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Density-based algorithms for large data sets 
DENsity-based  CLUstEring (DENCLUE) Algorithm 
Definitions 
The influence function 𝑓𝒚(𝒙) for a point 𝒚 ∈ 𝑋 is a positive function that   
 decays to zero as 𝒙 “moves away” from 𝒚 (𝑑(𝒙, 𝒚) → ∞). Typical examples  
 are: 

𝑓𝒚 𝒙 =  
1, 𝑖𝑓 𝑑 𝒙, 𝒚 < 𝜎
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                        𝑓𝒚 𝒙 = 𝑒
−
𝑑(𝒙,𝒚)2

2𝜎2  

   
where σ is a user-defined function. 
 
Τhe density function based on 𝑋 is defined as (Remember the Parzen   
 windows): 

𝑓𝛸 𝒙 =  𝑓𝒙𝑖 𝒙
𝑁

𝑖=1
 

The Goal: 
(a) Identify all “significant” local maxima, 𝒙𝑗

∗, 𝑗 = 1,… ,𝑚, of 𝑓𝛸 𝒙  

(b) Create a cluster 𝐶𝑗 for each 𝒙𝑗
∗ and assign to 𝐶𝑗 all points 𝒙 of 𝑋 that lie 

within the “region of attraction” of 𝒙𝑗
∗. 



Density-based algorithms for large data sets 
The DENCLUE Algorithm (cont.) 
Two clarifications 
• The region of attraction of 𝒙𝑗

∗ is defined as the set of points 𝒙 ∈ 𝑅𝑙 such that 

if a “hill-climbing” (such as the steepest ascent) method is applied on 
𝑓𝛸 𝒙 , initialized by 𝒙, it will terminate arbitrarily close to 𝒙𝑗

∗. 

 

• A local maximum is considered as significant if 𝑓𝛸 𝒙𝑗
∗ ≥ 𝜉 (𝜉 is a user-

defined parameter). 
 
Approximation of 𝑓𝛸 𝒙  

𝑓𝛸 𝒙 =  𝑓𝒙𝑖 𝒙
𝑁

𝑖=1
≈  𝑓𝒙𝑖 𝒙

𝒙𝑖∈𝑌(𝒙)
 

 
where 𝑌(𝒙) is the set of points in 𝑋 that lie “close” to 𝒙. 
 
The above framework is used by the DENCLUE algorithm. 



Density-based algorithms for large data sets 
The DENCLUE Algorithm (cont.) 
DENCLUE algorithm 
• Preclustering stage (identification of regions dense in points of 𝑋) 
 Apply an 𝑙-dimensional grid of edge-length 2𝜎 in the 𝑅𝑙 space. 
 Determine the set 𝐷𝑝 of the hypercubes that contain at least one point 

of 𝑋. 
 Determine the set 𝐷𝑠𝑝(⊂ 𝐷𝑝) that contains the “highly populated” cubes 

of 𝐷𝑝 (that is, cubes that contain at least 𝜉𝑐 > 1 points of 𝑋). 
 For each 𝑐 ∈ 𝐷𝑠𝑝 define a connection with all neighboring cubes 𝑐𝑗 in 𝐷𝑝 

for which 𝑑(𝒎𝑐 ,𝒎𝑐𝑗) ≤ 4𝜎, where 𝒎𝑐 ,𝒎𝑐𝑗  are the means of 𝑐 and 𝑐𝑗, 

respectively. 
 

• Main stage 
 Determine the set 𝐷𝑟 that contains:  
the highly populated cubes and  
the cubes that have at least one connection with a highly populated 
cube. 

2σ 



Density-based algorithms for large data sets 
DENCLUE algorithm (cont.) 
• Main stage (cont.) 
 
 For each point 𝒙 in a cube 𝑐𝐷𝑟 
Determine 𝑌(𝒙) as the set of points that belong to cubes 𝑐𝑗 in 𝐷𝑟 such 

that the mean values of 𝑐𝑗’s lie at distance less than 𝜆 ∙ 𝜎 from 𝒙 (typically 

𝜆 = 4). 
Apply a hill climbing method on 𝑓𝛸 𝒙 =  𝑓𝒙𝑖 𝒙𝒙𝑖∈𝑌(𝒙)

 starting from 𝒙 

and let 𝒙∗ be the local maximum to which the method converges. 
 If 𝒙∗ is a significant local maximum (𝑓 𝑋(𝒙∗)  𝜉) then 
If a cluster 𝐶 associated with 𝒙∗ has already been created then 

o 𝒙 is assigned to 𝐶 
Else 

o Create a cluster 𝐶 associated with 𝒙∗  
o Assign 𝒙 to 𝐶 

End if 
 End if 
 End for 

2σ 



Density-based algorithms for large data sets 
The DENCLUE Algorithm (cont.) 
 
Remarks: 
• Shortcuts allow the assignment of points to clusters, without having to 

apply the hill-climbing procedure. 
 

• DENCLUE is able to detect arbitrarily shaped clusters. 
 

• The algorithm deals with noise very satisfactory. 
 

• The worst-case time complexity of DENCLUE is 𝑂(𝑁 log 𝑁2 ). 
 

• Experimental results indicate that the average time complexity is 𝑂(log2𝑁). 
 

• It works efficiently with high-dimensional data. 



Spectral clustering 
Spectral clustering is based on graph theory concepts. 
 
Rationale: It actually maps the data from their original space, where they may 
form arbitrarily-shaped clusters,  to a new space, where (their images) form 
compact clusters. 
 
Main stages: 
 Definition of a similarity graph 𝐺 based on the given data set 𝑋. 
 Utilization of the Laplacian matrix 𝐿 associated with 𝐺. 
 Mapping of the data set to a space spanned by some eigenvectors of 𝐿. 
 Performing clustering on the images of the data in the transformed space. 
 
In principle, spectral clustering is able to recover arbitrarily shaped clusters 
(see discussion later). 



Spectral clustering 
Similarity graph 
- Data set 𝑋 = 𝒙1, 𝒙2, … , 𝒙𝑁  
- Similarity graph 𝐺 = 𝑉, 𝐸  
 
Definition of a similarity graph 
About 𝑉 
• The set 𝑉 consists of 𝑁 vertices/nodes, 𝑣1, 𝑣2, … , 𝑣𝑁  
• Each vertex 𝑣𝑖 ∈ 𝑉 corresponds to a 𝒙𝑖 ∈ 𝑋, 𝑖 = 1, … ,𝑁. 
 
About 𝐸 
Various scenarios lead to various graphs: 
(a) The 𝜀-neighborhood graph:  

 An edge 𝑒𝑖𝑗 is added between vertices 𝑣𝑖 and 𝑣𝑗, if 𝑑 𝒙𝑖 , 𝒙𝑗 < 𝜀.  

 Usually it is considered as an unweighted graph (it is 𝑤𝑖𝑗 = 1, for all 𝑒𝑖𝑗‘s). 

𝑋 = 𝒙1, 𝒙2, … , 𝒙𝑁  
𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑁  

 

By convention, 
𝑤𝑖𝑗 = 0, implies 

absence of 𝑒𝑖𝑗. 

We consider only 
undirected graphs. 



Spectral clustering 
Similarity graph 
Definition of a similarity graph 
About 𝐸 
(b) The 𝑘-nearest neighbor graph: 
 An edge 𝑒𝑖𝑗 is added between vertices 𝑣𝑖 and 𝑣𝑗, if 𝑣𝑖 is among the 𝑘-

nearest neighbors of 𝑣𝑗 OR vice versa. 

 Each 𝑒𝑖𝑗 is weighted by the similarity between 𝒙𝑖 and 𝒙𝑗. 

 
(c) The mutual 𝑘-nearest neighbor graph: 
 An edge 𝑒𝑖𝑗 is added between vertices 𝑣𝑖 and 𝑣𝑗, if 𝑣𝑖 is among the 𝑘-

nearest neighbors of 𝑣𝑗 AND vice versa. 

 Each 𝑒𝑖𝑗 is weighted by the similarity between 𝒙𝑖 and 𝒙𝑗. 

 
(d) The fully connected graph: 
 All possible edges 𝑒𝑖𝑗 are added in the graph.  

 Each 𝑒𝑖𝑗 is weighted by the similarity between 𝒙𝑖 and 𝒙𝑗,  e.g.,  

 𝑠 𝒙𝑖 , 𝒙𝑗 = exp (−
𝒙𝑖−𝒙𝑗

2

2𝜎2 ) 

 
 



Spectral clustering 
Similarity graph 
Example: 
The data set consists of 
(i) two “half moon” 
clusters and  
(ii) a compact cluster of 
different density from 
the previous ones. 
 
The resulting graphs are 
shown in the figure. 



Spectral clustering 
Graph Laplacians 
• There are various definitions for graph Laplacian matrix.  
• All such matrices share some properties that allow their exploitation in the 

frame of clustering. 
 
Some definitions: 
- Weighted adjacency matrix:  

𝑊 = [𝑤𝑖𝑗]𝑁×𝑁 

- Degree of a vertex 𝑣𝑖:  

𝑑𝑖 =  𝑤𝑖𝑗 , 
𝑁

𝑖=1
𝑖 = 1,… ,𝑁 

- Degree matrix:  

𝐷𝑁×𝑁 = 𝑑𝑖𝑎𝑔 𝑑1, 𝑑2, … , 𝑑𝑁 =
𝑑1 ⋯ 0
0 ⋱ 0
0 ⋯ 𝑑𝑁 𝑁×𝑁

 

- (Unnormalized) graph Laplacian matrix:  
𝐿𝑁×𝑁 = 𝐷 −𝑊 

𝑤𝑖𝑗 is the weight of the 

edge connecting 𝑣𝑖 and 𝑣𝑗. 



Spectral clustering 
Graph Laplacians 
Some results for the unnormalized graph Laplacian 𝐿: 
1. ∀𝒙 = [𝑥1, … , 𝑥𝑁]

𝑇∈ 𝑅𝑁 it is  

𝒙𝑇𝐿𝒙 =
1

2
  𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

2
𝑁

𝑗=1

𝑁

𝑖=1
 

2. 𝐿 is symmetric and positive semidefinite. 
3. The smallest eigenvalue of 𝐿 is 0. 
4. 𝐿 has 𝑁 non-negative real-valued eigenvalues 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝛮 . 
 
5. Let 𝐺 be an undirected graph with nonnegative weights. Then the 
multiplicity 𝑘 of the zero eigenvalue equals to the number of the connected 
components 𝐴1, … , 𝐴𝑘 , of the graph. In addition, the eigenspace of the zero 
eigenvalues is spanned by the (𝑁-dimensional) indicator vectors of those 
components, 𝟏𝐴1

, … , 𝟏𝐴𝑘
. 

The indicator vector 𝟏𝐴𝑖
 has all of its components 

equal 0 except those corresponding to the points 
that belong to the 𝑘-th connected component., 

which are equal to 1. 



Spectral clustering 
Graph Laplacians: Some results for the unnormalized graph Laplacian 𝐿: 
5. Let 𝐺 be an undirected graph with nonnegative weights (𝑤𝑖𝑗 ≥ 0). Then the multiplicity 𝑘 of 

the zero eigenvalue equals to the number of the connected components 𝐴1, … , 𝐴𝑘 , of the 
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (𝑁-dimensional) 
indicator vectors of those components, 𝟏𝐴1

, … , 𝟏𝐴𝑘
. 

- The 𝑘 = 1 case (connected graph): It is 

0 = 𝐿 − 𝜆Ι =

𝑑1 − 𝜆 −𝑤12

−𝑤12 𝑑2 − 𝜆

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁

⋮ ⋮
−𝑤1𝑁 −𝑤2𝑁

⋱ ⋮
⋯ 𝑑𝑁 − 𝜆

=

−𝜆 −𝑤12

−𝜆 𝑑2 − 𝜆

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁

⋮ ⋮
−𝜆 −𝑤2𝑁

⋱ ⋮
⋯ 𝑑𝑁 − 𝜆

= 

 

−𝜆

1 −𝑤12

1 𝑑2 − 𝜆

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁

⋮ ⋮
1 −𝑤2𝑁

⋱ ⋮
⋯ 𝑑𝑁 − 𝜆

= −𝜆

1 −𝑤12

0 𝑑2 + 𝑤12 − 𝜆

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁 + 𝑤1𝑁

⋮ ⋮
0 −𝑤2𝑁 + 𝑤12

⋱ ⋮
⋯ 𝑑𝑁 + 𝑤1𝑁 − 𝜆

 

 

= −𝜆
𝑑2 + 𝑤12 − 𝜆 ⋯ −𝑤2𝑁 + 𝑤1𝑁

⋮ ⋱ ⋮
−𝑤2𝑁 + 𝑤12 ⋯ 𝑑𝑁 + 𝑤1𝑁 − 𝜆

⟺ 𝜆1 = 0, 𝜆2, … 𝜆𝛮 > 0  

Thus, multiplicity of the zero eigenvalue is 1. 

The associated eigenvector is the 𝟏,since 𝟎 = 0 ∙ 𝟏 = 𝐿 ∙ 𝟏 

𝑑𝑖 =  𝑤𝑖𝑗 
𝑁
𝑗=1 , 𝑤𝑖𝑖 = 0 

 𝑑𝑖 =  𝑤𝑖𝑗 
𝑁
𝑖=1  



Spectral clustering 
Graph Laplacians: Some results for the unnormalized graph Laplacian 𝐿: 
5. Let 𝐺 be an undirected graph with nonnegative weights (𝑤𝑖𝑗 ≥ 0). Then the multiplicity 𝑘 of 

the zero eigenvalue equals to the number of the connected components 𝐴1, … , 𝐴𝑘 , of the 
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (𝑁-dimensional) 
indicator vectors of those components, 𝟏𝐴1

, … , 𝟏𝐴𝑘
. 

- The 𝑘 = 1 case (connected graph):  

- The associated eigenvector is the 𝟏,since 𝟎 = 0 ∙ 𝟏 = 𝐿 ∙ 𝟏 

𝟎 = 0 ∙ 𝟏 = 0 ∙

1
1
⋮
1

=

𝑑1 −𝑤12

−𝑤12 𝑑2

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁

⋮ ⋮
−𝑤1𝑁 −𝑤2𝑁

⋱ ⋮
⋯ 𝑑𝑁

1
1
⋮
1

 

 

𝑑𝑖 =  𝑤𝑖𝑗 
𝑁
𝑗=1 , 𝑤𝑖𝑖 = 0 



Spectral clustering 
Graph Laplacians: Some results for the unnormalized graph Laplacian 𝐿: 
5. Let 𝐺 be an undirected graph with nonnegative weights (𝑤𝑖𝑗 ≥ 0). Then the multiplicity 𝑘 of 

the zero eigenvalue equals to the number of the connected components 𝐴1, … , 𝐴𝑘 , of the 
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (𝑁-dimensional) 
indicator vectors of those components, 𝟏𝐴1

, … , 𝟏𝐴𝑘
. 

- The 𝑘 > 1 case (𝑘 connected components):  
• Considering each connected component individually, the 𝑖-th component 

has its own associated Laplacian 𝐿𝑖   
• Then the Laplacian for the whole graph can be written as   

 

𝐿 =
𝐿1

⋱
𝐿𝑘

 

 
• Since, the multiplicity of the zero eigenvalue is 1 for each 𝐿𝑖 ⟹  

      the multiplicity of the zero eigenvalue is 𝑘 for 𝐿. 
• Denoting 𝐴1 = 𝑛1, 𝟏𝐴1

 has its first 𝑛1 (resp. remaining) components 

equal to 1(resp. 0), 𝟏𝐴1
= [1,1,… , 1,0,0, … , 0]𝑇. Then,  

𝟎𝑛1×1 = 0 ∙ 𝟏𝑛1×1 = 𝐿1 ∙ 𝟏𝑛1×1 ⇒ 𝟎𝑁×1 = 0 ∙ 𝟏𝑨𝟏,𝑁×1 = 𝐿 ∙ 𝟏𝑁×1 

The spectrum of 𝐿 is 
given by the union of 

the spectra of 𝐿𝑖‘s. 



Spectral clustering 
Unnormalized spectral clustering algorithm 
Input: (a) Similarity matrix 𝑆 ∈ 𝑅𝑁×𝑁, (b) the number of clusters 𝑚 
 
• Construct a similarity graph with weighed adjacency matrix 𝑊. 
• Compute the unnormalized Laplacian 𝐿. 
• Compute the first 𝑚 (column) eigenvectors of 𝐿, 𝒖1, … , 𝒖𝑚. 
• Stack 𝒖1, … , 𝒖𝑚 on an 𝑁 ×𝑚 matrix 𝑈. 
• Represent each data vector 𝒙𝑖 by the 𝑖-th row 𝒚𝑖 of 𝑈. 
• Cluster the points 𝒚𝑖 ∈ 𝑅𝑚, 𝑖 = 1, … ,𝑁, using e.g., the 𝑘-means algorithm, 

into clusters 𝐶1′, 𝐶2′, … , 𝐶𝑚′. 
 
Output: Clusters 𝐶1, 𝐶2, … , 𝐶𝑚, with 𝐶𝑖 = {𝒙𝑗:  𝒚𝑗 ∈ 𝐶𝑖′} 

 



Spectral clustering 
Unnormalized spectral clustering algorithm 
Example: 
Data set 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5  
Similarity graph:  
 𝐺 = 𝑉, 𝐸 = ( 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 , 𝑒13, 𝑒24, 𝑒25, 𝑒45 ) 
Nodes degree: 𝑑1 = 𝑤13, 𝑑2 = 𝑤24 + 𝑤25, 𝑑3 = 𝑤13 
 𝑑4 = 𝑤24 +𝑤45,  𝑑5 = 𝑤25 +𝑤45 
Laplacian of the whole graph: 
𝐿 = 𝐷 −𝑊

=

       𝑤13 0
   0 𝑤24 +𝑤25

     −𝑤13      0                    0
      0  −𝑤24             −𝑤25

−𝑤13    0
0      −𝑤24

0     −𝑤25

               𝑤13 0 0
                0 𝑤24 +𝑤45 −𝑤45

                0 −𝑤45 𝑤25 +𝑤45

 

 

𝐿 − 𝜆𝐼 = ⋯ = 𝜆2
2𝑤13 − 𝜆 0 0

0 2𝑤24 +𝑤45 − 𝜆 𝑤25 −𝑤45

0 𝑤24 −𝑤45 2𝑤25 + 𝑤45 − 𝜆
= 0 ⟺ 

𝜆 = 0 double root 

𝑣1 

𝑣3 

𝑣2 

𝑣4 
𝑣5 

𝑤13 

𝑤24 𝑤25 

𝑤45 

𝐴1 

𝐴2 



Spectral clustering 
Unnormalized spectral clustering algorithm 
Example: 
Data set 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5  
Corresponding eigenvectors 𝒆 (𝐿 ∙ 𝒆 = 0 ∙ 𝒆): 
 
𝒖1 = [1,0,1,0,0]𝑇 and 𝒖2 = [0, 1,0,1,1]𝑇 since 
 
       𝑤13 0
   0 𝑤24 +𝑤25

     −𝑤13      0                    0
      0  −𝑤24             −𝑤25

−𝑤13    0
0      −𝑤24

0     −𝑤25

               𝑤13 0 0
                0 𝑤24 +𝑤45 −𝑤45

                0 −𝑤45 𝑤25 +𝑤45

∙

1
0
1
0
0

= 0 ∙

1
0
1
0
0

 

 
       𝑤13 0
   0 𝑤24 +𝑤25

     −𝑤13      0                    0
      0  −𝑤24             −𝑤25

−𝑤13    0
0      −𝑤24

0     −𝑤25

               𝑤13 0 0
                0 𝑤24 +𝑤45 −𝑤45

                0 −𝑤45 𝑤25 +𝑤45

∙

0
1
0
1
1

= 0 ∙

0
1
0
1
1

 

𝑣1 

𝑣3 

𝑣2 

𝑣4 
𝑣5 

𝑤13 

𝑤24 𝑤25 

𝑤45 

𝐴1 

𝐴2 



Spectral clustering 
Unnormalized spectral clustering algorithm 
Example: 
 
The eigenvectors corresponding to the zero eigenspace are 
𝒖1 = [1,0,1,0,0]𝑇 and 𝒖2 = [0, 1,0,1,1]𝑇 
 

The matrix 𝑈 =

1
0
1

0
1
0

0
0

1
1

≡
≡
≡

𝒚1
𝒚2

𝒚3

≡
≡

𝒚4

𝒚5

→
→
→

𝒙1
𝒙2
𝒙3

→
→

𝒙4
𝒙5

 

(1,0) 

(0,1) 

{𝒙1, 𝒙3} 

{𝒙2, 𝒙4, 𝒙5} 

𝑣1 

𝑣3 

𝑣2 

𝑣4 
𝑣5 

𝑤13 

𝑤24 𝑤25 

𝑤45 

𝐴1 

𝐴2 



Spectral clustering 
Other Laplacian matrices 

• Symmetric Laplacian matrix: 𝐿𝑠𝑦𝑚 = 𝐷−1/2 ∙ 𝐿 ∙ 𝐷−1/2 

• Random walk Laplacian matrix: 𝐿𝑟𝑤 = 𝐷−1 ∙ 𝐿 
 
All Laplacians share similar properties concerning the zero eigenvalue. 
In (von Luxburg, 2007), it is suggested to use 𝐿𝑟𝑤. 



Spectral clustering 
Choice of the number of clusters 
 
Example: 
The ten smallest eigenvalues of 𝐿𝑟𝑤 for a 1-dim. four-clusters problem. 

In the case where 𝑚 is not apriori known, it can be estimated by sorting the 
Laplacian eigenvalues and determining the number of the first 𝑚 eigenvalues 
that (a) are sufficiently close to 0 and (b) the 𝑚 + 1 differs significantly from 
them. 



Clustering algorithms for high dimensional data sets 
• What is a high-dimensionality space? 
   Dimensionality 𝑙 of the input space with 
   20 ≤ 𝑙 ≤ 𝑓𝑒𝑤 𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠 
   indicate high-dimensional data sets. 
 
• Problems of considering simultaneously all dimensions in high-dimensional 

data sets: 
 “Curse of dimensionality”. As a fixed number of points spread out in high-

dimensional spaces, they become almost equidistant (that is, the terms 
similarity and dissimilarity tend to become meaningless – alternatively, no 
clear structures are defined). 
 

 Several dimensions may be  irrelevant to the identification of the clusters 
(that is, the clusters usually are identified in subspaces of the original 
feature space). 
 

• A way out: Work on subspaces of dimension lower than 𝑙. 
 Main approaches: 
 Dimensionality reduction clustering approach. 
 Subspace clustering approach. 



Clustering algorithms for high dimensional data sets 
An example: 



Clustering algorithms for high dimensional data sets 
Dimensionality Reduction Clustering Approach 
Main  idea 
• Identify an appropriate 𝑙′-dimensional space 𝐻𝑙′  (𝑙

′ < 𝑙). 
• Project the data points of 𝑋 into 𝐻𝑙′. 
• Apply a clustering algorithm on the projections of the points of 𝑋 into 𝐻𝑙′. 
 
Identification of 𝐻𝑙′  may be carried out using either by: 
 Feature generation methods, 
 Feature selection methods, 
 Random projections. 



Clustering algorithms for high dimensional data sets 
Dimensionality Reduction Clustering Approach (cont.) 
Feature generation methods 
 They produce new features via suitable transformations applied on the 

original ones. 
 Typical Methods in this category are:  

Principal component analysis (PCA). Singular value decomposition (SVD). 
Nonlinear PCA  Robust PCA   Independent comp. analysis (ICA). 

 In general, PCA and SVD methods  
• preserve the distances between the points in the high-dimensional 

space, when these are mapped to the lower-dimensional space. 
• produce compact representations (with reduced number of features) of 

the original high-dimensional feature space. 
 In some cases feature generation is applied iteratively in cooperation with a 

clustering algorithm (𝑘-means, EM). 
 They are useful in cases where a significant number of features contributes 

to the identification of all physical clusters. 
 They are useful when all clusters are formed in the same subspace of the 

feature space. 



Principal Component Analysis (PCA) 

Principal component analysis (PCA):  

It transforms the original space to a new orthogonal space (of the same 
dimensionality) where the features are uncorrelated. Specifically: along the, 
so called, 1st  principal axis the maximum possible variance of the data set is 
retained, along the 2nd one the maximum possible remained variance is 
retained etc. 

Projecting on the first few principal axes space we achieve dimensionality 
reduction. 



Principal Component Analysis - PCA 

Principal Component Analysis (PCA) 

•The black lines show the range of values of the data 
points along the initial axes.  
•The blue lines show the range of values of the data 
points along the principal  axes. 
•The widest range of values is along the first principal 
axis.  

CAUTION: Retaining the maximum possible 
variance of the data set DOES NOT imply that 
we necessarily retain the cluster separability.  

Projection along the a1 (1st) principal direction 
retains cluster separability. 

Projection along the a1 principal direction 
DOES NOT retain cluster separability. 



Subspace clustering 
- Solution: Principal component analysis (PCA) 
- Let 𝑋𝑙×𝑁 = 𝒙1 𝒙2 ⋯ 𝒙𝑁  and 𝑌𝑙′×𝑁 = 𝒚1 𝒚2 ⋯ 𝒚𝑁  

- Compute 𝝁𝑙×1 =
1

𝑁
 𝒙𝑖
𝑁
𝑖=1  

- Consider 𝑋′𝑙×𝑁 = 𝒙1 − 𝝁 𝒙2 − 𝝁 ⋯ 𝒙𝑁 − 𝝁   
- Perform singular value decomposition (SVD) on 𝑋′ taking 

𝑋′
𝑙×𝑁 = 𝑈′𝑙×𝑙 ∙ Σ′𝑙×𝛮 ∙ 𝑉′𝑇𝛮×𝛮 

- Keep the first 𝑙′ singular values (as a consequence take also (a) the first 𝑙′ 
columns of 𝑈′ and (b) the first 𝑙′ columns of 𝑉′(⟺ the first 𝑙′ rows of 𝑉′𝑇) 
and approximate 𝑋′ as 

𝑋′𝑎𝑝𝑝𝑟
𝑙×𝑁 = 𝑈𝑙×𝑙′ ∙ Σ𝑙′×𝑙′ ∙ 𝑉

𝑇
𝑙′×𝛮 

- 𝐵 = 𝑈𝑙×𝑙′  is the subspace basis and 
-  𝑌𝑙′×𝛮 = Σ𝑙′×𝑙′ ∙ 𝑉

𝑇
𝑙′×𝛮 contains (in columns) the representations/ 

projections of the (shifted by 𝝁) original data in the lower 𝑙′–dim. space. 
 

Theorem: 𝑋′𝑎𝑝𝑝𝑟, as computed before, is the best approximation of 𝑋′ wrt 
the Frobenius norm, subject to the constraint that the rank of 𝑋′𝑎𝑝𝑝𝑟 is 𝑙′. 

𝑆 = {𝒙 ∈ 𝑅𝑙: 𝒙 = 𝝁 + 𝐵 ∙ 𝒚} 

𝑋 − 𝑋′ =   (𝑥𝑖𝑗 − 𝑥′
𝑖𝑗)

2
𝑁

𝑗=1

𝑙

𝑖=1
 



Subspace clustering 
More on SVD 

Let 𝑋′𝑙×𝑁 = 𝒙1 − 𝝁 𝒙2 − 𝝁 ⋯ 𝒙𝑁 − 𝝁 , with 𝝁𝑙×1 =
1

𝑁
 𝒙𝑖
𝑁
𝑖=1  

In the expression 𝑋′
𝑙×𝑁 = 𝑈′𝑙×𝑙 ∙ Σ′𝑙×𝛮 ∙ 𝑉′𝑇𝛮×𝛮 

Σ′𝑙×𝛮 (diagonal matrix) contains the singular values of 𝑋′
𝑙×𝑁 in decreasing 

order in its main diagonal (𝑙 < 𝑁) 
𝑈′𝑙×𝑙 contains in its columns the eigenvectors of 𝑋′𝑋′𝑇𝑙𝑥𝑙 
𝑉′𝑁×𝑁 contains in its columns the eigenvectors of 𝑋′𝑇𝑋′𝑁𝑥𝑁 
 
Let 
—𝑈′ = 𝒖1 𝒖2 ⋯ 𝒖𝑙  (𝒖𝑖’s are 𝑙-dimensional column vectors) 

—𝑉′ = 𝒗1 𝒗2 ⋯ 𝒗𝑁 ⟹ 𝑉′𝑇 =

𝒗1
𝑇

𝒗2
𝑇

⋮
𝒗𝑁

𝑇

 (𝒗𝑖’s are 𝑁-dimensional column 

vectors and 𝒗𝑖
𝑇’s are 𝑁-dimensional row vectors) 

—Σ′𝑙𝑥𝛮 =

𝜎1 0 ⋯
0 𝜎2 ⋯
⋮ ⋮ ⋱

0 ⋯ 0
0 ⋯ 0
⋮ ⋮ ⋮

0 0 ⋯ 𝜎𝑙 ⋮ 0

  



Subspace clustering 
More on SVD 
Then 

𝑋′
𝑙×𝑁 = 𝑈′𝑙×𝑙 ∙ Σ

′
𝑙×𝛮 ∙ 𝑉′𝑇

𝛮×𝛮

= 𝒖1 𝒖2 ⋯ 𝒖𝑙

𝜎1 0 ⋯
0 𝜎2 ⋯
⋮ ⋮ ⋱

0 ⋯ 0
0 ⋯ 0
⋮ ⋮ ⋮

0 0 ⋯ 𝜎𝑙 ⋮ 0

𝒗1
𝑇

𝒗2
𝑇

⋮
𝒗𝑁

𝑇

= 𝒖1 𝒖2 ⋯ 𝒖𝑙

𝜎1𝒗1
𝑇

𝜎2𝒗2
𝑇

⋮
𝜎𝑙𝒗𝑙

𝑇

= 

𝜎1𝒖1𝒗1
𝑇 + 𝜎2𝒖2𝒗2

𝑇 +⋯+ 𝜎𝑙𝒖𝑙𝒗𝑙
𝑇 =  𝜎𝑖𝒖𝑖𝒗𝑖

𝑇

𝑙

𝑖=1

 

Thus, 𝑋′ is expressed as a sum of rank one matrices 𝒖𝑖𝒗𝑖
𝑇 each one weighted 

by its corresponding 𝜎𝑖.  
By neglecting the terms with “small” 𝝈𝒊’s, we actually perform 
dimensionality reduction, or, in other words, we determine the subspace 
where the data “actually live”. 



Clustering algorithms for high dimensional data sets 
Dimensionality Reduction Clustering Approach (cont.) 
 
Feature selection methods 
 They identify the original features that are the main contributors to the 

formation of the clusters. 
 The criteria used to evaluate the “goodness” of a specific subset of 

features follow either the 
• Wrapper model (The clustering algorithm  is first chosen and a set of 

features 𝐹𝑖  is evaluated through the results obtained from the application 
of the algorithm to 𝑋, where for each point only the features in 𝐹𝑖  are 
taken into account). 

• Filter model (The evaluation of a subset of features is carried out using 
intrinsic properties of the data, prior to the application of the clustering 
algorithm). 

 They are useful when all clusters are formed in the same subspace of the 
feature space. 



Clustering algorithms for high dimensional data sets 
Dimensionality Reduction Clustering Approach (cont.) 
Clustering using Random Projections:  
Here 𝐻𝑙′  is identified in a random manner. 
Note: The projection of an 𝑙-dimensional space to an 𝑙′ -dimensional space 
(𝑙′ < 𝑙) is uniquely defined via an 𝑙′ × 𝑙 projection matrix 𝐴. 
 
Issues to be addressed: 
(a) Proper estimate of 𝑙′. Estimates of 𝑙′ guarantee (in probability) that the 

distances between the points of 𝑋, in the original data space will be 
preserved (with some distortion) after the projection to a randomly 
chosen 𝑙′ -dim. space, whose projection matrix is constructed via certain 
probabilistic rules  

       Note: Preservation of distances does not necessarily preserves clusters. 
 

(b)  Definition of the projection matrix 𝐴. Possible rules for constructing A are:  
1. Set each entry of 𝐴 equal to a value stemming from an i.i.d. zero mean, 

unit variance Gaussian distribution and then normalize each row to the 
unit length. 

2. Set each entry of 𝐴 equal to −1 or +1, with probability 0.5. 

3. Set each entry of 𝐴 equal to + 3, − 3 or 0, with probs 
1

6
, 
1

6
 and 

2

3
, resp. 



Clustering algorithms for high dimensional data sets 
Dimensionality Reduction Clustering Approach (cont.) 
 
Having defined 𝐴: 
• Project the points of 𝑋 into 𝐻𝑙′  

• Perform a clustering algorithm on the projections of the points of 𝑋 into 𝐻𝑙′. 
 
Problem: Different random projections may lead to totally different results. 
 
Solution: 
 Perform several random projections 𝐻𝑙′. 
Apply a clustering algorithm on the projections of 𝑋 to each 𝐻𝑙′. 
 Combine the clustering results and produce the final clustering. 
 
A method in the above spirit is described next (𝑂 𝑁2 ). 



Clustering algorithms for high dimensional data sets 
Clustering using Random Projections 
• Select 𝑙′. 
• Generate 𝐴1, … , 𝐴𝑟 different projection matrices using the (b.1) rule given 

above. 
• For 𝑠 = 1 to 𝑟 
 Run GPrAS with normal pdfs for the 𝑠-th random projection of 𝑋. 
 Compute the probability that 𝒙𝑖 belongs to the 𝑗-th cluster in the 𝑠-th 

projection, 𝑃 𝐶𝑗
𝑠 𝒙𝑖 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚𝑠. 

 Create the similarity matrix 𝑃𝑠 = [𝑃𝑖𝑗
𝑠 ], where𝑃𝑖𝑗

𝑠  is the probability that 𝒙𝑖 
and 𝒙𝑗 belong to the same cluster, 

𝑃𝑖𝑗
𝑠 =  𝑃 𝐶𝑞

𝑠 𝒙𝑖 𝑃 𝐶𝑞
𝑠 𝒙𝑗

𝑚𝑠

𝑞=1
 

• End for 
• Compute the average proximity matrix 𝑃 = [𝑃𝑖𝑗], so that 𝑃𝑖𝑗 is the average 

of 𝑃𝑖𝑗
𝑠 ’s, 𝑠 = 1,… , 𝑟. 

• Apply GAS (actually its complete link version) on 𝑃. 
• Plot the similarity between the closest pair of clusters at each iteration 

versus the number of iterations. 
• Select the clustering that corresponds to the most abrupt change in the 

plot. 

𝑚𝑠: number of clusters 
in the 𝑠-th projection. 



Clustering algorithms for high dimensional data sets 
Subspace Clustering Approach 
 
• This approach deals with the problem where clusters are formed in different 

subspaces of the feature space. 
 

• The subspace clustering algorithms (SCA) reveal clusters as well as the 
subspaces where they reside. 

An example: 



Subspace clustering 
Preliminaries: 
- The data set 𝑋 = 𝒙𝑖 ∈ 𝑅𝑙 , 𝑖 = 1,… ,𝑁  

 
- (Affine linear) Subspace 𝑆 of 𝑅𝑙: It is defined via 

- a vector 𝝁 in 𝑆 and 
- an 𝑙𝑥𝑙′ (basis) matrix 𝐵 (𝑙′ < 𝑙)  

      as 𝑆 = {𝒙 ∈ 𝑅𝑙: 𝒙 = 𝝁 + 𝐵 ∙ 𝒚}, where 𝒚 ∈ 𝑅𝑙′ 
 
- Assuming that all the data points of 𝑋 lie in an 𝑙′-dimensional (affine) 

subspace 𝑆, in order to determine it, we need to find: 
- A vector 𝝁 ∈ 𝑆 
- The dimensionality 𝑙′ of 𝑆 
- The 𝑙 × 𝑙′ matrix 𝐵. 

Vidal R., “Subspace Clustering”, IEEE Transactions on Signal Processing, 28(2), 2011. 



Subspace clustering 
Basic assumption: In subspace clustering, the clusters formed by the data 
points “live” in subspaces of the original 𝑙-dimensional data space. 

 
 
 
- Aim of subspace clustering: Determine 

- the number of subspaces 𝑚 
- The dimensionalities 𝑙1, 𝑙2, … , 𝑙𝑚, of the subspaces 𝑆1, 𝑆2, … , 𝑆𝑚 
- The basis matrices 𝐵1, 𝐵2, … , 𝐵𝑚 
- The points 𝝁1, 𝝁2, … , 𝝁𝑚, of the subspaces 𝑆1, 𝑆2, … , 𝑆𝑚. 
- The clusters 𝐶1, 𝐶2, … , 𝐶𝑚. 

Usually, it is the case 
that each subspace 

contains a single cluster 

𝑆𝑗 = {𝒙 ∈ 𝑅𝑙: 𝒙 = 𝝁𝑗 + 𝐵𝑗 ∙ 𝒚} 



Subspace clustering 
Ways to  tackle the problem 
- Algebraic methods 
- Spectral clustering methods 
- Iterative cost function optimization methods (hard, probabilistic framework) 
 
Iterative cost function optimization methods (hard framework) 
The 𝑘-subspace algorithm 
 
Assumption: The number of clusters 𝑚 and the subspaces dimensionalities 
𝑙1, 𝑙2, … , 𝑙𝑚, are known. 
Let:  

- 𝑈𝑁×𝑚 = 𝑢𝑖𝑗 , where 𝑢𝑖𝑗 =  
1, 𝑥𝑖 ∈ 𝐶𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

- 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑚} 
- 𝝁 = {𝝁1, 𝝁2, … , 𝝁𝑚} 

- 𝑌 = 𝑌1, … , 𝑌𝑚 , with 𝑌𝑗 = 𝒚𝑖
𝑗
, 𝑖 = 1,… ,𝑁  be the set of projections of the 

data points to the 𝑗-th subspace. 



Subspace clustering 
Iterative CFO methods (hard framework) - The 𝑘-subspace algorithm 
 
Consider the cost function 

𝐽 𝐵, 𝜇, 𝑌, 𝑈 =   𝑢𝑖𝑗 𝒙𝑖 − 𝝁𝑗 − 𝐵𝑗𝒚𝑖
𝑗 2𝑚

𝑗=1

𝑁

𝑖=1
 

This is minimized in a two-stage iterative fashion (recall 𝑘-means) 
 

For fixed 𝝁𝑗
′ 𝑠, 𝐵𝑗

′𝑠, 𝒚𝑖
𝑗
′𝑠: 

Define 𝑢𝑖𝑗 =  1, 𝑖𝑓 𝒙𝑖 − 𝝁𝑗 − 𝐵𝑗𝒚𝑖
𝑗 2

= 𝑚𝑖𝑛𝑞=1,…,𝑚 𝒙𝑖 − 𝝁𝑞 − 𝐵𝑞𝒚𝑖
𝑞 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
For fixed 𝑢𝑖𝑗‘s: Solve the following 𝑚 independent problems 

𝑚𝑖𝑛
𝝁𝑗, 𝐵𝑗,𝒚𝑖

𝑗  𝒙𝑖 − 𝝁𝑗 − 𝐵𝑗𝒚𝑖
𝑗 2

𝒙𝑖:𝑢𝑖𝑗=1
≡ 𝑚𝑖𝑛

𝝁𝑗, 𝐵𝑗,𝒚𝑖
𝑗  𝑢𝑖𝑗

𝑁

𝑖=1
𝒙𝑖 − 𝝁𝑗 − 𝐵𝑗𝒚𝑖

𝑗 2
 

For each such problem  

(a) Fix 𝝁𝑗
′ 𝑠 and apply PCA, to estimate 𝐵𝑗

′𝑠, 𝒚𝑖
𝑗
′𝑠 . 

(b) Fix 𝐵𝑗
′𝑠, 𝒚𝑖

𝑗
′𝑠 and apply the k-means rationale, to estimate 𝝁𝑗

′ 𝑠. 

𝒚𝑖
𝑗
: Projection of 𝒙𝑖 to 

the 𝑗-th subspace 



Subspace clustering 
Remark: 
There are also subspace clustering methods (e.g., CLIQUE, ENCLUS) that 
“quantize” the region where the data belongs through the use of a grid. Then, 
clusters (at different subspaces) are defined through boxes that contain a 
significant number of data points. 



Combinations of clusterings 
- The data set 𝑋 = 𝒙𝑖 ∈ 𝑅𝑙 , 𝑖 = 1,… ,𝑁  

 
- Ensemble of clusterings of 𝑋:   ℰ = ℛ1, ℛ2, … , ℛ𝑛  

   where ℛ𝑖 = {𝐶𝑖
1, 𝐶𝑖

2, … , 𝐶𝑖
𝑚𝑖} 

                𝐶𝑖
𝑗: the 𝑗-th cluster of the 𝑖-th clustering 

                𝑚𝑖: the number of clusters in the 𝑖-th clustering. 
 
 
 
-  Alternative representation of a clustering: 

ℛ𝑖 ↔ 𝒚𝑖 = 𝑦𝑖 1 , 𝑦𝑖 2 ,… , 𝑦𝑖 𝑘 ,… , 𝑦𝑖 𝑁  
    where 𝑦𝑖 𝑘  the cluster label of the 𝑘-th data point. 
 

Example: Let ℛ𝑖 = 𝐶𝑖
1, 𝐶𝑖

2, 𝐶𝑖
3 = {{𝒙1, 𝒙2, 𝒙6, 𝒙10}, {𝒙3, 𝒙4, 𝒙7}, {𝒙5, 𝒙8, 𝒙9}} 

Then 𝒚𝑖 =[1, 1, 2, 2, 3, 1, 2, 3, 3, 1]. 

In general, ℛ𝑖‘s are not 
constraint to have the 

same number of clusters 

The two main issues in this framework are: 
(A) The generation of the ensemble of clusterings 
(B) The combination of the clusterings. 



Combinations of clusterings 
A. Generation of ensemble of clusterings 
It involves two steps: 
(a) The choice of the subspace to project the data points of 𝑋. 
(b) The application of a clustering algorithm on the resulting projections. 

 
General directions: 
- All data, all features:  
• All 𝑙 features and all 𝑁 data points are used.    
• Either different algorithms are applied  
• or the same algorithm with different parameter values (e.g., in 𝑘-means, 

different number of cluster, or different initial conditions). 
- All data, some features: 
• All 𝑁 data points are used.  
• 𝑛 data sets 𝑋𝑖  are formed from 𝑋 
• Either by selecting a number of features (feature distributed clustering) 
• or by projecting onto a randomly chosen lower dimensional space. 
• The same or different algorithms can be applied on the 𝑋𝑖‘s. 



Combinations of clusterings 
A. Generation of ensemble of clusterings 
General directions: 
- Some data, all features:  
• All 𝑙 features are used.    
• 𝑛 data sets 𝑋𝑖  are formed from 𝑋 using techniques like bootstrapping and 

sampling. 
• (Usually) the same algorithm is applied on the 𝑋𝑖‘s. 
• The points that have not been selected to participate in 𝑋𝑖  are assigned to 

their nearest cluster in ℛ𝑖. 
 

B. Combination of clusterings 
Problem: Given ℰ = ℛ1, ℛ2, … , ℛ𝑛 , determine the consensus clustering 
ℱ = 𝐹1, 𝐹2, … , 𝐹𝑚 . 
 
A useful tool in this direction is the co-association matrix 𝐶. 

It is an 𝑁 × 𝑁 matrix 𝐶 = [𝑐𝑖𝑗] with 𝑐𝑖𝑗 =
𝑛𝑖𝑗

𝑛
 

where 𝑛𝑖𝑗 is the number of times where the 𝑖-th and the 𝑗-th points of 𝑋 are 

assigned to the same cluster, among the 𝑛 clusterings of ℰ. 



Combinations of clusterings 
B. Combination of clusterings 
Three main directions are used: 
• Co-association matrix  based methods 
• Graph-based methods 
• Function optimization methods. 
 
Co-association matrix  based methods 
• Compute the co-association matrix. 
• Use it as a similarity matrix and run a hierarchical algorithm (single-link, 

complete-link etc) 
• From the produced dendrogram determine the final clustering as the one 

having the larger lifetime. 
 
Note: A large number of clusterings is required, in order to estimate more 
accurately the elements of 𝐶. 



Combinations of clusterings 
B. Combination of clusterings 
Graph-based methods 
• Instance-based graph formulation (IBGF) 
• Cluster-based graph formulation (CBGF) 
• Hybric bipartite graph formulation (HBGF) 
 



Combinations of clusterings 
B. Combination of clusterings 
Graph-based methods 
• Instance-based graph formulation (IBGF) 
• Cluster-based graph formulation (CBGF) 
• Hybric bipartite graph formulation (HBGF) 
 
 Construct a fully connected graph 𝐺 = (𝑉, 𝐸) where 
 Each vertex of 𝑉 corresponds to a data point and 
 Each edge 𝑒𝑖𝑗 of 𝐸 is weighted by 𝑐𝑖𝑗 (the (𝑖, 𝑗) element of 𝐶). 

 Partition the graph into 𝑚 disjoint subsets of vertices 𝑉1, 𝑉2, … , 𝑉𝑚 such 
that 
• The sum of weights of the edges that connect vertices between any 

pair of two different subsets is minimized and 
•All 𝑉𝑗’s have approximately the same size. 

 
Note: The normalized-cut and the Ratio-cut criteria can be used for 
partitioning the graph. 



Combinations of clusterings 
B. Combination of clusterings 
Graph-based methods 
• Instance-based graph formulation (IBGF) 
Example: Consider a data set 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4  and assume that the co-

association matrix is 𝐶 = 𝑐𝑖𝑗 =

1 0.9
0.9 1

0.07 0.05
0.03 0.02

0.07 0.03
0.05 0.02

1 0.9
0.9 1

. 

Consider the fully connected graph with four vertices 𝒗1 𝒙1 , 𝒗2 𝒙2 ,
𝒗3(𝒙3), 𝒗4(𝒙4), with the weight of each edge 𝑤𝑖𝑗 being equal to 𝑐𝑖𝑗. 

For the possible (equally-sized clusters) two-clusters graph partitions it is: 

Partition Edges connecting diff. clusters (weights) Total weight of 
connecting edges 

𝑣1, 𝑣2 , 𝑣3, 𝑣4  𝑒13(0.07), 𝑒14(0.05), 𝑒23(0.03), 𝑒24(0.02) 0.17(*) 

𝑣1, 𝑣3 , 𝑣2, 𝑣4  𝑒12(0.9), 𝑒14(0.05), 𝑒32(0.02), 𝑒34(0.9) 1.87 

𝑣1, 𝑣4 , 𝑣2, 𝑣3  𝑒12(0.9), 𝑒13(0.07), 𝑒42(0.02), 𝑒43(0.9) 1.87 

𝐶 indicates that the 
physical clusters are 
𝐶1 = 𝒙1, 𝒙2 ,  
𝐶2 = 𝒙3, 𝒙4  . 

The partition with the smallest total weight of connecting edges corresponds 
to the physical clustering of the data set. 



Combinations of clusterings 
B. Combination of clusterings 
Function optimization methods 
• Utility function optimization 
• Normalized mutual information 
• Mixture model formulation 

 
Here, the final clustering (also called median clustering) ℱ = 𝐹1, 𝐹2, … , 𝐹𝑚 , 
results from the optimization of an appropriate cost function. 



Combinations of clusterings 
B. Combination of clusterings 
Function optimization methods 
• Utility function optimization (probabilistic arguments) 
• Normalized mutual information function optimization (information theory 

ingredients) 
• Mixture model formulation 
 
A function 𝑈 ℱ′, ℛ𝑖  is adopted, measuring the quality of a candidate median 
ℱ′ against some other clustering ℛ𝑖. 
 
The overall utility of ℱ′ on ℇ = ℛ1, ℛ2, … , ℛ𝑛  is defined as 

𝑈 ℱ′, ℇ =  𝑈 ℱ′, ℛ𝑖

𝑛

𝑖=1
 

 
The final (median) clustering ℱ results as 
 

ℱ = 𝑎𝑟𝑔𝑚𝑎𝑥ℱ′𝑈 ℱ′, ℇ  



𝒚1 ⋯ 𝒚𝑛 

𝒙1 → [ 𝑦1(1) ⋯ 𝑦𝑛(1) ] ≡ 𝒙1′ 

𝒙2 → [ 𝑦1(2) ⋯ 𝑦𝑛(2) ] ≡ 𝒙2′ 

⋮ → ⋮ ⋮ 

𝒙𝑁 → [ 𝑦1(𝑁) ⋯ 𝑦𝑛(𝑁) ] ≡ 𝒙𝑁′ 

Combinations of clusterings 
B. Combination of clusterings 
Function optimization methods 
Mixture model formulation 
• Represent the data points as follows 
 
 
 
 
 
Note: The representations 𝒙𝑖′ are discrete-valued. 
 
• Define the probability function 𝑃 𝒙′; 𝜣  as the (weighted) summation of 𝑚 

(𝑛-dimensional) probability functions, each one corresponding to a cluster. 
• Assuming independence among the components of 𝒙′, each 𝑛-dimensional 

probability function is written as the product of n one-dimensional prob. 
functions, each one modeled by a multinomial distribution.  

• The estimation of the respective parameters is carried out via the utilization 
of the EM algorithm. 



•Multinomial distribution 𝑀𝑢𝑙𝑡 𝒙 𝑛, 𝑷  
Discrete RV distribution 

   𝐱 = x1, x2 , … , x𝐾
𝑇 ,𝑷 = [𝑝1, … , 𝑝𝐾]

𝑇:  

 𝑝𝑖
𝐾

𝑖=1
= 1 

0 < 𝑝𝑖 < 1, 𝑖 = 1,… , 𝐾,  
Sample space: 𝑋 = {0,1, … , 𝐾} 
Outcome of the experiment: non-binary. No. of repetitions: 𝒏 
𝑥𝑖: number of times the 𝑖-th outcome occurs in the 𝑛 repetitions 
It is  

  𝑃 𝒙 =
𝑛

𝑥1, 𝑥2, … , 𝑥𝐾
 𝑃𝑖

𝑥𝑖𝐾
𝑖=1  

 
s.t. 𝑥1 +  𝑥2 + …+  𝑥𝐾 

=  𝑛 
𝐸[𝒙] = 𝑛𝑷 
𝜎𝑖

2 =  𝑛𝑃𝑖(1 − 𝑃𝑖), 𝑖 = 1,… , 𝐾. 
𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑗)  =  −𝑛𝑃𝑖  𝑃𝑗, 𝑖𝑗. 

Multinomial distribution 
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𝑛
𝑥1, 𝑥2, … , 𝑥𝐾

=
𝑛!

𝑥1! 𝑥2! … 𝑥𝐾!
 


