Geometric Data Analysis

Clustering

loannis Emiris

NKUA, and Athena RC
Fall 2020

Contents

(1) Clustering

- Vector spaces
- Improved k-means
- Arbitrary (non-vector) metric spaces
- Improvements and Evaluation

Outline

(1) Clustering

- Vector spaces
- Improved k-means
- Arbitrary (non-vector) metric spaces
- Improvements and Evaluation

Clustering

Definition (k clusters)

Given n objects, and $k>1$, partition the objects into k subsets (clusters) so as to optimize some objective function.

- Objects in the same cluster are more "similar" (or closer) to each other than to those in other clusters.
- Possible criteria: minimizing the total distance among all cluster points, minimizing the distance of cluster points to some center, etc.
- Variations: k is unknown and computed, e.g., by the Silhouette method. Capacitated/balanced: k given, clusters of equal cardinality.

Good Clustering, with centers

Approaches

- hierarchical (agglomerative): each point initializes a cluster, merge closest pair (define distance of clusters) until stopping criterion, e.g., predetermined number of clusters, or clusters with points too far apart (Gromos).
- point-assignment: given some initial clusters, assign points to "best" cluster; cluster represented by "centroid" (which may not belong to input). Example: k-means.
(Ullman et al.:Mining Massive datasets)

Outline

(1) Clustering

- Vector spaces
- Improved k-means
- Arbitrary (non-vector) metric spaces
- Improvements and Evaluation

k-means: Objective function

Typical ambient space is \mathbb{R}^{d} but can generalize to metric space \mathcal{Z}.

Minimization function

In any metric space over points/vectors \mathcal{Z} with distance/metric function d , let the dataset be $X=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathcal{X} \subseteq \mathcal{Z}, k>1$. Given centroids $C \subset \mathcal{Z}$, let

$$
\mathrm{d}\left(x_{i}, C\right)=\min _{c \in C} \mathrm{~d}\left(x_{i}, c\right) .
$$

Consider vector $v(C)=\left(d\left(x_{1}, C\right), \ldots, d\left(x_{n}, C\right)\right)$. The k-means objective is:

$$
\min _{C \subseteq \mathcal{Z},|C|=k}\|v(C)\|_{2}^{2}=\sum_{i=1}^{n} \mathrm{~d}\left(x_{i}, C\right)^{2}
$$

The k-means objective is NP-hard, but for the ℓ_{2} metric, Lloyd's algorithm converges quickly to a local minimum.

Variations

Various minimizations

Recall $X=\left\{x_{i}\right\}, v(C)=\left(\mathrm{d}\left(x_{1}, C\right), \ldots, \mathrm{d}\left(x_{n}, C\right)\right), C \subset \mathcal{Z}$ are centroids. For $\mathrm{d}(\cdot)$ denoting ℓ_{2} distance, the k-means objective is:

$$
\min _{C \subseteq \mathcal{Z},|\mathcal{C}|=k}\|v(C)\|_{2}^{2}=\sum_{i=1}^{n} \mathrm{~d}\left(x_{i}, C\right)^{2}
$$

Other standard objectives:
-- k-median: $\min _{C \subseteq \mathcal{Z},|C|=k}\|v(C)\|_{1}$,
-- k-medoid: $\min _{C \subseteq x,|C|=k}\|v(C)\|_{1}$.
-- k-center: $\min _{C \subseteq x,|C|=k}\|v(C)\|_{\infty}$.

Lloyd's

Algorithm

Initialize k centers randomly (or using some strategy).
(1) Assignment: Assign each object to its nearest center.
(2) Update: Calculate mean $\frac{1}{T} \sum_{i=1}^{T} \overrightarrow{v_{i}}$ of each cluster, make it new center.

Repeat the two steps until there is no change in the assignments.

Properties

- Each distance calculation $=O(d)$ because vectors in \mathbb{R}^{d}.
- Assignment $=O(n k d)$, Update $=O(n d)$,
- \#iterations unknown, in practice $\ll n$.
- Converges to local minimum in Euclidean space (depends on initialization)

Outline

(1) Clustering

- Vector spaces
- Improved k-means
- Arbitrary (non-vector) metric spaces
- Improvements and Evaluation

Inverted Quantized k-means (IQ-means)

Reverse assignment

- Fixed Data-structure for points (Dataset in memory)
- Centroids are queries; range search of increasing radius
- Resolve overlapping balls; consider "left-overs".

(Avrithis-Anagnostopoulos-Kalantidis-E,ICCV' 15)

Assignment by Range search

Reverse approach (ANN)

- Index n points, but only once for entire algorithm.
- At each iteration, for each centroid c, range/ball queries centered at c.
- Mark assigned points: move at end of bucket, or flag them.
- Increase radii by $\times 2$, start with min(dist between centers)/2, until all points assigned, or most ranges/balls do not assign a new point.
- For a given radius, if a point lies in ≥ 2 balls, compare its distances to the respective centroids, assign to closest centroid.
- At end: for every unassigned point, compare its distances to all centroids
- Standard method: n ANN queries, each k^{ρ}, hence $O\left(n k^{\rho}\right)$.
- Inverse: k queries, each $n^{\rho}+$ OutputSize $=O(n)$; stores entire datase \daggerprobabilistic analysis

Inverted Quantized k-means (IQ-means)

The algorithm

- inverse assignment (above): faster than update!
- quantization on dynamic 2d-grid (via learning) (Avrithis:ICCV'13)
- dynamic estimation of overlap hence of k (Avrithis-Kalantidis,ECCV' 12)

Dynamic IQ-means (k=9)

Dynamic IQ-means (k=7)

Dynamic IQ-means (k=7)

Experiments

- (Avrithis,Kalantidis,Anagnostopoulos,E:ICCV' 15) http://github.com/iavr/iqm
- Comparison against
-- AKM: Approximate k-means (Philbin et al. CVPR’07)
-- RR: Ranked Retrieval (Broder et al. Web Search \& Data Mining' 14)
-- standard k-means
- Speed: IQ-means fastest
- Accuracy: IQ-M on par with dedicated methods, worse than (approx) k-means
- clustering of 100 M images, on a single machine, in <1 hour. Best method for a couple of years.

Performance

Distortion vs total time for 20 iterations on 10^{6} images (SIFT1M):

Left: varying number of clusters k. Right: increasing number of points n.

Mining example

500K Paris + 100Mil YahooFlicker images

Accurate cluster despite large dataset: Paris ground truth depicted in red outline, the rest are images closest to the red ones.

Outline

(1) Clustering

- Vector spaces
- Improved k-means
- Arbitrary (non-vector) metric spaces
- Improvements and Evaluation

k-medoids

Goal: Handle any distance metric; k-means only if consistent with mean.
k-medoids (PAM is simplest algorithm) use centroids that belong to the dataset:

Definition (Medoid)

The medoid of a set is the object of the set that minimizes total dissimilarity (distance) to all other objects in the set.

Objective function (cf. above): Minimize sum of distances to point's centroid.

vs k-means

-- k-means tends to select convex spherical clusters; k-medoids less so.
-- k-means is more sensitive to noisy data and outliers.
-- k-means is faster and easier to implement.
(Kaufman-Rousseeuw ${ }^{\text {'87 }}$

Partitioning Around Medoids (PAM)

Initialize k centroids randomly.
(1) Assignment: Assign each object to nearest centroid; compute objective
(2) Update:
for each centroid m do for each non-centroid t do

Swap m and t, compute new objective function value.
end for

end for

Keep configuration (centroids) with min objective value.
Repeat steps 1 and 2 until there is no change of configuration (centroids).

Let distance calculation $=O\left(d^{\prime}\right)$. Update of Objective $=O\left((n-k) d^{\prime}\right)$, if $2 n d$ best centroid known. Hence, update $=O\left((n-k)^{2} k d^{\prime}\right) \sim n^{2}$.

Accelerating updates

Two faster updates, which may however lose accuracy compared to PAM. Recall that after every swap we compute J in $O\left((n-k) d^{\prime}\right)$.

1. Improved Update

Instead of swapping centroid m with every point t, swap m only with every non-centroid in same cluster as m.

Complexity: $n-k$ iterations instead of $k(n-k)$, hence update $=O\left((n-k)^{2} d^{\prime}\right)$

2. Update à la Lloyd's

For every cluster: (i) compute its medoid t, (ii) swap its current centroid m with t.
The medoid t minimizes $\sum_{i \in C} d(i, t)$ over all possible objects t in cluster C. Computed in $O\left(a^{2} d^{\prime}\right)$, assuming clusters have $a \simeq n / k$ items.
Total Complexity $=O\left(\left(k a^{2}+k(n-k)\right) d^{\prime}\right)=O\left(\left(n^{2} / k+n k\right) d^{\prime}\right)=O\left(n^{2} d^{\prime}\right)$ (Park-Jun’09).

Initial

PAM 1

PAM 2

PAM 3

PAM 4

PAM 5

PAM 6

Final

Outline

(1) Clustering

- Vector spaces
- Improved k-means
- Arbitrary (non-vector) metric spaces
- Improvements and Evaluation

Clustering Large Applications (CLARA)

General Idea: run entire algorithm with sample of size $n^{\prime} \ll n$. Use s samples drawn independently, return best clustering.

Overall algorithm:

$$
\text { for } i=1, \ldots, s \text { do }
$$

apply PAM on a random (uniform) sample of size n^{\prime} assign n points to k computed centroids calculate the total cost of the partitioning
end for
return best partitioning

Experimental results recommend: $s=5, n^{\prime}=40+2 k$.

CLARA based on RANdomised Search (CLARANS)

- Update: swap m's with t 's, for some randomly selected (m, t) 's only.
- Picking random $Q \subset\{1, \ldots, k\} \times\{1, \ldots, n-k\}$, s times.

Select k centroids by some initialization method.
for $i=1, \ldots, s$ do
Cluster $n-k$ points to k centroids by some assignment method. Randomly select set Q of $|Q|$ pairs $(m, t),|Q|<k(n-k)$.
for $(m, t) \in Q$ do
Swap m with t; compute new objective value.
end for
Keep centroids with minimum objective value over $|Q|$ choices.
end for
Output centroids yielding minimum objective value over s candidates.
Experiments recommend: $s=2,|Q|=\max \{0.12 \cdot k(n-k), 250\}$.
(Ng-Han:IEEE Tran.Know.Data Eng’02, Theodoridis et al.:Patt.Recogn.,ch.14)

Improve Initialisation 1: Spread-out

initialization++ : k-means++ / k-medoids++:

(1) Choose a centroid uniformly at random; $t \leftarrow 1$.
(2) \forall non-centroid point $i=1, \ldots, n-t$, let $D(i) \leftarrow$ min distance to some centroid, among \dagger chosen centroids.
(3) Choose new centroid: r chosen with probability proportional to $D(r)^{2}$:

$$
\operatorname{prob}[\text { choose } r]=D(r)^{2} / \sum_{i=1}^{n-t} D(i)^{2}
$$

Let $t \leftarrow t+1$.
(4) Go to (2) until $t=k=$ given \#centroids.

Expected approximation ratio $=O(\log k)\left(\right.$ Arthur-Vassilvitskii:SODA $\left.{ }^{\prime} 07\right)$ Similar algo for 2-approx of k-center (NP-hard prob)

Improve Initialisation 2: Concentrate

Select centroids close to dataset's center of mass (and to each other) as follows.
(1) Calculate symmetric $n \times n$ distance matrix of all objects, i.e. all distances $d_{i j}$ from every object $i=1, \ldots, n$ to every other object $j=1, \ldots, n, i \neq j$.
(2) For object i compute

$$
v_{i}=\sum_{j=1}^{n} \frac{d_{i j}}{\sum_{t=1}^{n} d_{j t}}, \quad i=1, \ldots, n .
$$

(3) Return the k objects with k smallest v_{i} values.

Algorithm proposed in (Park-Jun’09).

Evaluation: Silhouette

-- For $1 \leq i \leq n, a(i)=$ average distance of i to other objects in same cluster.
-- Let $b(i)=$ average distance of i to objects in next best (neighbor) cluster, i.e. cluster of $2 n d$ closest centroid.

Silhouette of Object i

$$
s(i)=\frac{b(i)-a(i)}{\max \{a(i), b(i)\}}=\left\{\begin{array}{ll}
1-a(i) / b(i), & \text { if } a(i)<b(i) \\
0, & \text { if } a(i)=b(i) \\
b(i) / a(i)-1, & \text { if } a(i)>b(i)
\end{array}\right\} \in[-1,1]
$$

Interpret silhouette

$s(i) \rightarrow 1$: i seems correctly assigned to its cluster;
$s(i) \simeq 0$: borderline assignment (but not worth to change);
$s(i) \rightarrow-1$: i would be better if assigned to next best cluster.

Silhouette: Cluster and clustering

Specific clusters

-- Evaluate a cluster: Compute average $s(i)$ over all i in some cluster.
-- If k is too large or too small, some clusters shall display much smaller silhouettes than the rest.
-- Silhouette plots are used to improve k : try different k 's and see if clusters have roughly equal silhouettes.

Overall Clustering

Overall Silhouette coefficient = average $s(i)$ over $i=1, \ldots, n$.
High if well clustered, low may indicate bad k (or existance of outlier points).

