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Self-organizing maps 
 It is used for data visualization (maps high dim. Data→ 1-d or 2-d maps) and 

(“loose”) clustering. 
Here interrelation between representatives is assumed. 
 For each representative 𝒘𝑗 a topological neighborhood of representatives 

𝑄𝑗(𝑡) is defined, centered at 𝒘𝑗. 

As 𝑡 (no. of iterations) increases, 𝑄𝑗(𝑡) shrinks and concentrates around 𝒘𝑗. 

  The neighborhood is defined with respect to the indices 𝑗 and it is 
independent of the geometrical distances between representatives in the  

       vector space.  Assuming that in fig. (c) the 
neighborhood of 𝒘𝑗 
constitutes of 𝒘𝑗−1 and 𝒘𝑗+1,  
 
𝒘2 and 𝒘4 are the topo- 
logical neighbors of 𝒘3 

although  
𝒘6 and 𝒘7 are closer in 
terms of the geometrical 
distance to 𝒘3) 



Self-organizing maps 
 Here interrelation between representatives is assumed. 
 For each representative 𝒘𝑗 a neighborhood of representatives 𝑄𝑗(𝑡) is 

defined, centered at 𝒘𝑗. 
 As 𝑡 (number of iterations) increases, 𝑄𝑗(𝑡) shrinks and concentrates 

around 𝒘𝑗. 
  The neighborhood is defined with respect to the indices 𝑗 and it is 

independent of the distances between representatives in the vector 
space.  



Self-organizing maps 
 If 𝒘𝑗 wins on the current input 𝒙 all the representatives in 𝑄𝑗(𝑡) are 

updated (Self Organizing Map (SOM) scheme). 
 SOM (in its simplest version) may be viewed as a special case of GCLS if 

 
• Parts (A), (B) and (C) are defined as in the basic competitive learning 

scheme. 
• In part (D), if 𝒘𝑗 wins on 𝒙, the updating equation becomes: 

 

𝒘𝑘 𝑡 =  
𝒘𝑘 𝑡 − 1 + 𝜂𝑡

𝑘,𝑗 𝒙 − 𝒘𝑘 𝑡 − 1 , 𝑖𝑓 𝒘𝑘 ∈ 𝑄𝑗(𝑡) 

𝒘𝑘 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
    where 𝜂𝑡

𝑘,𝑗 is a variable learning rate, which decreases with 𝑡 and with 
the topological distance between the 𝑘-th and the 𝑗-th representatives.  
 

 After convergence, neighboring representatives also lie “close” in terms of 
their geometrical distance in the vector space (topographical ordering) 
(see fig. (d)). 



Self-organizing maps 
 

The algorithm 
 𝑡 = 0 

 Repeat 
• 𝑡 = 𝑡 + 1 

• Present a new randomly selected 𝒙 ∈ 𝑋 to the algorithm. 
• (B) Determine the winning representative 𝒘𝑗 on 𝒙 as the one for which 

𝑑 𝒙,𝒘𝑗(𝑡 − 1) = min 𝑑 𝒙,𝒘𝑘(𝑡 − 1)𝑘=1,…,𝑚  

• (D) Parameter updating 

𝒘𝑘 𝑡 =  
𝒘𝑘 𝑡 − 1 + 𝜂𝑡

𝑘,𝑗 𝒙 − 𝒘𝑘 𝑡 − 1 , 𝑖𝑓 𝒘𝑘 ∈ 𝑄𝑗(𝑡) 

𝒘𝑘 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• End 
 (E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) 
 



Self-organizing maps 
Example 

(a) 

(b) 

(c) 

(d) 

𝒘1 
𝒘2 

𝒘3 

𝒘4 

𝒘1 
𝒘2 

𝒘3 

𝒘4 

𝒘1 

𝒘3 

𝒘2 𝒘4 
𝒘1 

𝒘2 

𝒘3 

𝒘4 



Self-organizing maps 
How to represent the result of a SOM 
NOTE: After SOM convergence the topological ordering  of the 𝑚 
representatives will comply with their “geometrical ordering”. 
 
Produce an image 𝐴 of size  
• 𝑚 for the 1-d case or 
• 𝑘 × 𝑘 for the 2-d case (𝑚 = 𝑘2) 
As follows 
 
For each representative (pixel of 𝐴): 
Compute its average distance 𝑑𝑎𝑣𝑔 from its neighboring representatives 

Draw the associate pixel of 𝐴 with a color so that: 
The larger the 𝑑𝑎𝑣𝑔, the darker the color will be. 

 
Then lighter areas surrounded by darker areas in 𝐴 are indicative of 
clustering structure in the data. 
  



Self-organizing maps 
Example 



Self-organizing maps 
Example 

From: Massimo Pacella, Antonio Grieco, 
Marzia Blaco, "On the Use of Self-Organizing 
Map for Text Clustering in Engineering Change 
Process Analysis: A Case Study", 
Computational Intelligence and Neuroscience, 
vol. 2016, Article ID 5139574, 11 pages, 2016. 
https://doi.org/10.1155/2016/5139574 

Computation of the numbers in 𝑈-matrix via example: 
2,3 → 𝑑(𝑤2, 𝑤3) 

3 → 𝑚𝑒𝑎𝑛 𝑑 𝑤2, 𝑤3 , 𝑑(𝑤3, 𝑤6)  



Supervised Learning Vector Quantization (VQ) 
 In this case  
 each cluster is treated as a class (𝑚 compact classes are assumed) 
 the available vectors have known class labels. 
 
The goal: 
Use a set of  𝑚 representatives and place them in such a way so that each 
class is “optimally” represented. 
 
The simplest version of VQ (LVQ1) may be obtained from GCLS as follows: 
 Parts (A), (B) and (C) are the same with the basic competitive learning 

scheme. 
 In part (D) the updating for 𝒘𝑗’ s is carried out as follows 
 

𝒘𝑗 𝑡 =

𝒘𝑗 𝑡 − 1 + 𝜂 𝑡 𝒙 − 𝒘𝑗 𝑡 − 1 , 𝑖𝑓 𝒘𝑗  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑤𝑖𝑛𝑠 𝑜𝑛 𝒙

𝒘𝑗 𝑡 − 1 − 𝜂 𝑡 𝒙 − 𝒘𝑗 𝑡 − 1 , 𝑖𝑓 𝒘𝑗𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑤𝑖𝑛𝑠 𝑜𝑛 𝒙

𝒘𝑗 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒘𝑗(𝑡 − 1) 

𝒙 
𝒘𝑗(𝑡) 

𝒘𝑞(𝑡 − 1) 
𝒘𝑞(𝑡) 



Supervised Learning Vector Quantization (VQ) 
The algorithm 
 𝑡 = 0 

 Repeat 
• 𝑡 = 𝑡 + 1 

• Present a new randomly selected 𝒙 ∈ 𝑋 to the algorithm. 
• (B) Determine the winning representative 𝒘𝑗 on 𝒙 as the one for which 

𝑑 𝒙,𝒘𝑗(𝑡 − 1) = min 𝑑 𝒙,𝒘𝑘(𝑡 − 1)𝑘=1,…,𝑚  

• (D) Parameter updating 

𝒘𝑗 𝑡 =

𝒘𝑗 𝑡 − 1 + 𝜂 𝑡 𝒙 − 𝒘𝑗 𝑡 − 1 , 𝑖𝑓 𝒘𝑗 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑤𝑖𝑛𝑠 𝑜𝑛 𝒙

𝒘𝑗 𝑡 − 1 − 𝜂 𝑡 𝒙 − 𝒘𝑗 𝑡 − 1 , 𝑖𝑓 𝒘𝑗𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑤𝑖𝑛𝑠 𝑜𝑛 𝒙

𝒘𝑗 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) (max allowable no of iter.) 
 In words:  
 𝒘𝑗 is moved: 

• Towards 𝒙 if 𝒘𝑗 wins and 𝒙 belongs to the 𝑗-th class. 
• Away from 𝒙 if 𝒘𝑗 wins and x does not belong to the 𝑗-th class. 

 All other representatives remain unaltered. 



Valley seeking clustering algorithms 
Let 𝑝(𝒙) be the density function describing the distribution of the vectors in 𝑋. 
 Clusters may be viewed as peaks of 𝑝(𝒙) separated by valleys. 
    Thus one may 
• Identify these valleys and 
• Try to move the borders of the clusters in these valleys. 

 
A simple method in this spirit. 
Preliminaries 
 Let the distance 𝑑(𝒙, 𝒚) be defined as 
   𝑑 𝒙, 𝒚 = 𝒚 − 𝒙 𝑇𝐴 𝒚 − 𝒙  

      where 𝐴 is a positive definite matrix 
 
 Let the local region of 𝒙, 𝑉(𝒙), be defined as 
   𝑉 𝒙 = 𝒚 ∈ 𝑋 − 𝒙 : 𝑑 𝒙, 𝒚 ≤ 𝑎  
      where 𝑎 is a user-defined parameter 
 

 𝑘𝑗
𝑖 be the number of vectors of the 𝑗 cluster that belong to 𝑉 𝒙𝑖 − 𝒙𝑖 .  

 𝑐𝑖 ∈ 1,… ,𝑚  denote the cluster to which 𝒙𝑖 will be assigned. 



Valley seeking clustering algorithms 
 Valley-Seeking algorithm 
 Fix 𝑎. 
 Fix the number of clusters 𝑚. 
 Define an initial clustering 𝑋. 
 Repeat 

• For 𝑖 = 1 to 𝑁 

–Find 𝑗:  𝑘𝑗
𝑖 = max 𝑘𝑞

𝑖
𝑞=1,…,𝑚

 

Set 𝑐𝑖 = 𝑗 
• End For 

 
• For 𝑖 = 1 to 𝑁 

Assign 𝒙𝑖 to cluster 𝐶𝑐𝑖. 

• End For 
 Until no reclustering of vectors occurs. 



Valley seeking clustering algorithms 
 The algorithm  
 Centers a window defined by 𝑑(𝒙, 𝒚) ≤ 𝑎 at 𝒙 and counts the points from 

different clusters in it. 
 Assigns 𝒙 to the cluster with the larger number of points in the window 

(the cluster that corresponds to the highest local pdf). 
 

In other words: 
 The boundary is moved away from the “winning” cluster. 

 
Remarks: 
• The algorithm is sensitive to 𝑎. It is suggested to perform several runs, for 

different values of 𝑎. 
• The algorithm is of a mode-seeking nature (if more than enough clusters 

are initially appointed, some of them will become empty). 



Valley seeking clustering algorithms 
 Example: Let 𝑋 = 𝒙1, … , 𝒙10  and 𝑎 = 1.1415 (> 2). 𝑋 contains two 
physical clusters: 𝐶1 = 𝒙1, … , 𝒙5 , 𝐶2 = 𝒙6, … , 𝒙10 . 
(a) Initially two clusters are considered separated by 𝑏1. After the 

convergence of the algorithm, 𝐶1 and 𝐶2 are identified (equivalently, 𝑏1 is 
moved between x4 and x6). 
 

(b) Initially two clusters are considered separated by 𝑏1, 𝑏2 and 𝑏3. After the 
convergence of the algorithm, 𝐶1 and 𝐶2 are identified (equivalently 𝑏1 and 
𝑏2 are moved to the area where 𝑏3 lies). 

 
(c) Initially three clusters are considered separated by 𝑏1, 𝑏2, 𝑏3, 𝑏4. After the 

convergence of the algorithm, only two clusters are identified, 𝐶1 and 𝐶2 

(equivalently 𝑏1, 𝑏2, 𝑏3 and 𝑏4 are moved between 𝒙4 and 𝒙6). 



Branch and Bound Clustering algorithms 
 They compute the globally optimal solution to combinatorial problems. 
 They avoid exhaustive search via the employment of a monotonic criterion 

𝐽. 
Monotonic criterion 𝐽: if 𝑘 vectors of 𝑋 have been assigned to clusters, the 
assignment of an extra vector to a cluster does not decrease the value of 𝐽. 
 
Consider the following 3-vectors, 2-class case: 
 
121: 1st, 3rd vectors belong to class 1 

         2nd vector belongs  to class 2. 
         (leaf of the tree) 
 
12𝑥: 1st vector belongs to class 1 

         2nd vector belongs to class 2 

         3rd vector is unassigned  
         (Partial clustering- node of the tree). 



Branch and Bound Clustering algorithms 
 How exhaustive search is avoided 
 Let 𝐵 be the best value for criterion 𝐽 computed so far. 
 If at a node of the tree, the corresponding value of 𝐽 is greater than 𝐵, no 

further search is performed for all subsequent descendants springing from 
this node. 

  Let  𝑪𝑟 = 𝑐1, … , 𝑐𝑟 , 1 ≤ 𝑟 ≤ 𝑁, denotes a partial clustering where  
      𝑐𝑖 ∈ 1,2, … ,𝑚 , 𝑐𝑖 = 𝑗 if the vector 𝒙𝑖 belongs to cluster 𝐶𝑗 and       

       𝒙𝑟+1, … , 𝒙𝑁 are yet unassigned. 
 For compact clusters and fixed number of clusters, 𝑚, a suitable cost      

function is 

𝐽 𝑪𝑟 =  | 𝒙𝑖 −𝒎𝑐𝑖 𝑪𝑟 |2
𝑟

𝑖=1
 

      where 𝒎𝑐𝑖  is the mean vector of the cluster 𝐶𝑐𝑖  

𝒎𝑗 𝑪𝑟 =
1

𝑛𝑗(𝑪𝑟)
 𝒙𝑞

{𝑞=1,…,𝑟,𝑐𝑞=𝑗}
, 𝑗 = 1,… ,𝑚 

        with 𝑛𝑗(𝑪𝑟) being the number of vectors 𝒙 ∈ 𝒙1, … , 𝒙𝑟  that belong to     

        cluster 𝐶𝑗. 



Branch and Bound Clustering algorithms 
Initialization 
• Start from the initial node and go down to a leaf. Let 𝐵 be the cost of the 

corresponding clustering 𝑪 (initially set 𝐵 = +∞, 𝑪 = ∅). 
Main stage 
• Start from the initial node of the tree and go down until 
Either (i) A leaf is encountered.  

oIf the cost 𝐵´ of the corr. clustering 𝑪´ is smaller than 𝐵 then 
  * 𝐵 = 𝐵´ 
 * 𝑪 =𝑪´ is the best clustering found so far 

oEnd if 
Or (ii) a node 𝑞 with value of 𝐽 greater than 𝐵 is encountered. Then 

oNo subsequent clustering branching from 𝑞 is considered. 
oBacktrack to the parent of 𝑞, 𝑞𝑝𝑎𝑟, in order to span a different path. 
oIf all paths branching from 𝑞𝑝𝑎𝑟 have been considered then 

 * Move to the grandparent of 𝑞. 
oEnd if 

End if 
Terminate when all possible paths have been considered explicitly or 
implicitly. 



Branch and Bound Clustering algorithms 
Remarks 
• Variations of the above algorithm, where much tighter bounds of 𝐵 are 

used (that is, many more clusterings are rejected without explicit 
consideration) have also been proposed. 
 

• A disadvantage of the algorithm is the excessive (and unpredictable) 
amount of required computational time. 



Simulated Annealing 
 It guarantees (under certain conditions) in probability, the determination 

of  the globally optimal solution of the problem at hand via the 
minimization of  a cost function 𝐽. 

 It may escape from local minima since it allows moves that temporarily 
may increase the value of 𝐽. 

 
Definitions 
 An important parameter of the algorithm is the “temperature” 𝑇, which  
      starts at a high value and reduces gradually.  
 A sweep is the time the algorithm spends at a given temperature so that  
      the system can enter the “thermal equilibrium” in this temperature. 
 
Notation 
 𝑇𝑚𝑎𝑥 is the initial value of the temperature 𝑇. 
 𝑪𝑖𝑛𝑖𝑡 is the initial clustering. 
 𝑪 is the current clustering. 
 𝑡 is the current sweep. 



Simulated Annealing 
The algorithm: 
• Set 𝑇 = 𝑇𝑚𝑎𝑥 and 𝑪 = 𝑪𝑖𝑛𝑖𝑡. 
• 𝑡 = 0 
• Repeat 
 𝑡 = 𝑡 + 1 

 Repeat 
o Compute 𝐽(𝑪) 
o Produce a new clustering, 𝑪´, by assigning a randomly chosen vector 

from X to a different cluster. 
o Compute 𝐽(𝑪´) 
o If Δ𝐽 = 𝐽(𝑪´) − 𝐽(𝑪) < 0 then 

* (A) 𝑪 = 𝑪´ 
o Else 

* (B) 𝑪 = 𝑪´, with probability 𝑃(Δ𝐽) = 𝑒−Δ𝐽 𝑇 . 
o End if 

 Until an equilibrium state is reached at this temperature. 
 𝑇 = 𝑓(𝑇𝑚𝑎𝑥 , 𝑡) 

• Until a predetermined value 𝑇𝑚𝑖𝑛 for 𝑇 is reached 



Simulated Annealing 
Remarks: 
• For 𝑇∞, it is 𝑝(Δ𝐽) ≈ 1. Thus almost all movements of vectors between 

clusters are allowed. 
• For lower values of 𝑇 fewer moves of type (B) (from lower to higher cost 

clusterings) are allowed. 
• As 𝑇0 the probability of moves of type (B) tends to zero. 
• Thus as 𝑇 decreases, it becomes more probable to reach clusterings that 

correspond to lower values of 𝐽. 
• Keeping 𝑇 positive, we ensure a nonzero probability for escaping from a 

local minimum. 
• We assume that the equilibrium state has been reached 
      ”If for 𝑘 successive random reassignments of vectors, 𝑪 remains   

     unchanged.” 
•  A schedule for lowering T that guarantees convergence to the global 

minimum with probability 1, is 

    𝑇 =
𝑇𝑚𝑎𝑥

ln(1+𝑡)
 

• The method is computationally demanding. 



Deterministic Annealing (DA) 
 It is inspired by the phase transition phenomenon observed when the 

temperature of a material changes. It involves the parameter 𝛽 = 1/𝑇,  
where 𝑇 is defined as in simulated annealing. 
 

 The Goal of DA: Locate a set of representatives 𝒘𝑗, 𝑗 = 1,… ,𝑚 (𝑚 is fixed) 

in appropriate positions so that a distortion function 𝐽 is minimized. 
     𝐽 is defined as 

𝐽 = −
1

𝛽
 𝑙𝑛  𝑒−𝛽𝑑(𝒙𝑖,𝒘𝑗)

𝑚

𝑗=1

𝑁

𝑖=1
 

 
 Then, the optimal value of a specific 𝒘𝑟  satisfies the following condition: 

 
𝜕𝐽

𝜕𝒘𝑟
=  𝑃𝑖𝑟

𝜕𝑑(𝒙𝑖 , 𝒘𝑟)

𝜕𝒘𝑟

𝑁

𝑖=1
= 0 

     where  

𝑃𝑖𝑟 =
𝑒−𝛽𝑑(𝒙𝑖,𝒘𝑟)

 𝑒−𝛽𝑑(𝒙𝑖,𝒘𝑗)𝑚
𝑗=1

 

 𝑃𝑖𝑟  may be interpreted as the probability that 𝒙𝑖 belongs to 𝐶𝑟, 𝑟 = 1,… ,𝑚. 

Assumption: 𝑑(𝒙,𝒘) 
is a convex function of 

𝒘 for fixed 𝒙. 



Deterministic Annealing 
Assumption: 𝑑(𝒙,𝒘) is a convex function of 𝒘 for fixed 𝒙. 
Stages of the algorithm 

• For 𝛽 ⟶ 0, all 𝑃𝑖𝑗’s are almost equal to 
1

𝑚
, for all 𝒙𝑖’s, 𝑖 = 1,… ,𝑁. Thus 

 

 
𝜕𝑑(𝒙𝑖 , 𝒘𝑟)

𝜕𝒘𝑟

𝑁

𝑖=1
= 0 

 
   Since 𝑑(𝒙,𝒘) is a convex function, 𝑑 𝒙1, 𝒘𝑟 +⋯+ 𝑑 𝒙𝑁, 𝒘𝑟  is a convex 
function. All representatives coincide with its unique global minimum (all the 
data belong to a single cluster). 
 
• As 𝛽 increases, it reaches a critical value where 𝑃𝑖𝑟’s “depart sufficiently” 

from the uniform model. Then the representatives split up in order to 
provide an optimal presentation of the data set at the new phase. 

 
• The increase of 𝛽 continues until 𝑃𝑖𝑗 approach the hard clustering model 

(for all 𝒙𝑖, 𝑃𝑖𝑟 ≈ 1 for a specific 𝑟, and 𝑃𝑖𝑗 ≈ 0, for 𝑗 ≠ 𝑟). 



Deterministic Annealing 
Application: For the squared Euclidean distance 𝑑 𝒙,𝒘 = 𝒙 − 𝒘 𝑇 𝒙 − 𝒘  
it is 

𝜕𝐽

𝜕𝒘𝑟
=  𝑃𝑖𝑟

𝜕𝑑(𝒙𝑖 , 𝒘𝑟)

𝜕𝒘𝑟

𝑁

𝑖=1
= 2 𝑃𝑖𝑟 𝒙𝑖 −𝒘𝑟

𝑁

𝑖=1
= 0 ⇔ 𝒘𝑟 =

 𝑃𝑖𝑟𝒙𝑖
𝑁
𝑖=1

 𝑃𝑖𝑟
𝑁
𝑖=1

 

 
 
 
Remarks: 
• It is not guaranteed that it reaches  the globally optimum clustering. 

 
• If 𝑚 is chosen greater than the “actual” number of clusters, the algorithm 

has the ability to represent the data properly. 

This is coupled wrt 𝒘𝑟 



Clustering using genetic algorithms (GA) 
A few hints concerning genetic algorithms 
 They have been inspired by the natural selection mechanism (Darwin). 
 They consider a population of solutions of the problem at hand and they 

perform certain operators on this, so that the new population of the same 
size is improved compared to the previous one (wrt a criterion function 𝐹). 

 The solutions are coded and the operators are applied on the coded 
versions of the solutions. 
 

The most well-known operators are: 
Reproduction:  
• It ensures that, in probability, the better (worse) a solution in the current 

population is, the more (less) replicates it has in the next population. 
• A simple implementation: 

 For each solution 𝑠𝑖, out of the population of the 𝑝 solutions, compute 
the associated criterion function value 𝐹 𝑠𝑖 .  

 (it is assumed that the higher the value of 𝐹, the better the solution) 

 Assign to each 𝑠𝑖 a probability 𝑝𝑖 = 𝐹 𝑠𝑖 / 𝐹 𝑠𝑗
𝑝
𝑗=1 . 

 Perform sampling with replacement to produce the next solution 
population. 

 



Clustering using genetic algorithms (GA) 
Crossover:  
• It applies to the temporary population produced after the application of 

the reproduction operator. 
• It selects pairs of solutions randomly, splits them at a random position and 

exchanges their second parts. 
 
Mutation: 
• It applies to the temporary population produced after the application of 

the crossover operator. 
• It selects randomly an element of a solution and alters it with some 

probability. 
• It may be viewed as a way out of getting stuck in local minima. 
 
    Aspects/Parameters that affect the performance of the algorithm 

The coding of the solutions. 
The number of solutions in a population, p. 
The probability with which two solutions are selected for crossover. 
The probability with which an element of a solution is mutated. 



Clustering using genetic algorithms (GA) 
 GA Algorithmic scheme 
𝑡 = 0  

Choose an initial population 𝑡 of solutions. 
Repeat 
• Apply reproduction on 𝑡 and let𝑡

′  be the resulting temporary 
population. 

• Apply crossover on 𝑡
′  and let 𝑡

′′ be the resulting temporary population. 
• Apply mutation on 𝑡

′′ and let 𝑡+1 be the resulting population. 
• 𝑡 = 𝑡 + 1 

Until a termination condition is met. 
 
Return  
• either the best solution of the last population,  
• or the best solution found during the evolution of the algorithm. 



Clustering using genetic algorithms (GA) 
 Genetic Algorithms in Clustering 
 The characteristics of a simple GA hard clustering algorithm suitable for   
 compact clusters, whose number m is fixed, is discussed next. 
 
A (not unique) way to code a solution is via the cluster representatives. 

    𝒘1, 𝒘2, … ,𝒘𝑚  

The cost function in use is 

𝐽 =  𝑢𝑖𝑗𝑑(𝒙𝑖 , 𝒘𝑗)
𝑁

𝑖=1
 

where 

𝑢𝑖𝑗 =  
1, 𝑖𝑓𝑑 𝒙𝑖 , 𝒘𝑗 = 𝑚𝑖𝑛𝑘=1,…,𝑚𝑑 𝒙𝑖 , 𝒘𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑖 = 1,… ,𝑁 

 
 
The allowable cut points for the crossover operator are between different 
representatives. 
The mutation operator selects randomly a coordinate and decides 
randomly to add a small random number to it. 

The criterion function can 
be defined e.g., as 

𝐹 𝑠𝑖 = 𝑒−𝐽 𝑠𝑖  



Clustering using genetic algorithms (GA) 
 Remark: 
 An alternative to the above scheme results if prior to  the application of 

the reproduction operator, the hard clustering algorithm (GHAS), described 
in a previous lecture, runs 𝑝 times, each time using a different solution of 
the current population as the initial state. The 𝑝 resulting solutions 
constitute the population on which the reproduction operator will be 
applied. 



Density-based algorithms for large data sets 
 These algorithms: 
 Consider clusters as regions in the l-dimensional space that are “dense” in 

points of 𝑋. 
 

 Have, in principle, the ability to recover arbitrarily shaped clusters  
      (however, difficulties may arise in the case where the clusters differ in terms of their  

        density). 
 

 Handle efficiently outliers. 
 

 Have time complexity less than 𝑂 𝑁2 . 
 
Typical density-based algorithms are: 
• The DBSCAN algorithm. 
• The DBCLASD algorithm. 
• The DENCLUE algorithm. 



Density-based algorithms for large data sets 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
Algorithm 
 
The “density” around a point 𝒙 is estimated as the number of points in 𝑋 that 
fall inside a specific region of the 𝑙-dimensional space surrounding 𝒙. 
 
Notation 
• 𝑉𝜀 𝒙  is the hypersphere of radius 𝜀 (user-defined parameter) centered at 𝒙. 

 
• 𝑁𝜀 𝒙  the number of points of 𝑋 lying in 𝑉𝜀 𝒙 . 

 
• 𝑞 is the minimum number of points of 𝑋 that must be contained in 𝑉𝜀 𝒙 , in 

order for 𝒙 to be considered an “interior” point of a cluster. 
 
Definitions 
1. A point 𝒚 is directly density reachable from a point 𝒙 ∈ 𝑋 if 
 (i) 𝒚 ∈ 𝑉𝜀 𝒙  
 (ii) 𝑁𝜀 𝒙 ≥ 𝑞 (fig. (a)). 
2. A point 𝒚 is density reachable from a point 𝒙 ∈ 𝑋 if there is a sequence of 

points 𝒙1, 𝒙2, … , 𝒙𝑝 ∈ 𝑋, with 𝒙1 = 𝒙, 𝒙𝑝 = 𝒚, such that 𝒙𝑖+1 is directly 
density reachable from  𝒙𝑖 (fig. (b)). 



Density-based algorithms for large data sets 
DBSCAN Algorithm (cont.) 
3. A point 𝒙 is density connected to a point 𝒚 ∈ 𝑋 if there exists 𝒛 ∈ 𝑋 such   
    that both 𝒙 and 𝒚 are density reachable from 𝒛 (fig. (c)). 

Example:  

Assuming that 𝑞 = 5,  

(a)  𝒚 is directly density 
reachable from 𝑥, but not vice 
versa,  

(b)  𝒚 is density reachable from 𝑥, 
but not vice versa, and  

(c)  𝒙 and 𝒚 are density 
connected (in addition, 𝒚 is 
density reachable from 𝒙, but 
not vice versa). 



Density-based algorithms for large data sets 
DBSCAN Algorithm (cont.) 
4. A cluster 𝐶 in DBSCAN is defined as a nonempty subset of 𝑋 satisfying  
    the following conditions: 
• If 𝒙 belongs to 𝐶 and 𝒚 ∈ 𝑋 is density reachable from 𝒙, then 𝒚 ∈ 𝐶. 
• For each pair (𝒙, 𝒚) ∈ 𝐶, 𝒙 and 𝒚 are density connected. 

 
5. Let 𝐶1, … , 𝐶𝑚 be the clusters in 𝑋. The set of points that are not connected  
    in any of the 𝐶1, … , 𝐶𝑚 is known as noise. 
 
6. A point 𝒙 is called a core  (noncore) point if it has at least (less than) 𝑞  
     points in its neighborhood.  
     A noncore point may be either  
• a border point of a cluster (that is, density reachable from a core point) 

or 
• a noisy point (that is, not density reachable from other points in 𝑋). 



Density-based algorithms for large data sets 
DBSCAN Algorithm (cont.) 
 
Proposition 1: If 𝒙 is a core point and 𝐷 is the set of points in 𝑋 that are 
density reachable from x, then 𝐷 is a cluster. 
 
Proposition 2: If 𝐶 is a cluster and 𝒙 is a core point in 𝐶, then 𝐶 equals to the 
set of the points 𝒚 ∈ 𝑋 that are density reachable from 𝒙. 
 
Therefore: A cluster is uniquely determined by any of its core points. 
 
Notation 
• 𝑋𝑢𝑛 is the set of points in 𝑋 that have not been considered yet. 
• 𝑚 denotes the number of clusters. 



Density-based algorithms for large data sets 
DBSCAN Algorithm (cont.) 
DBSCAN Algorithm 
 Set 𝑋𝑢𝑛 = 𝑋 
 Set 𝑚 = 0 
 While 𝑋𝑢𝑛 ≠ ∅ do 

• Arbitrarily select a 𝒙 ∈ 𝑋𝑢𝑛  

• If 𝒙 is a noncore point then 
Mark 𝒙 as noise point 
 𝑋𝑢𝑛 = 𝑋𝑢𝑛 − 𝒙  

• End if 
 

• If 𝒙 is a core point then 
 𝑚 = 𝑚 + 1 
 Determine all density-reachable points 𝒚 ∈ 𝑋 from 𝒙. 
  Assign 𝒙 and the previous points to the cluster 𝐶𝑚. The border points   
    among them that may have been marked as “noise” are also  
    assigned to 𝐶𝑚. 
 𝑋𝑢𝑛 = 𝑋𝑢𝑛 − 𝐶𝑚 

• End {if} 
 End {while} 



Clustering – Density-based algorithms 

Clusters are recovered as follows:  
•Start a new cluster 𝐶 by choosing a data point 𝒙. 
•Assign all the data points that lie in the neighborhood of 𝒙 to the same cluster. 
•Repeat recursively the previous step until all neighboring points of ALL 𝒙 ∈ 𝐶 are 
assigned to 𝐶.  

Prerequisite: Definition of 
the neighborhood size 



Density-based algorithms for large data sets 
DBSCAN Algorithm (cont.) 
Important notes: 
• If a border point 𝒚 of a cluster 𝐶 is selected, it will be marked initially as a 

noise point. However, when (a) a core point 𝒙 in 𝐶 is selected later on, and 
(b) 𝒚 is identified as a density-reachable point from 𝒙 then 𝒚 will assigned to 
𝐶. 

• If an actual noise point 𝒚 is selected, it will be marked as such and since it is 
not density reachable by any of the core points in 𝑋, its “noise” label will 
remain unaltered. 

 
Remarks: 
• The parameters 𝜀 and 𝑞 influence significantly the performance of DBSCAN. 

These should selected such that the algorithm is able to detect the least 
“dense” cluster (experimentation with several values for 𝜀 and 𝑞 should be 
carried out). 

• Implementation of DBSCAN using 𝑅∗-tree data structure can achieve time 
complexity of 𝑂 𝑁 log 𝑁2  for low-dimensional data sets. 

• DBSCAN is not well suited for cases where clusters exhibit significant 
differences in density as well as for applications of high-dimensional data. 


