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Nearest Neighbor

Exact NN

In d-dimensional space D, given set P ⊂ D, and query point q ∈ D, its
NN is point p0 ∈ P: dist(p0, q) ≤ dist(p, q), ∀p ∈ P.

Approximate NN

Given set P ⊂ D, approximation factor 1 > ε > 0, and query point q,
an ε-NN, or ANN, is any point p0 ∈ P:

dist(p0, q) ≤ (1 + ε)dist(p, q), ∀p ∈ P.
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Approximate Near-neighbor problem

Definition ((r , c)-Near neighbor)

Preprocess: finite set of points P.
Query: point q, radius r , approximation factor c > 1.

Range search: Report all p ∈ P s.t. dist(q, p) ≤ c · r .

Augmented decision problem (with witness):
– If ∃ p0 within radius r , output YES and any p : dist(q, p) ≤ c · r .
– If 6 ∃ p within radius c · r , then report NO.
– If none of above, report either NO, or YES and some p0 in cr -ball
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ANN to Near-Neighbor (bounding radius)

Lemma

c(1 + ε)-ANN reduces to log1+ε ∆ instances of ((1 + ε)i , c)-Near-Neighbor
decision problems, for i = log1+ε ∆, . . . , 2, 1, where ∆ = bounding radius.

Proof

For any query, run ith and (i + 1)st augmented decision problems:
– Balls cannot be both empty.
– While both answers positive, continue with new radius (1 + ε)i−1.
– When answers differ, we obtain p0 within radius c(1 + ε)i+1, whereas
none exists within radius c(1 + ε)i .
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ANN to Near-Neighbor (log n)

Theorem (Har-Peled,Indyk,Motwani’12)

For set P in a metric space, and c > 1, δ � 1, γ ∈ (1/n, 1), given a data
structure solving the decision (r , c)-Near Neighbor problem with failure
probability δ, using space S , and query time Q, there exists a data
structure using

O(S log2 n/γ) space,

answering ε-ANN, 1 + ε = Θ(c)(1 + O(γ)), with query time

O(Q log n),

and failure probability O(δ log n).

Replaces the dependence on log1+ε ∆ (bounding radius) by log n.
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NN in R

Sort/store n points in balanced binary search tree (red-black, AVL), use
binary search for queries:

Prepreprocessing in O(n log n) time

Data structure requiring O(n) space

Answer the query in O(log n) time

A hash-table with M buckets offers a solution with

preprocessing in O(M + n) = O(n) time

space O(M + n) = O(n)

query time O(1)

assuming constant time for hashing and constant number of items per
bucket.
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NN in R2

Preprocessing: Voronoi Diagram in O(n log n).

Storage = O(n).

Given query q, find the cell it belongs (point location) in O(log n).
NN = site of cell containing q.
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NN in Rd

Curse of Dimensionality: Voronoi diagram = O(ndd/2e).
Can query be polynomial in d and sublinear in n?

Approximate ε-NN:

BBD-trees: Sp = O(dn), Q = O((d/ε)d log n).

Locality sensitive hashing (LSH): Sp ' dn1+ρ, Q ' dnρ,
ρ = 1/(1 + ε)2 [Indyk,Motwani’98] [Andoni,Indyk’08]; various metrics.
Data-dependent: ρ = 1

2(1+ε)2−1
+ o(1) [Andoni,Razenshteyn’14].

Projection-based methods: Sp = O∗(dn), Q ' dn1−Θ(ε2)

[E,Psarros,et al.15-18].
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Complexity and extension

ANN in Rd [Arya, Mount et al.]

Let S(n),Q(n) denote space and ANN query time. Ignoring log factors,

S(n)Q2(n) = Ω∗
( n

εd−1

)
.

Definition (k-ANNs)

For pointset P and 0 < ε < 1, given query point q and k ∈ N∗, find a
sequence S = [p1, · · · , pk ] ⊂ P of distinct points s.t. pi is an ε-ANN of the
i-th exact NN of q.

BBD-trees return k-ANN in O((k + (d/ε)d) log n). Moreover, if S ′ ⊆ P
are the points visited by the search and S ⊆ S ′ the k points nearest to q
among S ′, then ∀x ∈ P \ S ′, (1 + ε)dist(x , q) > dist(pk , q).
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Outline

1 Locality sensitive hashing
Hamming space
Euclidean space
Cosine similarity (Hyperplane LSH)
Manhattan distance

2 General Metric spaces
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LSH idea

LSH Family

Let r1 < r2, probabilities p1 > p2. Function family H is (r1, r2, p1, p2)-
sensitive if, for any points p 6= q and any randomly selected h ∈R H:

if dist(p, q) ≤ r1, then prob[h(q) = h(p)] ≥ p1,

if dist(p, q) ≥ r2, then prob[h(q) = h(p)] ≤ p2.

h ∈R H: h randomly (uniformly) chosen.
Idea: increase collisions of similar strings.
Typically r2 = c · r1, c > 1.
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Amplification

Hash-table

LSH creates hash-table using amplified hash functions by concatenation:

g(p) = [h1(p) | h2(p) | · · · | hk(p)],

where every hi ∈R H is distributed uniformly (with repetition) in H.

Some hi may be chosen more than once for a given g or for different g ’s.
Also called AND-amplification.

Lemma

g is (r1, r2, p
k
1 , p

k
2 )-sensitive.

Large k ⇒ larger gap between p1, p2. Practical choices are k = 4 to 6.
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Construction

Preprocess

Having defined H and amplified hash-function g :

Select L (= nρ) hash-functions g1, . . . , gL.

Initialize L hashtables, hash all points to all tables using g (or φ).

Goal: L so that it has Θ(1) points per bucket.
L is 5 up to function of n, and HashTable size = Θ(n).

Overall construction is OR-amplification of g : points are “neighbors” if ∃i
for which they lie in same bucket.

Lemma

If g is (r1, r2, δ1, δ2)-sensitive, then the overall construction represents a
(r1, r2, 1− (1− δ1)L, 1− (1− δ)L)-sensitive function.
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Range Search

Range (r , c)-Near Neighbor search

Input: r , c, query q
for i from 1 to L do

for each item p in bucket gi (q) do
if dist(q, p) < cr then output p
end if

end for
end for

Decision problem: ”return p” instead of ”output p”.
At end ”return FAIL”; also FAIL after threshold on #examined points
reached.
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NN search

Approximate NN

Input: query q
Let b ←Null; db ←∞
for i from 1 to L do

for each item p in bucket gi (q) do
if large #checked items (e.g. > 3L) then return b // threshold
end if
if dist(q, p) < db then b ← p; db ← dist(q, p)
end if

end for
return b

end for

Theoretical bounds for c(1 + ε)-NN by reduction to ((1 + ε)i , c)-Neighbor
decision problems, i = 1, 2, . . . , lg1+ε ∆.
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Analysis of bad events

From the definition, with p1 > p2: LSH-Defn

‖p − q‖ ≥ cr =⇒ Pg [g(p) = g(q)] ≤ pk2 .

Set k = log n
log(1/p2) = logp2

(1/n), then bound exp’d #falsePositives:

Eg [#x : g(x) = g(q), ‖x − q‖ ≥ cr ] ≤ n · pk2 = 1.

For L hashtables, the expected number of false positives is ≤ L.
Markov’s inequality: P[X ≥ a] ≤ E[X ]/a, X ≥ 0.
Hence, P[#falsePositives ≥ 3L] ≤ 1/3.
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Analysis (cont’d)

True positive:

‖p − q‖ ≤ r =⇒ Pg [g(p) = g(q)] ≥ n
− log(1/p1)

log(1/p2) .

Set λ = log(1/p1)
log(1/p2) < 1, thus missing probability ≤ 1− n−λ.

Probability missing one true positive (false negative) in L tables =

Pg1,...,gL [∀i ∈ [L] : gi (p) 6= gi (q)] ≤
(

1− 1

nλ

)L

≤ e
− L

nλ ,

using 1 + x ≤ ex . Set L = nλ, and by union bound over two bad events,
the total failure probability ≤ P1 + P2 = 1/3 + 1/e.

The constant probability of success can be amplified to 1− o(1) by
building logarithmically many independent data structures.
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Known LSH-able metrics

Hamming distance,

`2 (Euclidean) distance,

`1 (Manhattan) distance,

`k distance for any k ∈ [1, 2),

`2 distance on a sphere,

Cosine similarity,

Jaccard coefficient.

Recall `k norm: dist`k (x , y) = k

√√√√ d∑
i=1

|xi − yi |k .
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Outline

1 Locality sensitive hashing
Hamming space
Euclidean space
Cosine similarity (Hyperplane LSH)
Manhattan distance

2 General Metric spaces
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Hamming distance

Definition

Given strings x , y of length d , their Hamming distance dH(x , y) is the
number of positions at which x and y differ.

Example

Let x = 10010 and y = 10100. Then, dH(x , y) = 2.
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Definition of hash functions

Given x = (x1, . . . , xd) ∈ {0, 1}d :

H = {hi (x) = xi : i = 1, . . . , d}.

Obviously, |H| = d .
Pick uniformly at random h ∈R H: Then prob[h(x) 6= h(y)] = dH(x , y)/d ,

prob[h(x) = h(y)] = 1− dH(x , y)/d .

Corollary

The family H is (r1, r2, 1− r1/d , 1− r2/d)-sensitive, for r1 < r2.
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LSH in Hamming Space

However probabilities 1− r1/d , 1− r2/d can be close to each other.

Amplification

Given parameter k, define new family G by concatenation. G is the set of
all functions

g : {0, 1}d → {0, 1}k : g(x) = [hi1(x) | · · · | hik (x)],

where hij ∈R H is uniformly chosen for j = 1, . . . , k .

– We must have L < |G | = dk , so as to pick L different g ’s.
– The range of each g is [0, 2k), so k < lg n.
– So k may be close to lg n − 1 (unlike later cases where k = 4, 5)
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Build Hash-tables

Build

Pick uniformly at random L functions g1, . . . , gL ∈R G , using hi ∈R H
(chosen uniformly with repetition).
for i from 1 to L do

Initialize (one-dim) hash-table Ti of size 2k :
for each p ∈ P, store p in bucket gi (p).

end for

Complexity

Build = O(Lnk) H-function calls, where L ' nρ.
Store n strings = O(dn) bits,
L hashtables and n pointers to strings per table = O(Ln) pointers.
(r , c)-Neighbors: Query = O(L(k + d)), assuming O(1) strings per bucket.
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Outline

1 Locality sensitive hashing
Hamming space
Euclidean space
Cosine similarity (Hyperplane LSH)
Manhattan distance

2 General Metric spaces
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Euclidean Space

Recall: dist`2(x , y)2 =
∑d

i=1(xi − yi )
2.

Definition

Let d-vector v ∼ N (0, 1)d have coordinates identically independently
distributed (i.i.d.) by the standard normal (next slide).
Set ”window” w ∈ N∗ for the entire algorithm, pick single-precision real

t uniformly ∈R [0,w). For point p ∈ Rd , define:

h(p) = bp · v + t

w
c ∈ Z.

– Essentially project p on line of v , shift by t, partition in cells of length w
– Generally w = 4 is OK but should increase for range queries of large r
– Also k = 4 (but can go up to 10), and L may be 5 (up to 30).
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Normal distribution

Vector v ∼ N (0, 1)d has single-precision real coordinates distributed
according to the standard normal (Gaussian) distribution:

vi ∼ N (0, 1), i = 1, 2, . . . , d ,

with mean µ = 0, variance σ2 = 1 (σ is the standard deviation).

The bell curve:
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Normal from Uniform

Given uniform generator [Wikipedia]:

Marsaglia: Use independent uniform U,V ∈R (−1, 1), S = U2 + V 2.
If S ≥ 1 then start over, otherwise:

X = U

√
−2 lnS

S
, Y = V

√
−2 lnS

S

are independent and standard normally distributed.

The U,V ,X ,Y are single-precision reals.

I.Emiris (Athens, Greece) Geometric Data analysis Fall 2020 27 / 41



Implementation

Given (elementary) hash hi , set amplified hash g = [h1(p)| · · · |hk(p)].
Yields huge table, many empty buckets. Use random linear combination:

Implement a 1-dim hash-table with indexing function:

φ(p) = (r1h1(p) + r2h2(p) + · · ·+ rkhk(p) mod M) mod TableSize,

int ri ∈R Z, prime M = 232−2, TableSize = n/8 (e.g.).

Note φ computed in int arithmetic, if all hi (p), ri are int (≤ 32 bits).
Recall (a + b) mod m = ((a mod m) + (b mod m)) mod m.
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LSH for Cosine similarity

Consider Rd , equipped with cosine similarity of two vectors:

cos(x , y) =
x · y
‖x‖ · ‖y‖

,

which expresses the angle between vectors x , y .

Similarity is inversely proportional of distance: For unit x , y ,
dist2(x , y) = 2− 2 cos(x , y). (not a metric: no triangular ineq.)

For comparing documents or, generally, very long vectors (typically
sparse), based on direction only, not length.
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Hyperplane LSH

Definition

Let ri ∼ N (0, 1)d , with each real coordinate iid N (0, 1)d . Define

hi (x) =

{
1, if ri · x ≥ 0
0, if ri · x < 0

.

Then H = {hi (x) | for every ri} is a locality sensitive family.
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Hyperplane LSH (cont’d)

Intuition

Each ri is normal to a hyperplane. Two vectors lying on same side of many
hyperplanes are very likely similar.

Lemma

Two vectors match with probability proportional to their cosine.

Amplification: Given parameter k , define new family G by concatenation:

G = {g : Rd → {0, 1}k | g(x) = [h1(x) | h2(x) | · · · | hk(x)]}.
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Hash-function

dist`1(x , y) =
∑d

i=1 |xi − yi |.

Consider Rd , r is the radius of range search. Pick real w � r once, then h
specified by independent, real, uniformly distributed s0, . . . , sd−1 ∈R [0,w).

Let x 7→ a ∈ Zd : ai =

⌊
xi − si
w

⌋
∈ Z, i = 0, 1, . . . , d − 1,

shifts x by s, then projects to bottom-left corner of its cell in
d-dimensional grid of size w .
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LSH function for 1-dim hashtable

h(x) = ad−1 + m · ad−2 + · · ·+ md−1 · a0 mod M ∈ N,

for maxi ai < m < M/2 for entire algorithm, e.g. M = 2b32/kc.

By concatenation, amplified function g(x) = [h1(x)|h2(x)| · · · |hk(x)].

Lemma. (c , r)-Near-Neighbor decided whp: check 3L candidate points,
L = nρ, ρ = ln p1/ ln p2 = 1/c + O(r/w) [TarsosLSH software]
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Distance Metric

Definition (Distance Metric)

A distance metric d : D2 → R is a function that satisfies:

Non-negativity: d(x , y) ≥ 0

Isolation: x 6= y ⇔ d(x , y) > 0

Symmetry: d(x , y) = d(y , x)

Triangle inequality: d(x , y) ≤ d(x , z) + d(z , y)

It follows that d(x , x) = 0, and |d(x , z)− d(z , y)| ≤ d(x , y).

Example

Distances in vector spaces (e.g. Hamming, Euclidean, Manhattan, any `k
metric) are all distance metrics. Compact (vector) representation allow to
compute mean, total order. . .
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Distance Based Hashing (DBH)

LSH needs specific families of LSH functions, so it is not applicable to
novel, or not studied, metrics.

DBH produces hash functions tailored to the space by considering
only calls to the distance measure and by making no assumptions
about the domain.

Due to the generality of the method there are no theoretical
guarantees

[Athitsos,et al.08]
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DBH family of functions

Consider metric space (D, d) and data P ⊂ D. Construct family of
functions H that behaves like LSH.

Definition (Line projection)

Given x1, x2 ∈ P ⊂ D define the line projection function

hx1,x2 : D → R : x 7→ d(x , x1)2 + d(x1, x2)2 − d(x , x2)2

2d(x1, x2)
.

If D is Euclidean, this is the signed length of projecting vector (x1, x) on
line (x1, x2), x2 lying on the positive axis.
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Discretization and balancing

Definition (Discretization)

For hashing, discretize hx1,x2 by using thresholds t1, t2 ∈ R ∪ {±∞}:

hx1,x2
t1,t2

: D → {0, 1} : x 7→
{

1, if hx1,x2(x) ∈ [t1, t2]
0, otherwise

The t1, t2 should map half the objects of P to 0 and the other half to 1:

Definition (Set of valid thresholds V )

For x1, x2 ∈ P, the set of thresholds yielding ”balanced” h is

V (x1, x2) = {[t1, t2] : probx∈P [hx1,x2
t1,t2

(x) = 0] = 1/2}.
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Hash functions

Definition

Consider the ”balanced” functions

H = {hx1,x2
t1,t2

: x1, x2 ∈ P and [t1, t2] ∈ V (x1, x2) }.

Using random hi ∈R H we define L hash functions by concatenation

gi (x) = [hi1(x) | hi2(x) | · · · | hik(x)], i = 1, . . . , L.

Implement:
– Pick x1, x2 ∈R P uniformly among points for which oracle/distance
matrix defined; this defines hx1,x2(·).
– Evaluate hx1,x2(x) ∈ R for all x ∈ P (or a large sample).
– Set t1 = median of {hx1,x2(x) : x ∈ P}, t2 =∞; or at the 1/4, 3/4 mark.
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