLP	citation	graph	D-core
José A. Blakeley
Hector Garcia-Molina
Abraham Silberschatz
Umeshwar Dayal
Eric N. Hanson
Jennifer Widom
Klaus R. Dittrich
Nathan Goodman
Won Kim
Alfons Kemper
Guido Moerkotte
Clement T. Yu
M. Tamer Ã Zsu
Amit P. Sheth
Ming-Chien Shan
Richard T. Snodgrass
David Maier
Michael J. Carey
David J. DeWitt
Joel E. Richardson
Eugene J. Shekita
Waqar Hasan
Marie-Anne Neimat
Darrell Woelk
Roger King
Stanley B. Zdonik
Lawrence A. Rowe
Michael Stonebraker
Serge Abiteboul
Richard Hull
Victor Vianu
Jeffrey D. Ullman
Michael Kifer
Philip A. Bernstein
Vassos Hadzilacos
Elisa Bertino
Stefano Ceri
Georges Gardarin

Patrick Valduriez
Ramez Elmasri
Richard R. Muntz
David B. Lomet
Betty Salzberg
Shamkant B. Navathe
Arie Segev
Gio Wiederhold
Witold Litwin
Theo Härder
François Bancilhon
Raghu Ramakrishnan
Michael J. Franklin
Yannis E. Ioannidis
Henry F. Korth
S. Sudarshan
Patrick E. O'Neil
Dennis Shasha
Shamim A. Naqvi
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D-Core	frontier	for	individuals

■ The	frontier	of	an	
individual:	defined	by	
the	outmost	d-cores	
that	the	individual	
belongs	to

■ We	can	evaluate	the	
citation	based	
robustness	of	an	
individual	within	the	
community	by	her	
frontier

outlinks

http://www.graphdegeneracy.org/
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Thematic	D-core	frontiers	- Wikipedia	

“Andrew Jackson” “Greece” “Monty Python”
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D-core	adopted	by	aminer.org

https://cn.aminer.org/profile/ian-t-foster/53f48850dabfaee4dc8b2045
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Outline

■ Motivating	Graph	Mining	and	basic	notions

■ Graph	Exploration	and	Generation
● Degree	distribution	– power	laws

● Graph	generators

■ Machine	Learning	for	Graphs
● Community	detection - clustering

● Supervised	learning	with	Graph	Kernels
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Notations

■
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Graph-Cut

■
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Min-Cut

■ Easy	for	k=2	:	Mincut(A1,A2)
● Stoer and	Wagner:	“A	Simple	Min-Cut	Algorithm”

■ In	practice	one	vertex	is	separated	from	the	rest
● The	algorithm	is	drawn	to	outliers
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Normalized	Graph	Cuts

■
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From	Graph	Cuts	to	Spectral	Clustering

■
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Graph	Laplacian

■
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Properties	of	L

■ L	is	
● Symmetric

● Positive

● Semi-definite

■ The	smallest	eigenvalue	of	L	is	0	
● The	corresponding	eigenvector	is	𝟙

■ L	has	n	non-negative,	real	valued	eigenvalues
● 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛
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Two	Way	Cut	from	the	Laplacian
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Example
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Multi-Way	Graph	Partition

■ The	cluster	assignment	is	given	by	the	smallest	k	
eigenvectors	of	L		

■ The	real	values	need	to	be	converted	to	cluster	
assignments
● We	use	k-means	to	cluster	the		rows	

● We	can	substitute	Lwith	Lsym

A11………….…………A1n

A21………….…………A2n

Ak1………….…………Akn

.

.

.

Smallest k 
eigenvectors

A11

A1n

A21

A2n

Ak1

Akn

.....

K-means on 
the rows

Each row 
represents a 
vertex
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Outline

■ Motivating	Graph	Mining	and	basic	notions

■ Graph	Exploration	and	Generation
● Degree	distribution	– power	laws

● Graph	generators

■ Machine	Learning	for	Graphs
● Community	detection

● Supervised	learning	with	Graph	Kernels
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Machine	Learning	for	Graphs

■ Node	classification

■ Graph	clustering

■ Link	Prediction:

■ Graph	classification
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Motivation	– Text	categorization
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Motivation	– Protein	Function	Prediction
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Motivation	– Chemical	compound	classification
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Motivation	– Malware	detection
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Graph	similarity
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Graph	Kernels
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Graph	invariants
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Substructures	for	similarity



96

Graphlet Kernel
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Graphlet Kernel
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Graphlet Kernel
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Shortest	Path	Kernel
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Shortest	Path	Kernel
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Shortest	Path	Kernel
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Shortest	Path	Kernel
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Shortest	Path	Kernel
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