Clustering algorithms Konstantinos Koutroumbas

Unit 11

- Density-based clust. Alg. (DENCLUE)
- Spectral clustering
- Clustering for high-dim. data (dim. reduction, subspace clust.)
- Combination of clusterings

Density-based algorithms for large data sets

DENsity-based CLUstEring (DENCLUE) Algorithm
Definitions
The influence function $f^{y}(x)$ for a point $y \in X$ is a positive function that decays to zero as \boldsymbol{x} "moves away" from $\boldsymbol{y}(d(\boldsymbol{x}, \boldsymbol{y}) \rightarrow \infty)$. Typical examples are:
$f^{y}(x)=\left\{\begin{array}{l}1, \\ \text { if } d(x, y)<\sigma \\ 0, \\ \text { otherwise }\end{array}, \quad f^{y}(x)=e^{-\frac{d(x, y)^{2}}{2 \sigma^{2}}}\right.$
where σ is a user-defined function.

The density function based on X is defined as (Remember the Parzen windows):

$$
f^{X}(\boldsymbol{x})=\sum_{i=1}^{N} f^{x_{i}}(\boldsymbol{x})
$$

The Goal:

(a) Identify all "significant" local maxima, $\boldsymbol{x}_{j}^{*}, j=1, \ldots, m$, of $f^{X}(\boldsymbol{x})$
(b) Create a cluster C_{j} for each x_{j}^{*} and assign to C_{j} all points x of X that lie within the "region of attraction" of x_{j}^{*}.

Density-based algorithms for large data sets

The DENCLUE Algorithm (cont.)
Two clarifications

- The region of attraction of x_{j}^{*} is defined as the set of points $x \in R^{l}$ such that if a "hill-climbing" (such as the steepest ascent) method is applied on $f^{X}(x)$, initialized by x, it will terminate arbitrarily close to x_{j}^{*}.
- A local maximum is considered as significant if $f^{X}\left(x_{j}^{*}\right) \geq \xi$ (ξ is a userdefined parameter).

Approximation of $f^{X}(\boldsymbol{x})$

$$
f^{X}(x)=\sum_{i=1}^{N} f^{x_{i}}(\boldsymbol{x}) \approx \sum_{x_{i} \in Y(x)} f^{x_{i}}(\boldsymbol{x})
$$

where $Y(\boldsymbol{x})$ is the set of points in X that lie "close" to \boldsymbol{x}.

The above framework is used by the DENCLUE algorithm.

Density-based algorithms for large data sets

The DENCLUE Algorithm (cont.)

DENCLUE algorithm

- Preclustering stage (identification of regions dense in points of X)
$>$ Apply an l-dimensional grid of edge-length 2σ in the R^{l} space.
$>$ Determine the set D_{p} of the hypercubes that contain at least one point of X.
$>$ Determine the set $D_{S p}\left(\subset D_{p}\right)$ that contains the "highly populated" cubes of D_{p} (that is, cubes that contain at least $\xi_{c}>1$ points of X).
$>$ For each $c \in D_{s p}$ define a connection with all neighboring cubes c_{j} in D_{p} for which $d\left(\boldsymbol{m}_{c}, \boldsymbol{m}_{c_{j}}\right) \leq 4 \sigma$, where $\boldsymbol{m}_{c}, \boldsymbol{m}_{c_{j}}$ are the means of c and c_{j}, respectively.
- Main stage
$>$ Determine the set D_{r} that contains:
-the highly populated cubes and
-the cubes that have at least one connection with a highly populated cube.

Density-based algorithms for large data sets

DENCLUE algorithm (cont.)

- Main stage (cont.)
- For each point x in a cube $c \in D_{r}$
$>$ Determine $Y(\boldsymbol{x})$ as the set of points that belong to cubes c_{j} in D_{r} such that the mean values of c_{j} 's lie at distance less than $\lambda \cdot \sigma$ from x (typically $\lambda=4)$.
$>$ Apply a hill climbing method on $f^{X}(x)=\sum_{x_{i} \in Y(x)} f^{x_{i}}(\boldsymbol{x})$ starting from x and let x^{*} be the local maximum to which the method converges.
$>$ If x^{*} is a significant local maximum $\left(f^{X}\left(\boldsymbol{x}^{*}\right) \geq \xi\right)$ then -If a cluster C associated with x^{*} has already been created then $\mathrm{o}_{-} x$ is assigned to C
-Else
o Create a cluster C associated with x^{*}
o Assign x to C
-End if
$>$ End if
- End for

Density-based algorithms for large data sets

The DENCLUE Algorithm (cont.)

Remarks:

- Shortcuts allow the assignment of points to clusters, without having to apply the hill-climbing procedure.
- DENCLUE is able to detect arbitrarily shaped clusters.
- The algorithm deals with noise very satisfactory.
- The worst-case time complexity of DENCLUE is $O\left(N \log _{2} N\right)$.
- Experimental results indicate that the average time complexity is $O\left(\log _{2} N\right)$.
- It works efficiently with high-dimensional data.

Spectral clustering

Spectral clustering is based on graph theory concepts.

Rationale: It actually maps the data from their original space, where they may form arbitrarily-shaped clusters, to a new space, where (their images) form compact clusters.

Main stages:

$>$ Definition of a similarity graph G based on the given data set X.
$>$ Utilization of the Laplacian matrix L associated with G.
$>$ Mapping of the data set to a space spanned by some eigenvectors of L.
$>$ Performing clustering on the images of the data in the transformed space.

In principle, spectral clustering is able to recover arbitrarily shaped clusters (see discussion later).

Spectral clustering

Similarity graph

- Data set $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$ undirected graphs. $^{\text {- }}$
- Similarity graph $G=(V, E)$

Definition of a similarity graph About V

- The set V consists of N vertices/nodes, $v_{1}, v_{2}, \ldots, v_{N}$
- Each vertex $v_{i} \in V$ corresponds to a $\boldsymbol{x}_{i} \in X, i=1, \ldots, N$.

About E

Various scenarios lead to various graphs:
(a) The ε-neighborhood graph:
$\begin{aligned} X & =\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \\ V & =\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}\end{aligned}$
$>$ An edge $e_{i j}$ is added between vertices v_{i} and v_{j}, if $d\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)<\varepsilon$.
$>$ Usually it is considered as an unweighted graph (it is $w_{i j}=1$, for all $e_{i j}{ }^{\prime} \mathrm{s}$).

Spectral clustering

Similarity graph
Definition of a similarity graph
About E
(b) The k-nearest neighbor graph:
$>$ An edge $e_{i j}$ is added between vertices v_{i} and v_{j}, if v_{i} is among the $k-$ nearest neighbors of $v_{j} \mathbf{O R}$ vice versa.
$>$ Each $e_{i j}$ is weighted by the similarity between x_{i} and x_{j}.
(c) The mutual k-nearest neighbor graph:
$>$ An edge $e_{i j}$ is added between vertices v_{i} and v_{j}, if v_{i} is among the k nearest neighbors of v_{j} AND vice versa.
$>$ Each $e_{i j}$ is weighted by the similarity between \boldsymbol{x}_{i} and \boldsymbol{x}_{j}.
(d) The fully connected graph:
$>$ All possible edges $e_{i j}$ are added in the graph.
$>$ Each $e_{i j}$ is weighted by the similarity between x_{i} and x_{j}, e.g.,

$$
s\left(x_{i}, x_{j}\right)=\exp \left(-\frac{| | x_{i}-x_{j} \|^{2}}{2 \sigma^{2}}\right)
$$

Spectral clustering

Similarity graph

Example:

The data set consists of
(i) two "half moon" clusters and
(ii) a compact cluster of different density from the previous ones.

The resulting graphs are shown in the figure.

Data points

kNN graph, k=5

epsilon-graph, epsilon $=0.3$

Spectral clustering

Graph Laplacians

- There are various definitions for graph Laplacian matrix.
- All such matrices share some properties that allow their exploitation in the frame of clustering.

Some definitions:

- Weighted adjacency matrix:
$w_{i j}$ is the weight of the edge connecting v_{i} and v_{j}.

$$
W=\left[w_{i j}\right]_{N \times N}
$$

- Degree of a vertex v_{i} :

$$
d_{i}=\sum_{i=1}^{N} w_{i j}, i=1, \ldots, N
$$

- Degree matrix:

$$
D_{N \times N}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{N}\right)=\left[\begin{array}{ccc}
d_{1} & \cdots & 0 \\
0 & \ddots & 0 \\
0 & \cdots & d_{N}
\end{array}\right]_{N \times N}
$$

- (Unnormalized) graph Laplacian matrix:

$$
L_{N \times N}=D-W
$$

Spectral clustering

Graph Laplacians
Some results for the unnormalized graph Laplacian L:

1. $\forall \boldsymbol{x}=\left[x_{1}, \ldots, x_{N}\right]^{T} \in R^{N}$ it is

$$
\boldsymbol{x}^{T} L \boldsymbol{x}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

2. L is symmetric and positive semidefinite.
3. The smallest eigenvalue of L is 0 .
4. L has N non-negative real-valued eigenvalues $0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{N}$.
5. Let G be an undirected graph with nonnegative weights. Then the multiplicity k of the zero eigenvalue equals to the number of the connected components A_{1}, \ldots, A_{k}, of the graph. In addition, the eigenspace of the zero eigenvalues is spanned by the (N-dimensional) indicator vectors of those components, $\mathbf{1}_{A_{1}}, \ldots \mathbf{1}_{A_{k}}$.

The indicator vector $1_{A_{i}}$ has all of its components equal 0 except those corresponding to the points that belong to the k-th connected component., which are equal to 1.

Spectral clustering

Graph Laplacians: Some results for the unnormalized graph Laplacian L:
5. Let G be an undirected graph with nonnegative weights ($w_{i j} \geq 0$). Then the multiplicity k of the zero eigenvalue equals to the number of the connected components A_{1}, \ldots, A_{k}, of the graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (N-dimensional) indicator vectors of those components, $\mathbf{1}_{A_{1}}, \ldots, \mathbf{1}_{A_{k}}$.

- The $k=1$ case (connected graph): It is
$d_{i}=\sum_{j=1}^{N} w_{i j}, w_{i i}=0$

$$
=-\lambda\left|\begin{array}{ccc}
d_{2}+w_{12}-\lambda & \cdots & -w_{2 N}+w_{1 N} \\
\vdots & \ddots & \vdots \\
-w_{2 N}+w_{12} & \cdots & d_{N}+w_{1 N}-\lambda
\end{array}\right| \Leftrightarrow \lambda_{1}=0,\left(\lambda_{2}, \ldots \lambda_{N}>0\right)
$$

Thus, multiplicity of the zero eigenvalue is 1 . The associated eigenvector is the $\mathbf{1}$, since $\mathbf{0}=0 \cdot \mathbf{1}=L \cdot \mathbf{1}$ 。○ $d_{i}=\sum_{i=1}^{N} w_{i j}$

$$
\begin{aligned}
& 0=|L-\lambda \mathrm{I}|=\left|\begin{array}{cccc}
d_{1}-\lambda & -w_{12} & \cdots & -w_{1 N} \\
-w_{12} & d_{2}-\lambda & \cdots & -w_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
-w_{1 N} & -w_{2 N} & \cdots & d_{N}-\lambda
\end{array}\right|=\left|\begin{array}{cccc}
-\lambda & -w_{12} & \cdots & -w_{1 N} \\
-\lambda & d_{2}-\lambda & \cdots & -w_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
-\lambda & -w_{2 N} & \cdots & d_{N}-\lambda
\end{array}\right|= \\
& -\lambda\left|\begin{array}{cccc}
1 & -w_{12} & \cdots & -w_{1 N} \\
1 & d_{2}-\lambda & \cdots & -w_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
1 & -w_{2 N} & \cdots & d_{N}-\lambda
\end{array}\right|=-\lambda\left|\begin{array}{cccc}
1 & -w_{12} & \cdots & -w_{1 N} \\
0 & d_{2}+w_{12}-\lambda & \cdots & -w_{2 N}+w_{1 N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & -w_{2 N}+w_{12} & \cdots & d_{N}+w_{1 N}-\lambda
\end{array}\right|
\end{aligned}
$$

Spectral clustering

Graph Laplacians: Some results for the unnormalized graph Laplacian L:

5. Let G be an undirected graph with nonnegative weights ($w_{i j} \geq 0$). Then the multiplicity k of the zero eigenvalue equals to the number of the connected components A_{1}, \ldots, A_{k}, of the graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (N-dimensional) indicator vectors of those components, $\mathbf{1}_{A_{1}}, \ldots, \mathbf{1}_{A_{k}}$.

- The $k=1$ case (connected graph):
- The associated eigenvector is the $\mathbf{1}$,since $\mathbf{0}=0 \cdot \mathbf{1}=L \cdot \mathbf{1}$

$$
\mathbf{0}=0 \cdot \mathbf{1}=0 \cdot\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{cccc}
d_{1} & -w_{12} & \cdots & -w_{1 N} \\
-w_{12} & d_{2} & \cdots & -w_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
-w_{1 N} & -w_{2 N} & \cdots & d_{N}
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

。

Spectral clustering

Graph Laplacians: Some results for the unnormalized graph Laplacian L:
5. Let G be an undirected graph with nonnegative weights ($w_{i j} \geq 0$). Then the multiplicity k of the zero eigenvalue equals to the number of the connected components A_{1}, \ldots, A_{k}, of the graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (N-dimensional) indicator vectors of those components, $\mathbf{1}_{A_{1}}, \ldots, \mathbf{1}_{A_{k}}$.

- The $k>1$ case (k connected components):
- Considering each connected component individually, the i-th component has its own associated Laplacian L_{i}
- Then the Laplacian for the whole graph can be written as

- Since, the multiplicity of the zero eigenvalue is 1 for each $L_{i} \Rightarrow$ the multiplicity of the zero eigenvalue is k for L.
- Denoting $\left|A_{1}\right|=n_{1}, 1_{A_{1}}$ has its first n_{1} (resp. remaining) components equal to 1 (resp. 0), $1_{A_{1}}=[1,1, \ldots, 1,0,0, \ldots, 0]^{T}$. Then,

$$
\mathbf{0}_{n_{1} \times 1}=0 \cdot \mathbf{1}_{n_{1} \times 1}=L_{1} \cdot \mathbf{1}_{n_{1} \times 1} \Rightarrow \mathbf{0}_{N \times 1}=0 \cdot \mathbf{1}_{A_{1}, N \times 1}=L \cdot \mathbf{1}_{N \times 1}
$$

Spectral clustering

Unnormalized spectral clustering algorithm
Input: (a) Similarity matrix $S \in R^{N \times N}$, (b) the number of clusters m

- Construct a similarity graph with weighed adjacency matrix W.
- Compute the unnormalized Laplacian L.
- Compute the first m (column) eigenvectors of $L, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$.
- Stack $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$ on an $N \times m$ matrix U.
- Represent each data vector x_{i} by the i-th row y_{i} of U.
- Cluster the points $y_{i} \in R^{m}, i=1, \ldots, N$, using e.g., the k-means algorithm, into clusters $C_{1}{ }^{\prime}, C_{2}{ }^{\prime}, \ldots, C_{m}{ }^{\prime}$.

Output: Clusters $C_{1}, C_{2}, \ldots, C_{m}$, with $C_{i}=\left\{\boldsymbol{x}_{\boldsymbol{j}}: \boldsymbol{y}_{j} \in C_{i}^{\prime}\right\}$

Spectral clustering

Unnormalized spectral clustering algorithm

Example:

Similarity graph:
$G=(V, E)=\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\},\left\{e_{13}, e_{24}, e_{25}, e_{45}\right\}\right)$
Nodes degree: $d_{1}=w_{13}, d_{2}=w_{24}+w_{25}, d_{3}=w_{13}$

$$
d_{4}=w_{24}+w_{45}, d_{5}=w_{25}+w_{45}
$$

Laplacian of the whole graph:

$$
\begin{aligned}
& L=D-W \\
& =\left[\begin{array}{ccccc}
w_{13} & 0 & -w_{13} & 0 & 0 \\
0 & w_{24}+w_{25} & 0 & -w_{24} & -w_{25} \\
-w_{13} & 0 & w_{13} & 0 & 0 \\
0 & -w_{24} & 0 & w_{24}+w_{45} & -w_{45} \\
0 & -w_{25} & 0 & -w_{45} & w_{25}+w_{45}
\end{array}\right] \\
& |L-\lambda I|=\cdots=\lambda^{2}\left|\begin{array}{ccc}
2 w_{13}-\lambda & 0 & 0 \\
0 & 2 w_{24}+w_{45}-\lambda & w_{25}-w_{45} \\
0 & w_{24}-w_{45} & 2 w_{25}+w_{45}-\lambda
\end{array}\right|=0 \Leftrightarrow
\end{aligned}
$$

Spectral clustering

Unnormalized spectral clustering algorithm

Example:

Data set $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}\right\}$
Corresponding eigenvectors $\boldsymbol{e}(L \cdot \boldsymbol{e}=0 \cdot \boldsymbol{e})$:

$$
\boldsymbol{u}_{1}=[1,0,1,0,0]^{T} \text { and } \boldsymbol{u}_{2}=[0,1,0,1,1]^{T} \text { since }
$$

$\left[\begin{array}{ccccc}w_{13} & 0 & -w_{13} & 0 & 0 \\ 0 & w_{24}+w_{25} & 0 & -w_{24} & -w_{25} \\ -w_{13} & 0 & w_{13} & 0 & 0 \\ 0 & -w_{24} & 0 & w_{24}+w_{45} & -w_{45} \\ 0 & -w_{25} & 0 & -w_{45} & w_{25}+w_{45}\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]=0 \cdot-\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]$
$\left[\begin{array}{ccccc}w_{13} & 0 & -w_{13} & 0 & 0 \\ 0 & w_{24}+w_{25} & 0 & -w_{24} & -w_{25} \\ -w_{13} & 0 & w_{13} & 0 & 0 \\ 0 & -w_{24} & 0 & w_{24}+w_{45} & -w_{45} \\ 0 & -w_{25} & 0 & -w_{45} & w_{25}+w_{45}\end{array}\right] \cdot\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right]=0 \cdot\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right]$

Spectral clustering

Unnormalized spectral clustering algorithm Example:

The eigenvectors corresponding to the zero eigenspace are $\boldsymbol{u}_{1}=[1,0,1,0,0]^{T}$ and $\boldsymbol{u}_{2}=[0,1,0,1,1]^{T}$

The matrix $U=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right] \equiv \begin{array}{lll}\equiv & \boldsymbol{y}_{1} \rightarrow & \boldsymbol{x}_{1} \\ \equiv & \boldsymbol{y}_{2} \rightarrow & \boldsymbol{x}_{2} \\ \equiv & \boldsymbol{y}_{3} \rightarrow & \boldsymbol{x}_{3} \\ \equiv & \boldsymbol{y}_{4} \rightarrow & \boldsymbol{x}_{4} \\ \equiv & \boldsymbol{y}_{5} \rightarrow & \boldsymbol{x}_{5}\end{array}$
$(0,1) \square\left\{x_{2}, x_{4}, x_{5}\right\}$

Spectral clustering

Other Laplacian matrices

- Symmetric Laplacian matrix: $L_{\text {sym }}=D^{-1 / 2} \cdot L \cdot D^{-1 / 2}$
- Random walk Laplacian matrix: $L_{r w}=D^{-1} \cdot L$

All Laplacians share similar properties concerning the zero eigenvalue. In (von Luxburg, 2007), it is suggested to use $L_{r w}$.

Spectral clustering

Choice of the number of clusters

Example:

The ten smallest eigenvalues of $L_{r w}$ for a 1-dim. four-clusters problem.

In the case where m is not apriori known, it can be estimated by sorting the Laplacian eigenvalues and determining the number of the first m eigenvalues that (a) are sufficiently close to 0 and (b) the $m+1$ differs significantly from them.

Clustering algorithms for high dimensional data sets

- What is a high-dimensionality space?

Dimensionality l of the input space with

$$
20 \leq l \leq \text { few thousands }
$$

indicate high-dimensional data sets.

- Problems of considering simultaneously all dimensions in high-dimensional data sets:
$>$ "Curse of dimensionality". As a fixed number of points spread out in highdimensional spaces, they become almost equidistant (that is, the terms similarity and dissimilarity tend to become meaningless - alternatively, no clear structures are defined).
$>$ Several dimensions may be irrelevant to the identification of the clusters (that is, the clusters usually are identified in subspaces of the original feature space).
- A way out: Work on subspaces of dimension lower than l.
> Main approaches:
\square Dimensionality reduction clustering approach.
\square Subspace clustering approach.

Clustering algorithms for high dimensional data sets

An example:

(a)

(b)

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach
Main idea

- Identify an appropriate l^{\prime}-dimensional space $H_{l^{\prime}}\left(l^{\prime}<l\right)$.
- Project the data points of X into $H_{l^{\prime}}$.
- Apply a clustering algorithm on the projections of the points of X into $H_{l^{\prime}}$.

Identification of $H_{l^{\prime}}$ may be carried out using either by:
> Feature generation methods,
$>$ Feature selection methods,
> Random projections.

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)
Feature generation methods
> They produce new features via suitable transformations applied on the original ones.
> Typical Methods in this category are:
Principal component analysis (PCA). Singular value decomposition (SVD). Nonlinear PCA Robust PCA Independent comp. analysis (ICA).
$>$ In general, PCA and SVD methods

- preserve the distances between the points in the high-dimensional space, when these are mapped to the lower-dimensional space.
- produce compact representations (with reduced number of features) of the original high-dimensional feature space.
$>$ In some cases feature generation is applied iteratively in cooperation with a clustering algorithm (k-means, EM).
$>$ They are useful in cases where a significant number of features contributes to the identification of all physical clusters.
> They are useful when all clusters are formed in the same subspace of the feature space.

Principal Component Analysis (PCA)

Principal component analysis (PCA):

It transforms the original space to a new orthogonal space (of the same dimensionality) where the features are uncorrelated. Specifically: along the, so called, $1^{\text {st }}$ principal axis the maximum possible variance of the data set is retained, along the $2^{\text {nd }}$ one the maximum possible remained variance is retained etc.

Projecting on the first few principal axes space we achieve dimensionality reduction.

Principal Component Analysis - PCA

Principal Component Analysis (PCA)

Projection along the $a_{1}\left(1^{\text {st }}\right)$ principal direction retains cluster separability.

CAUTION: Retaining the maximum possible variance of the data set DOES NOT imply that we necessarily retain the cluster separability.

Projection along the a_{1} principal direction DOES NOT retain cluster separability.

Subspace clustering

- Solution: Principal component analysis (PCA)
- Let $X_{l \times N}=\left[\begin{array}{llll}\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{N}\end{array}\right]$ and $Y_{l^{\prime} \times N}=\left[\begin{array}{llll}\boldsymbol{y}_{1} & \boldsymbol{y}_{2} & \because_{0} & \boldsymbol{y}_{N}\end{array}\right]$
- Compute $\boldsymbol{\mu}_{l \times 1}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}$
- Consider $X^{\prime}{ }_{l \times N}=\left[\begin{array}{llll}\boldsymbol{x}_{1}-\boldsymbol{\mu} & \boldsymbol{x}_{2}-\boldsymbol{\mu} & \cdots & \boldsymbol{x}_{N}-\boldsymbol{\mu}\end{array}\right]$
- Perform singular value decomposition (SVD) on X^{\prime} taking

$$
X_{l \times N}^{\prime}=U_{l \times l}^{\prime} \cdot \Sigma_{l \times N}^{\prime} \cdot V^{\prime T}{ }_{N \times N}
$$

- Keep the first l^{\prime} singular values (as a consequence take also (a) the first l^{\prime} columns of U^{\prime} and (b) the first l^{\prime} columns of $V^{\prime}\left(\Leftrightarrow\right.$ the first l^{\prime} rows of $\left.V^{\prime T}\right)$ and approximate X^{\prime} as

$$
X^{\prime a p p r}{ }_{l \times N}=U_{l \times l^{\prime}} \cdot \Sigma_{l^{\prime} \times l^{\prime}} \cdot V_{l^{\prime} \times N}^{T}
$$

- $B=U_{l \times l^{\prime}}$ is the subspace basis and
- $Y_{l^{\prime} \times N}=\Sigma_{l^{\prime} \times l^{\prime}} \cdot V^{T}{ }_{l^{\prime} \times N}$ contains (in columns) the representations/ projections of the (shifted by μ) original data in the lower l^{\prime}-dim. space.

Theorem: $X^{\prime \text { appr }}$, as computed before, is the best approximation of X^{\prime} wrt the Frobenius norm, subject to the constraint that the rank of $X^{\prime a p p r}$ is l^{\prime}.

Subspace clustering

More on SVD

Let $X^{\prime}{ }_{l \times N}=\left[\begin{array}{llll}\boldsymbol{x}_{1}-\boldsymbol{\mu} & \boldsymbol{x}_{2}-\boldsymbol{\mu} & \cdots & \boldsymbol{x}_{N}-\boldsymbol{\mu}\end{array}\right]$, with $\boldsymbol{\mu}_{l \times 1}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}$
In the expression $X^{\prime}{ }_{l \times N}=U^{\prime}{ }_{l \times l} \cdot \Sigma^{\prime}{ }_{l \times N} \cdot V^{\prime T}{ }_{N \times N}$
$\Sigma^{\prime}{ }_{l \times N}$ (diagonal matrix) contains the singular values of $X^{\prime}{ }_{l \times N}$ in decreasing order in its main diagonal $(l<N)$
$U^{\prime}{ }_{l \times l}$ contains in its columns the eigenvectors of $X^{\prime} X^{\prime T}{ }_{l x l}$
$V^{\prime}{ }_{N \times N}$ contains in its columns the eigenvectors of $X^{T} X^{\prime}{ }_{N x N}$
Let

- $U^{\prime}=\left[\begin{array}{llll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{l}\end{array}\right]\left(\boldsymbol{u}_{i}{ }^{\prime}\right.$ s are l-dimensional column vectors)
$-V^{\prime}=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{N}\end{array}\right] \Rightarrow V^{\prime T}=\left[\begin{array}{c}\boldsymbol{v}_{1}{ }^{T} \\ \boldsymbol{v}_{2}{ }^{T} \\ \vdots \\ \boldsymbol{v}_{N}{ }^{T}\end{array}\right]\left(\boldsymbol{v}_{i}\right.$'s are N-dimensional column
vectors and $v_{i}{ }^{T}$'s are N-dimensional row vectors)
$-\Sigma_{l x N}^{\prime}=\left[\begin{array}{cccccc}\sigma_{1} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_{l} & \vdots & 0\end{array}\right]$

Subspace clustering

More on SVD

Then

$$
\begin{aligned}
& X_{l \times N}^{\prime}=U^{\prime}{ }_{l \times l} \cdot \Sigma^{\prime}{ }_{l \times N} \cdot V^{\prime T}{ }_{N \times N} \\
&=\left[\begin{array}{llll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{l}
\end{array}\right]\left[\begin{array}{cccccc}
\sigma_{1} & 0 & \cdots & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma_{l} & \vdots & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{v}_{1}{ }^{T} \\
\boldsymbol{v}_{2}{ }^{T} \\
\vdots \\
\boldsymbol{v}_{N}{ }^{T}
\end{array}\right] \\
&=\left[\begin{array}{llll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{l}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \boldsymbol{v}_{1}{ }^{T} \\
\sigma_{2} \boldsymbol{v}_{2}{ }^{T} \\
\vdots \\
\sigma_{l} \boldsymbol{v}_{l}{ }^{T}
\end{array}\right]= \\
& \sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}{ }^{T}+\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}{ }^{T}+\cdots+\sigma_{l} \boldsymbol{u}_{l} \boldsymbol{v}_{l}{ }^{T}=\sum_{i=1}^{l} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}{ }^{T}
\end{aligned}
$$

Thus, X^{\prime} is expressed as a sum of rank one matrices $\boldsymbol{u}_{i} \boldsymbol{v}_{i}{ }^{T}$ each one weighted by its corresponding σ_{i}.
By neglecting the terms with "small" σ_{i} 's, we actually perform dimensionality reduction, or, in other words, we determine the subspace where the data "actually live".

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)

Feature selection methods
$>$ They identify the original features that are the main contributors to the formation of the clusters.
$>$ The criteria used to evaluate the "goodness" of a specific subset of features follow either the

- Wrapper model (The clustering algorithm is first chosen and a set of features F_{i} is evaluated through the results obtained from the application of the algorithm to X, where for each point only the features in F_{i} are taken into account).
- Filter model (The evaluation of a subset of features is carried out using intrinsic properties of the data, prior to the application of the clustering algorithm).
$>$ They are useful when all clusters are formed in the same subspace of the feature space.

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)
Clustering using Random Projections:
Here $H_{l^{\prime}}$ is identified in a random manner.
Note: The projection of an l-dimensional space to an l^{\prime}-dimensional space $\left(l^{\prime}<l\right)$ is uniquely defined via an $l^{\prime} \times l$ projection matrix A.

Issues to be addressed:
(a) Proper estimate of l^{\prime}. Estimates of l^{\prime} guarantee (in probability) that the distances between the points of X, in the original data space will be preserved (with some distortion) after the projection to a randomly chosen l^{\prime}-dim. space, whose projection matrix is constructed via certain probabilistic rules
Note: Preservation of distances does not necessarily preserves clusters.
(b) Definition of the projection matrix A. Possible rules for constructing A are:

1. Set each entry of A equal to a value stemming from an i.i.d. zero mean, unit variance Gaussian distribution and then normalize each row to the unit length.
2. Set each entry of A equal to -1 or +1 , with probability 0.5 .
3. Set each entry of A equal to $+\sqrt{3},-\sqrt{3}$ or 0 , with probs $\frac{1}{6}, \frac{1}{6}$ and $\frac{2}{3}$, resp.

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)

Having defined A :

- Project the points of X into $H_{l^{\prime}}$
- Perform a clustering algorithm on the projections of the points of X into $H_{l^{\prime}}$.

Problem: Different random projections may lead to totally different results.

Solution:

$>$ Perform several random projections $H_{l^{\prime}}$.
$>$ Apply a clustering algorithm on the projections of X to each $H_{l^{\prime}}$.
$>$ Combine the clustering results and produce the final clustering.
A method in the above spirit is described next $\left(O\left(N^{2}\right)\right)$.

Clustering algorithms for high dimensional data sets

Clustering using Random Projections

- Select l^{\prime}.
- Generate A_{1}, \ldots, A_{r} different projection matrices using the (b.1) rule given above.
- For $s=1$ to r
$>$ Run GPrAS with normal pdfs for the s-th random projection of X.
$>$ Compute the probability that \boldsymbol{x}_{i} belongs to the j-th cluster in the s-th projection, $P\left(C_{j}^{S} \mid x_{i}\right), i=1, \ldots, N, j=1, \ldots, m_{s}$.
\Rightarrow Create the similarity matrix $P^{s}=\left[P_{i j}^{S}\right]$, where $P_{i j}^{S}$ is the probability that x_{i} and x_{j} belong to the same cluster,

$$
P_{i j}^{s}=\sum_{q=1}^{m_{s}} P\left(C_{q}^{s} \mid \boldsymbol{x}_{i}\right) P\left(C_{q}^{s} \mid \boldsymbol{x}_{j}\right)
$$

m_{s} : number of clusters in the s-th projection.

- End for
- Compute the average proximity matrix $P=\left[P_{i j}\right]$, so that $P_{i j}$ is the average of $P_{i j}^{S}$'s, $s=1, \ldots, r$.
- Apply GAS (actually its complete link version) on P.
- Plot the similarity between the closest pair of clusters at each iteration versus the number of iterations.
- Select the clustering that corresponds to the most abrupt change in the plot.

Clustering algorithms for high dimensional data sets

Subspace Clustering Approach

- This approach deals with the problem where clusters are formed in different subspaces of the feature space.
- The subspace clustering algorithms (SCA) reveal clusters as well as the subspaces where they reside.

An example:

(a)

(b)

Subspace clustering

Preliminaries:

- The data set $X=\left\{\boldsymbol{x}_{i} \in R^{l}, i=1, \ldots, N\right\}$
- (Affine linear) Subspace S of R^{l} : It is defined via
- a vector μ in S and
- an $l x l^{\prime}$ (basis) matrix $B\left(l^{\prime}<l\right)$
as $S=\left\{\boldsymbol{x} \in R^{l}: \boldsymbol{x}=\mu+B \cdot \boldsymbol{y}\right\}$, where $\boldsymbol{y} \in R^{l^{\prime}}$
- Assuming that all the data points of X lie in an l^{\prime}-dimensional (affine) subspace S, in order to determine it, we need to find:
- A vector $\mu \in S$
- The dimensionality l^{\prime} of S
- The $l \times l^{\prime}$ matrix B.

Vidal R., "Subspace Clustering", IEEE Transactions on Signal Processing, 28(2), 2011.

Subspace clustering

Basic assumption: In subspace clustering, the clusters formed by the data points "live" in subspaces of the original l-dimensional data space.

$$
S_{j}=\left\{\boldsymbol{x} \in R^{l}: \boldsymbol{x}=\mu_{j}+B_{j} \cdot \boldsymbol{y}\right\}
$$

- Aim of subspace clustering: Determine
- the number of subspaces m
- The dimensionalities $l_{1}, l_{2}, \ldots, l_{m}$, of the subspaces $S_{1}^{\circ}, S_{2}, \ldots, S_{m}$
- The basis matrices $B_{1}, B_{2}, \ldots, B_{m}$
- The points $\mu_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{m}$, of the subspaces $S_{1}, S_{2}, \ldots, S_{m} \bigcirc$
- The clusters $C_{1}, C_{2}, \ldots, C_{m}$.

Subspace clustering

Ways to tackle the problem

- Algebraic methods
- Spectral clustering methods
- Iterative cost function optimization methods (hard, probabilistic framework)

Iterative cost function optimization methods (hard framework) The k-subspace algorithm

Assumption: The number of clusters m and the subspaces dimensionalities $l_{1}, l_{2}, \ldots, l_{m}$, are known.
Let:

- $U_{N \times m}=\left[u_{i j}\right]$, where $u_{i j}=\left\{\begin{array}{cc}1, & x_{i} \in C_{j} \\ 0, & \text { otherwise }\end{array}\right.$,
$-B=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$
$-\boldsymbol{\mu}=\left\{\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{m}\right\}$
- $Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$, with $Y_{j}=\left\{\boldsymbol{y}_{i}^{j}, i=1, \ldots, N\right\}$ be the set of projections of the data points to the j-th subspace.

Subspace clustering

Iterative CFO methods (hard framework) - The k-subspace algorithm
Consider the cost function
$y_{i}^{j}:$ Projection of x_{i} to the j-th subspace

$$
J(B, \mu, Y, U)=\sum_{i=1}^{N} \sum_{j=1}^{m} u_{i j}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}-B_{j} \boldsymbol{y}_{i}^{j}\right\|^{2}
$$

This is minimized in a two-stage iterative fashion (recall k-means)
For fixed $\boldsymbol{\mu}_{j}^{\prime} s, B_{j}^{\prime} s, y_{i}^{j \prime} s$:
Define $u_{i j}=\left\{\begin{array}{lc}1, & \text { if }\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}-B_{j} \boldsymbol{y}_{i}^{j}\right\|^{2}=\min _{q=1, \ldots, m}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}_{q}-B_{q} \boldsymbol{y}_{i}^{q}\right\|^{2} \\ 0, & \text { otherwise }\end{array}\right.$
For fixed $u_{i j}$'s: Solve the following \underline{m} independent problems

$$
\min _{\left\{\boldsymbol{\mu}_{j},\left(B_{j}, y_{i}^{j}\right)\right\}} \sum_{x_{i}: u_{i j}=1}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}-B_{j} \boldsymbol{y}_{i}^{j}\right\|^{2} \equiv \min _{\left\{\mu_{j},\left(B_{j}, y_{i}^{j}\right)\right\}} \sum_{i=1}^{N} u_{i j}\left\|x_{i}-\boldsymbol{\mu}_{j}-B_{j} y_{i}^{j}\right\|^{2}
$$

For each such problem
(a) Fix $\boldsymbol{\mu}_{j}^{\prime} s$ and apply PCA, to estimate $B_{j}^{\prime} s, y_{i}^{j \prime} s$.
(b) Fix $B_{j}^{\prime} s, \boldsymbol{y}_{i}^{j \prime} s$ and apply the k-means rationale, to estimate $\boldsymbol{\mu}_{j}^{\prime} s$.

Subspace clustering

Remark:

There are also subspace clustering methods (e.g., CLIQUE, ENCLUS) that "quantize" the region where the data belongs through the use of a grid. Then, clusters (at different subspaces) are defined through boxes that contain a significant number of data points.

Combinations of clusterings

- The data set $X=\left\{\boldsymbol{x}_{i} \in R^{l}, i=1, \ldots, N\right\}$
- Ensemble of clusterings of $X: \quad \mathcal{E}=\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{n}\right\}$ where $\mathcal{R}_{i}=\left\{C_{i}{ }^{1}, C_{i}{ }^{2}, \ldots, C_{i}{ }^{m_{i}}\right\}$
C_{i}^{j} : the j-th cluster of the i-th clustering
m_{i} : the number of clusters in the i-th clustering.

In general, \mathcal{R}_{i} 's are not constraint to have the same number of clusters

- Alternative representation of a clustering:

$$
\mathcal{R}_{i} \leftrightarrow \boldsymbol{y}_{i}=\left[y_{i}(1), y_{i}(2), \ldots, y_{i}(k), \ldots, y_{i}(N)\right]
$$

where $y_{i}(k)$ the cluster label of the k-th data point.
Example: Let $\mathcal{R}_{i}=\left\{C_{i}^{1}, C_{i}^{2}, C_{i}^{3}\right\}=\left\{\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{6}, \boldsymbol{x}_{10}\right\},\left\{\boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{7}\right\},\left\{\boldsymbol{x}_{5}, \boldsymbol{x}_{8}, \boldsymbol{x}_{9}\right\}\right\}$ Then $y_{i}=[1,1,2,2,3,1,2,3,3,1]$.
The two main issues in this framework are:
(A) The generation of the ensemble of clusterings
(B) The combination of the clusterings.

Combinations of clusterings

A. Generation of ensemble of clusterings

It involves two steps:
(a) The choice of the subspace to project the data points of X.
(b) The application of a clustering algorithm on the resulting projections.

General directions:

- All data, all features:
- All l features and all N data points are used.
- Either different algorithms are applied
- or the same algorithm with different parameter values (e.g., in k-means, different number of cluster, or different initial conditions).
- All data, some features:
- All N data points are used.
- n data sets X_{i} are formed from X
- Either by selecting a number of features (feature distributed clustering)
- or by projecting onto a randomly chosen lower dimensional space.
- The same or different algorithms can be applied on the X_{i} 's.

Combinations of clusterings

A. Generation of ensemble of clusterings

General directions:

- Some data, all features:
- All l features are used.
- n data sets X_{i} are formed from X using techniques like bootstrapping and sampling.
- (Usually) the same algorithm is applied on the X_{i} 's.
- The points that have not been selected to participate in X_{i} are assigned to their nearest cluster in \mathcal{R}_{i}.
B. Combination of clusterings

Problem: Given $\mathcal{E}=\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{n}\right\}$, determine the consensus clustering $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$.

A useful tool in this direction is the co-association matrix C.
It is an $N \times N$ matrix $C=\left[c_{i j}\right]$ with $c_{i j}=\frac{n_{i j}}{n}$
where $n_{i j}$ is the number of times where the i-th and the j-th points of X are assigned to the same cluster, among the n clusterings of \mathcal{E}.

Combinations of clusterings

B. Combination of clusterings

Three main directions are used:

- Co-association matrix based methods
- Graph-based methods
- Function optimization methods.

Co-association matrix based methods

- Compute the co-association matrix.
- Use it as a similarity matrix and run a hierarchical algorithm (single-link, complete-link etc)
- From the produced dendrogram determine the final clustering as the one having the larger lifetime.

Note: A large number of clusterings is required, in order to estimate more accurately the elements of C.

Combinations of clusterings

B. Combination of clusterings

Graph-based methods

- Instance-based graph formulation (IBGF)
- Cluster-based graph formulation (CBGF)
- Hybric bipartite graph formulation (HBGF)

Combinations of clusterings

B. Combination of clusterings

Graph-based methods

- Instance-based graph formulation (IBGF)
- Cluster-based graph formulation (CBGF)
- Hybric bipartite graph formulation (HBGF)
> Construct a fully connected graph $G=(V, E)$ where
$>$ Each vertex of V corresponds to a data point and
$>$ Each edge $e_{i j}$ of E is weighted by $c_{i j}$ (the (i, j) element of C).
$>$ Partition the graph into m disjoint subsets of vertices $V_{1}, V_{2}, \ldots, V_{m}$ such that
- The sum of weights of the edges that connect vertices between any pair of two different subsets is minimized and
- All V_{j} 's have approximately the same size.

Note: The normalized-cut and the Ratio-cut criteria can be used for partitioning the graph.

Combinations of clusterings

B. Combination of clusterings

Graph-based methods

- Instance-based graph formulation (IBGF)

Example: Consider a data set $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right\}$ and assume that the co-
association matrix is $C=\left[c_{i j}\right]=\left[\begin{array}{cccc}1 & 0.9 & 0.07 & 0.05 \\ 0.9 & 1 & 0.03 & 0.02 \\ 0.07 & 0.03 & 1 & 0.9 \\ 0.05 & 0.02 & 0.9 & 1\end{array}\right]\left[\begin{array}{l}C \text { indicates that the } \\ \text { physical clusters are } \\ C_{1}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\}, \\ C_{2}=\left\{\boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right\} .\end{array}\right.$

Consider the fully connected graph with four vertices $v_{1}\left(\boldsymbol{x}_{1}\right), v_{2}\left(\boldsymbol{x}_{2}\right)$, $v_{3}\left(\boldsymbol{x}_{3}\right), v_{4}\left(\boldsymbol{x}_{4}\right)$, with the weight of each edge $w_{i j}$ being equal to $c_{i j}$.
For the possible (equally-sized clusters) two-clusters graph partitions it is:

Partition	Edges connecting diff. clusters (weights)	Total weight of connecting edges
$\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\}\right\}$	$e_{13}(0.07), e_{14}(0.05), e_{23}(0.03), e_{24}(0.02)$	$0.17\left(^{*}\right)$
$\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\}$	$e_{12}(0.9), e_{14}(0.05), e_{32}(0.02), e_{34}(0.9)$	1.87
$\left\{\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\}\right\}$	$e_{12}(0.9), e_{13}(0.07), e_{42}(0.02), e_{43}(0.9)$	1.87

The partition with the smallest total weight of connecting edges corresponds to the physical clustering of the data set.

Combinations of clusterings

B. Combination of clusterings

Function optimization methods

- Utility function optimization
- Normalized mutual information
- Mixture model formulation

Here, the final clustering (also called median clustering) $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$, results from the optimization of an appropriate cost function.

Combinations of clusterings

B. Combination of clusterings

Function optimization methods

- Utility function optimization (probabilistic arguments)
- Normalized mutual information function optimization (information theory ingredients)
- Mixture model formulation

A function $U\left(\mathcal{F}^{\prime}, \mathcal{R}_{i}\right)$ is adopted, measuring the quality of a candidate median \mathcal{F}^{\prime} against some other clustering \mathcal{R}_{i}.

The overall utility of \mathcal{F}^{\prime} on $\varepsilon=\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{n}\right\}$ is defined as

$$
U\left(\mathcal{F}^{\prime}, \varepsilon\right)=\sum_{i=1}^{n} U\left(\mathcal{F}^{\prime}, \mathcal{R}_{i}\right)
$$

The final (median) clustering \mathcal{F} results as

$$
\mathcal{F}=\operatorname{argmax}_{\mathcal{F}^{\prime}} U\left(\mathcal{F}^{\prime}, \varepsilon\right)
$$

Combinations of clusterings

B. Combination of clusterings

Function optimization methods

Mixture model formulation

- Represent the data points as follows

y_{1}	\cdots	y_{n}			
$y_{1}(1)$	\cdots	$y_{n}(1)$	$]$	\equiv	$x_{1}{ }^{\prime}$
$y_{1}(2)$	\cdots	$y_{n}(2)$	$]$	\equiv	$x_{2}{ }^{\prime}$
	\vdots				\vdots
$y_{1}(N)$	\cdots	$y_{n}(N)$	$]$	\equiv	$x_{N}{ }^{\prime}$

Note: The representations $x_{i}{ }^{\prime}$ are discrete-valued.

- Define the probability function $P\left(x^{\prime} ; \Theta\right)$ as the (weighted) summation of m (n-dimensional) probability functions, each one corresponding to a cluster.
- Assuming independence among the components of x^{\prime}, each n-dimensional probability function is written as the product of n one-dimensional prob. functions, each one modeled by a multinomial distribution.
- The estimation of the respective parameters is carried out via the utilization of the EM algorithm.

Multinomial distribution

- Multinomial distribution $\operatorname{Mult}(\boldsymbol{x} \mid n, \mathbf{P})$

Discrete RV distribution

$$
\begin{aligned}
& \mathbf{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{K}\right]^{T^{\prime}} \boldsymbol{P}=\left[p_{1}, \ldots, p_{K}\right]^{T}: \\
& \sum_{i=1}^{K} p_{i}=1
\end{aligned}
$$

$-0<p_{i}<1, i=1, \ldots, K$,
-Sample space: $X=\{0,1, \ldots, K\}$
-Outcome of the experiment: non-binary. No. of repetitions: \boldsymbol{n} - x_{i} : number of times the i-th outcome occurs in the n repetitions - It is

$$
>P(\boldsymbol{x})=\binom{n}{x_{1}, x_{2}, \ldots, x_{K}} \prod_{i=1}^{K} P_{i}^{x_{i}}
$$

$$
\begin{aligned}
& \text { s.t. } x_{1}+x_{2}+\ldots+x_{K}=n \\
& >E[x]=n \boldsymbol{P} \\
& \partial \sigma_{i}^{2}=n P_{i}\left(1-P_{i}\right), i=1, \ldots, K . \\
& >\operatorname{cov}\left(x_{i}, x_{j}\right)=-n P_{i} P_{j}, i \neq j .
\end{aligned}
$$

