
Clustering algorithms
Konstantinos Koutroumbas

Unit 8
 – Agglomerative hierarchical clustering algorithms based on:
• Matrix theory (cont.)
• Graph theory

– Hierarchical clust. Algorithms for large data sets (CURE algorithm)

1 koutroum@noa.gr

mailto:koutroum@noa.gr

Agglomerative matrix theory based Clustering Algorithms
Monotonicity and crossover:
 For the following dissimilarity matrix

the dissimilarity dendrograms produced by single link,
complete link and UPGMC (the same result is
produced if WPGMC is employed) are:





















02.17.23.2

2.105.24.2

7.25.208.1

3.24.28.10

P

{𝒙1, 𝒙2, 𝒙3, 𝒙4} is
formed at lower
dissimilarity level
than {𝒙1, 𝒙2}
(crossover)

Agglomerative matrix theory based Clustering Algorithms
Example (in detail): The WPGMC case
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑𝑞𝑠 =

1

2
𝑑𝑖𝑠 +

1

2
𝑑𝑗𝑠 −

1

4
𝑑𝑖𝑗)

{𝒙1} {𝒙2} {𝒙3} {𝒙4}

{𝒙1} 0 1.8 2.4 2.3

{𝒙2} 1.8 0 2.5 2.7

{𝒙3} 2.4 2.5 0 1.2

{𝒙4} 2.3 2.7 1.2 0

𝑃0:

𝑃1:

𝑑 3,4 ,1 = 1
2𝑑3,1 +

1
2𝑑4,1 −

1
4𝑑3,4

= 1
22.4 + 1

22.3 − 1
41.2 = 2.05

{𝒙1} {𝒙2} {𝒙3} {𝒙4}

{𝒙1} 0 1.8 2.4 2.3

{𝒙2} 1.8 0 2.5 2.7

{𝒙3} 2.4 2.5 0 1.2

{𝒙4} 2.3 2.7 1.2 0

𝑑 3,4 ,2 = 1
2𝑑3,2 +

1
2𝑑4,2 −

1
4𝑑3,4

= 1
22.5 + 1

22.7 − 1
41.2 = 2.3

{𝒙1} {𝒙2} {𝒙3, 𝒙4}

{𝒙1} 0 1.8 2.05

{𝒙2} 1.8 0 2.3

{𝒙3, 𝑥𝟒} 2.05 2.3 0

{𝒙1} {𝒙2} {𝒙3, 𝒙4}

{𝒙1} 0 1.8 2.05

{𝒙2} 1.8 0 2.3

{𝒙3, 𝑥𝟒} 2.05 2.3 0
𝑑 1,2 , 3,4 = 1

2𝑑1,(3,4) +
1
2𝑑2,(3,4) −

1
4𝑑1,2

= 1
22.05 + 1

22.3 − 1
41.8 = 1.275

𝑃2:
{𝒙1, 𝒙𝟐} {𝒙3, 𝒙4}

{𝒙1, 𝒙𝟐} 0 1.275

{𝒙3, 𝑥𝟒} 1.275 0 {𝒙1, 𝒙2, 𝒙3, 𝒙4}

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4} 0
𝑃3:

0={{x1},{x2},{x3},{x4}}, (𝟎)

1={{x1},{x2},{x3,x4}}, (𝟏. 𝟐)

2={{x1,x2},{x3,x4}}, (𝟏. 𝟖)

3={{x1,x2,x3,x4}}, (𝟏. 𝟐𝟕𝟓 ‼)

Agglomerative matrix theory based Clustering Algorithms
 Monotonicity condition:
 If clusters 𝐶𝑖 and 𝐶𝑗 are selected to be merged in cluster 𝐶𝑞, at the tth

 level of the hierarchy, the condition
 𝑑(𝐶𝑞, 𝐶𝑘)  𝑑(𝐶𝑖, 𝐶𝑗)

 must hold for all 𝐶𝑘, 𝑘 ≠ 𝑖, 𝑗 , 𝑞.

 In other words, the monotonicity condition implies that a clustering is

formed at higher dissimilarity level than any of its components.

Remarks:
• Monotonicity is a property that is exclusively related to the clustering

algorithm and not to the (initial) proximity matrix.

• An algorithm that does not satisfy the monotonicity condition, does not
necessarily produce dendrograms with crossovers.

• Single link, complete link, UPGMA, WPGMA and the Ward’s algorithm satisfy
the monotonicity condition, while UPGMC and WPGMC do not satisfy it.

Agglomerative matrix theory based Clustering Algorithms
Complexity issues:
• GAS requires, in general, 𝑂(𝑁3) operations.

• More efficient implementations require 𝑂(𝑁2 log𝑁) computational time.

• For a class of widely used algorithms, implementations that require 𝑂(𝑁2)

computational time and 𝑂(𝑁2) or 𝑂(𝑁) storage have also been proposed.

• Parallel implementations on SIMD machines have also been considered.

Agglomerative graph theory based Clustering Algorithms
Some basic definitions from graph theory:

• A graph, 𝐺, is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣𝑖 , 𝑖 =
1,… ,𝑁} is a set of vertices and 𝐸 is a set of edges connecting some pairs of
vertices. An edge connecting 𝑣𝑖 and 𝑣𝑗 is denoted by 𝑒𝑖𝑗 or (𝑣𝑖, 𝑣𝑗).

• A graph is called undirected if there is no direction assigned to any of its
edges. Otherwise, we deal with directed graphs.

• A graph is called unweighted if there is no cost associated with any of its
edges. Otherwise, we deal with weighted graphs.

• A path in 𝐺 between vertices 𝑣𝑖1
 and 𝑣𝑖𝑛

 is a sequence of vertices and edges
of the form 𝑣𝑖1

𝑒𝑖1𝑖2𝑣𝑖2
…𝑣𝑖𝑛−1 𝑒𝑖𝑛−1𝑖𝑛𝑣𝑖𝑛

.

• A loop in 𝐺 is a path where 𝑣𝑖1

 and 𝑣𝑖𝑛
 coincide.

• A subgraph 𝐺´ = (𝑉´, 𝐸´) of 𝐺 = 𝑉, 𝐸 is a graph with 𝑉´ ⊆ 𝑉 and 𝐸´ ⊆ 𝐸1,

where 𝐸1 is a subset of 𝐸 containing edges that connect vertices of 𝑉´. Every
graph is a subgraph to itself.

Agglomerative graph theory based Clustering Algorithms
Some basic definitions from graph theory (cont.):

• A connected subgraph 𝐺´ = (𝑉´, 𝐸´) is a subgraph where there exists at least

one path connecting any pair of vertices in 𝑉´.

• A complete subgraph 𝐺´ = (𝑉´, 𝐸’) is a subgraph where for any pair of
vertices in 𝑉’ there exists an edge in 𝐸´ connecting them.

• A maximally connected subgraph of 𝐺 is a connected subgraph 𝐺´ of 𝐺 that
contains as many vertices of 𝐺 as possible.

• A maximally complete subgraph of 𝐺 is a complete subgraph 𝐺´ of 𝐺 that
contains as many vertices of 𝐺 as possible.

Examples for the above, are shown in the following figure.

Agglomerative graph theory based Clustering Algorithms
Some basic definitions from graph theory (cont.):

Agglomerative graph theory based Clustering Algorithms
NOTE: In the framework of clustering, each vertex of a graph corresponds to a
feature vector.

Useful tools for the algorithms based on graph theory are the threshold graph
and the proximity graph.

•A threshold graph 𝐺(𝑎)
is an undirected, unweighted graph with 𝑁 nodes, each one corresponding

to a vector of 𝑋.
No self-loops or multiple edges between any two vertices are encountered.
The set of edges of 𝐺(𝑎) contains those edges (𝑣𝑖 , 𝑣𝑗) for which the

distance 𝑑(𝒙𝑖, 𝒙𝑗) between the vectors corresponding to 𝑣𝑖 and 𝑣𝑗 is less
than or equal to 𝑎.

•A proximity graph 𝐺𝑝(𝑎) is a threshold graph 𝐺(𝑎), all of whose edges
(𝑣𝑖 , 𝑣𝑗) are weighted with the proximity measure 𝑑(𝒙𝑖, 𝒙𝑗).

Agglomerative graph theory based Clustering Algorithms

(a) The threshold graph 𝐺(3), (b) the proximity (dissimilarity) graph 𝐺𝑝(3), (c)

the threshold graph 𝐺(5), (d) the dissimilarity graph 𝐺𝑝(5), for the

dissimilarity matrix 𝑃(𝑋) shown above.

























01.15.27.64.7

1.104.17.54.6

5.24.102.45

7.67.52.401

4.74.6510

)(XP

Agglomerative graph theory based Clustering Algorithms
More definitions:
• In this framework, we consider graphs 𝐺, of 𝑁 nodes, where each node

corresponds to a vector of 𝑋.
• Valid clusters are connected components of G that satisfy an additional

graph property ℎ(𝑘).

 Typical graph properties for a connected component (subgraph) 𝐺´ of 𝐺 are:

•Node connectivity: The largest integer 𝑘 such that all pairs of nodes of 𝐺´
are joined by at least 𝑘 paths having no nodes in common.

•Edge connectivity: The largest integer 𝑘 such that all pairs of nodes are
joined by at least 𝑘 paths having no edges in common.

•Node degree: The largest integer 𝑘 such that each node has at least 𝑘
incident edges.

Agglomerative graph theory based Clustering Algorithms

Node connectivity :

Edge connectivity :

Node degree : 3

3

3

Agglomerative graph theory based Clustering Algorithms
 Proximity function in the graph theory framework

• The proximity function 𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠 between two clusters is defined in

terms of
a proximity measure between vectors (nodes)
certain constraints imposed by property ℎ(𝑘) on the subgraphs that are

formed.

 In mathematical language:

𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠 =

𝑚𝑖𝑛
𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒 G(a) 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝐶𝑟 ∪ 𝐶𝑠 is

(a) connected and either (b1) has the property h(k) or (b2) is complete
𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

or

𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠 equals to the smallest possible value a such that in the G(a)

subgraph defined by 𝐶𝑟 ∪ 𝐶𝑠 is (a) connected and either (b1) has the

property ℎ(𝑘) or (b2) is complete.

(4)

Agglomerative graph theory based Clustering Algorithms
Example: For the dissimilarity
matrix,

all possible 𝐺(𝑎) graphs are shown
next.
Assuming that ℎ(2) is the node
connectivity property, it is

𝑔ℎ 𝑥1}, {𝑥2 = 1.2 (complete)
𝑔ℎ 𝑥1}, {𝑥5 = 4.2 (complete)
𝑔ℎ 𝑥1, 𝑥2}, {𝑥3 = 3 (compl.-ℎ(2))
𝑔ℎ 𝑥1, 𝑥2}, {𝑥3, 𝑥5 = 3.9 (ℎ(2))

























05.10.29.32.4

5.108.12.37.3

0.28.105.23

9.32.35.202.1

2.47.332.10

P

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(1.5)

G(2.5)

G(3.7)

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(0)

G(1.8)

G(3.0)

G(3.9)

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(1.2)

G(2.0)

G(3.2)

G(4.2)

Generalized Agglomerative Scheme (GAS)

 Initialization
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}}
• 𝑡 = 0

 Repeat
• 𝑡 = 𝑡 + 1

• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that

 𝑔ℎ(𝑘) 𝐶𝑖 , 𝐶𝑗 =
𝑚𝑖𝑛 𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠𝑟,𝑠 , 𝑓𝑜𝑟 𝑑𝑖𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑚𝑎𝑥 𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠𝑟,𝑠 , 𝑓𝑜𝑟 𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗 and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞}

 Until all vectors lie in a single cluster.

Agglomerative graph theory based Clustering Algorithms
Graph theory-based algorithmic scheme (GTAS): It is the GAS in the context
of graph theory. In the context of GTAS, the definition of the proximity
between the clusters is based on graph theory concepts. Thus

Agglomerative graph theory based Clustering Algorithms
• Single link (SL) algorithm. Here
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠
= 𝑚𝑖𝑛 𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒 G(a) 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝐶𝑟 ∪ 𝐶𝑠 is 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

≡ 𝑚𝑖𝑛 𝑑 𝒙, 𝒚𝒙∈𝐶𝑟,𝒚∈𝐶𝑠

 (why?)

• Remarks:
No property ℎ(𝑘) or completeness is required.
The SL stemming from the graph theory is exactly the same with the SL

stemming from the matrix theory.

• Complete link (CL) algorithm. Here
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠
= 𝑚𝑖𝑛 𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒 G(a) 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝐶𝑟 ∪ 𝐶𝑠 is 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

≡ 𝑚𝑎𝑥 𝑑 𝒙, 𝒚𝒙∈𝐶𝑟,𝒚∈𝐶𝑠

 (why?)

• Remarks:
No property ℎ(𝑘) is required.
The CL stemming from graph theory is exactly the same with the CL

stemming from matrix theory.

Agglomerative graph theory based Clustering Algorithms
Example: For the
dissimilarity matrix,

SL and CL produce the same
hierarchy of clusterings at
the levels given in the table.

























05.10.29.32.4

5.108.12.37.3

0.28.105.23

9.32.35.202.1

2.47.332.10

P

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(1.5)

G(2.5)

G(3.7)

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(0)

G(1.8)

G(3.0)

G(3.9)

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(1.2)

G(2.0)

G(3.2)

G(4.2)

Clustering SL CL

0 = {{𝒙1}, {𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}} 0 0

 1 = {{𝒙1, 𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}} 1.2 1.2

 2 = 𝒙1, 𝒙2 , 𝒙3 , 𝒙4, 𝒙5 1.5 1.5

 3 = 𝒙1, 𝒙2 , 𝒙3, 𝒙4, 𝒙5 1.8 2.0

 4 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5 2.5 4.2

Agglomerative graph theory based Clustering Algorithms
 Remarks:
• SL poses the weakest possible graph condition (connectivity) for the

formation of a cluster, while CL poses the strongest possible graph condition
(completeness) for the formation of a cluster.

• A variety of graph theory-based algorithms, that lie between these two
extremes result for various choices of ℎ(𝑘).
For 𝑘 = 1 all these algorithms collapse to the single link algorithm.
As 𝑘 increases, the resulting subgraphs approach completeness.

Clustering algorithms based on the Minimum Spanning Tree (MST)
Definitions:
Spanning Tree: It is a connected graph (containing all the vertices of the
graph), with no loops (only one path connects any two vertices).
Weight of a Spanning Tree: The sum of the weights of its edges (provided a
weight has been assigned to each one of them).
Minimum Spanning Tree (MST): A spanning tree with the smallest weight
among the spanning trees connecting all the vertices of the graph.

Agglomerative graph theory based Clustering Algorithms
 Remarks:
• The MST has 𝑁 − 1 edges.
• When all the weights are different from each other, the MST is unique.

Otherwise, it may not be unique.

 Employing the GTAS and substituting 𝑔ℎ(𝑘)

(𝐶𝑟, 𝐶𝑠) with

𝑔(𝐶𝑟, 𝐶𝑠) = 𝑚𝑖𝑛𝑖𝑗{𝑤𝑖𝑗: 𝒙𝑖𝐶𝑟, 𝒙𝑗𝐶𝑠}

 where 𝑤𝑖𝑗 = 𝑑(𝒙𝑖 , 𝒙𝑗), we can determine the MST.

 On the other hand, a hierarchy of clusterings may be obtained by the MST

as follows:
 The clustering 𝑡 at the 𝑡 −th level is the set of connected components of

the MST, when only its 𝑡 smallest weights are considered.

Remark:
The hierarchy produced by MST is the same with that produced by the single
link algorithm, at least when all 𝑤𝑖𝑗’s are different from each other.

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

Example:

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

Example:

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

Example:

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.
•Retaining the edges with the t smallest weights, the resulting connected components
define the clusters of the t clustering.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

Agglomerative graph theory based Clustering Algorithms
 Ties in the proximity matrix
• SL produces the same hierarchy

of clusterings, independently of
the order of consideration of
edges with equal weights.

• CL may produce different
hierarchies, depending on the
order of consideration of edges
with equal weights.

• The other graph theory-based
algorithms behave as the CL.

• The same trend appears in the
matrix-based algorithms. In this
case, ties may appear at a later
stage of the algorithm.
Example 6: Let

Note that 𝑃(2,3) = 𝑃(3,4).

























01275

10386

23039

78304

56940

P

(CL(a)) (CL(b))

Agglomerative Clustering Algorithms: Cophenetic matrix
This is an alternative way to represent a hierarchical clustering.

Cophenetic distance between 𝒙𝑖 and 𝒙𝑗, 𝑑𝐶 𝒙𝑖 , 𝒙𝑗 : The proximity

level, where 𝒙𝑖 and 𝒙𝑗 are found in the same cluster for the first time

(distance metric).
Cophenetic matrix: An 𝑁 × 𝑁 matrix containing the cophenetic
distances associated with all pairs of data vectors.
Example: Consider the following dissimilarity matrix (Euclidean
distance)

 The associated cophenetic matrix is

𝐷𝐶 =

0 1 2
1 0 2
2 2 0

16 16
16 16
16 16

16 16 16
16 16 16

0 1.5
1.5 0

























05.1253637

5.10162526

2516032

3625301

3726210

0P

The results of the single link
algorithm are (in parenthesis the
proximity level where the
associated clustering has been
formed):

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎)

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏)

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓)

3={{x1, x2, x3}, {x4, x5}}, (𝟐)

4={{x1, x2, x3, x4, x5}}, (𝟏𝟔)

Divisive Clustering Algorithms
 Let 𝑔(𝐶𝑖 , 𝐶𝑗) be a dissimilarity function between two clusters.

Let 𝐶𝑡𝑗 denote the 𝑗-th cluster of the 𝑡-th clustering 𝑡, 𝑡 = 0,… ,𝑁 − 1,

𝑗 = 1,… , 𝑡 + 1.
Generalized Divisive Scheme (GDS)
• Initialization
 Choose 0 = {𝑋} as the initial clustering.
 𝑡 = 0

• Repeat
 𝑡 = 𝑡 + 1
 For 𝑖 = 1 to 𝑡

o Among all possible pairs of clusters (𝐶𝑟 , 𝐶𝑠) that form a partition of
𝐶𝑡−1,𝑖, find the pair (𝐶1

𝑡−1,𝑖 , 𝐶
2
𝑡−1,𝑖) that gives the max. value for 𝑔.

 End for
 From the 𝑡 pairs defined in the previous step, choose the one that

maximizes 𝑔. Suppose that this is (𝐶1
𝑡−1,𝑗, 𝐶

2
𝑡−1,𝑗).

 The new clustering is:
 𝑡 = (𝑡−1 − {𝐶𝑡−1,𝑗}){𝐶1

𝑡−1,𝑗, 𝐶
2
𝑡−1,𝑗}

 Relabel the clusters of 𝑡.
• Until each vector lies in a single cluster.

Divisive Clustering Algorithms
Remarks:
• Different choices of 𝑔 give rise to different algorithms.

• The GDS is computationally very demanding even for small 𝑁.

• Algorithms that rule out many partitions as not “reasonable”, under a pre-

specified criterion, have also been proposed.

• Algorithms where the splitting of the clusters is based on all features of the
feature vectors are called polythetic algorithms. Otherwise, if the splitting
is based on a single feature at each step, the algorithms are called
monothetic algorithms.

Choice of the best number of clusters
A major issue associated with hierarchical algorithms is:
“How the clustering that best fits the data is extracted from a hierarchy of
clusterings?”
Some approaches:
 Search in the proximity dendrogram for clusters that have a large lifetime

(the difference between the proximity level at which a cluster is created
and the proximity level at which it is absorbed into a larger cluster
(however, this method involves human subjectivity)).

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7
1.4

1.8

1.5

3.1

2.2

9.1

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7
1.4

1.8

1.5

3.1

2.2

9.1

Choice of the best number of clusters
A major issue associated with hierarchical algorithms is:
“How the clustering that best fits the data is extracted from a hierarchy of
clusterings?”
Some approaches:
 Define a function ℎ(𝐶) that measures the dissimilarity between the

vectors of the same cluster 𝐶 (“self-dissimilarity”). Then, we have two
alternatives:
• Let 𝜃 be an appropriate threshold for ℎ(𝐶). Then 𝑡 is the final

clustering if there exists a cluster 𝐶 in 𝑡+1 with ℎ 𝐶 > 𝜃 (extrinsic
method).

ℎ1 𝐶 = 𝑚𝑎𝑥 𝑑 𝒙, 𝒚 , 𝒙, 𝒚 ∈ 𝐶

ℎ2 𝐶 = 𝑚𝑖𝑛 𝑑 𝒙, 𝒚 , 𝒙, 𝒚 ∈ 𝐶

• If 𝜃 = 𝜇 + 𝜆𝜎, where 𝜇 is the average distance of any two vectors of 𝑋
and 𝜎 is the associated standard deviation, then the need for specifying
an appropriate value of 𝜃 is transferred to the choice of an appropriate
value for 𝜆.

Choice of the best number of clusters
A major issue associated with hierarchical algorithms is:
“How the clustering that best fits the data is extracted from a hierarchy of
clusterings?”
Some approaches:
 Define a function ℎ(𝐶) that measures the dissimilarity between the

vectors of the same cluster 𝐶 (“self-dissimilarity”). Then, we have two
alternatives:
• The final clustering 𝑡 must satisfy the following condition:

𝑑𝑠𝑠
𝑚𝑖𝑛 𝐶𝑖 , 𝐶𝑗 > 𝑚𝑎𝑥 ℎ 𝐶𝑖 , ℎ 𝐶𝑗 , ∀𝐶𝑖 , 𝐶𝑗 ∈ 𝑡

In words, in the final clustering, the dissimilarity between every pair of
clusters is larger than the “self-dissimilarity” of each one of them
(intrinsic method).

Hierarchical Algorithms for large data sets
Remark:
Since the number of operations required by GAS is greater than 𝑂 𝑁2 ,
algorithms resulting by GAS are prohibitive for very large data sets
encountered, for example, in web mining and bioinformatics. To overcome
this drawback, various hierarchical algorithms of special type have been
developed that are tailored to handle large data sets.

Typical examples are:
• The CURE algorithm.
• The ROCK algorithm.
• The Chameleon algorithm.

The CURE (Clustering Using Representatives) algorithm
 In CURE:
 Each cluster 𝐶 is represented by a set, 𝑅𝐶, of 𝑘 > 1 representatives.
 These representatives try to “capture” the “shape “ of the cluster.
 They are chosen at the “border” of the cluster and then, they are pushed

toward its mean, in order to discard the irregularities of the border.

 Determination of 𝑅𝐶:

• Select 𝒙𝐶, with the maximum distance from the mean 𝒎𝐶 of 𝐶 and set
𝑅𝐶 = {𝒙}

• For 𝑖 = 2 to min {𝑘, 𝑛𝐶} (𝑛𝐶 is the number of points in 𝐶)
 Determine 𝒚𝐶 − 𝑅𝐶 that lies farthest from the points of 𝑅𝐶 and set

 𝑅𝐶 = 𝑅𝐶{𝒚}.
• Shrink the points 𝒙𝑅𝐶 toward the mean 𝒎𝐶 in 𝐶 by a factor 𝑎 ∈ (0,1).

That is 𝒙 = (1 − 𝑎) 𝒙 + 𝑎 𝒎𝐶
,𝒙𝑅𝐶

.

 CURE is a special case of GAS (single link) where the distance between two
clusters is

 defined as: 𝑑 𝐶𝑖 , 𝐶𝑗 = 𝑚𝑖𝑛𝒙∈𝑅𝐶𝑖
,𝒚∈𝑅𝐶𝑗

𝑑(𝒙, 𝒚)

The CURE (Clustering Using Representatives) algorithm
Clustering Using REpresentatives (CURE(X))

 Initialization
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}}
• 𝑡 = 0

 Repeat
• 𝑡 = 𝑡 + 1

• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that

𝑑 𝐶𝑖 , 𝐶𝑗 = 𝑚𝑖𝑛𝑟,𝑠𝑑 𝐶𝑟 , 𝐶𝑠

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗 and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞}

• Determine 𝑅𝐶𝑞(*)

 Until all vectors lie in a single cluster.

(*) The determination of 𝑅𝐶𝑞 may be conducted:

(i) Either by performing the procedure of the previous slide taking into
account all the data points of 𝐶𝑞 (more accurate but slower approach).

(ii) Or by performing the procedure of the previous slide taking into account
the data points in 𝑅𝐶𝑖𝑅𝐶𝑗 (the union of the representatives of the

clusters that constitute 𝐶𝑞) (less accurate but faster approach).

𝑑 𝐶𝑟 , 𝐶𝑠 = 𝑚𝑖𝑛𝒙∈𝑅𝐶𝑟 ,𝒚∈𝑅𝐶𝑠
𝑑(𝒙, 𝒚)

The CURE (Clustering Using Representatives) algorithm
 Worst case time complexity for CURE: 𝑂 𝑁2 𝑙𝑜𝑔2𝑁 .
 This is prohibitive for very large data sets.
 Solution: Adoption of the random sampling technique.
 The size 𝑁´ of a sample data set 𝑋´, created from 𝑋, via random sampling,
 should be sufficiently large in order to ensure that the probability of
 missing a cluster due to sampling is low.

CURE utilizing random sampling
Identification of clusters
• Partition randomly 𝑋 into 𝑝 = 𝑁/𝑁´ sample data sets.
• For each one of the 𝑝 sample data sets.
Apply the original version of CURE, until 𝑁´/𝑞 clusters (at the most) are

formed (𝑞 is user-defined).
• Consider all the above 𝑝 ∙ (𝑁´/𝑞) clusters (at the most) and apply the

original CURE until the required number of clusters, 𝑚, is formed.
Assignment of points to clusters
• For each of the m clusters select a random sample of 𝑘 representative

points.
• Assign each point 𝒙 that is not cluster representative to the cluster that

contains the representative closest to it.

The CURE (Clustering Using Representatives) algorithm
Clustering Using Representatives- Random Sampling (CURE-RS(X))

Identification of clusters
Partition randomly X into 𝑝 = 𝑁/𝑁´ sample data sets, 𝑋1, 𝑋2, … , 𝑋𝑝.
For 𝑖 = 1 to 𝑝

• Run CURE-RS(Xi) and return the 𝑘
𝑖 clustering with 𝑁´/𝑞 clusters (at

the most (q is user-defined).
End – For
Set 𝑋’ = 𝑘

1 ∪𝑘
2 ∪⋯∪𝑘

𝑝
Run CURE(X’) and determine the most appropriate clustering 𝑚′.

Assignment of points to clusters
For each of the 𝑚 clusters of 𝑚′ select a random sample of 𝑘

representative points.
Assign each point 𝒙 that is not cluster representative to the cluster that

contains the representative closest to it.

The algorithm starts from the ′

𝑝∗
𝑁′

𝑞

(≡ ′𝑁
𝑞

)

and ends with the 𝑚′ clustering

Only the 𝑘 representatives from each cluster
are considered.

The CURE (Clustering Using Representatives) algorithm
Remarks:
• CURE is sensitive to the parameters 𝑘, 𝑁´, 𝑎. Specifically:
 k must be large enough to capture the geometry of each cluster.
𝑁´ must be higher than a certain percentage of N (typically 𝑁´ ≥ 2.5% 𝑁)
For small 𝑎 CURE behaves like the single-link algorithm, while for large 𝑎 it

resembles the algorithms that use a single point representative for each
cluster.

• Worst case time complexity for CURE using random sampling: 𝑂(𝑁´2 log 𝑁´2)

• The algorithm exhibits low sensitivity to outliers within the clusters.
• A few stages before its termination, CURE checks for clusters containing very

few data points and removes them (since they are likely to be outliers).
• If 𝑁´/𝑞 is sufficiently large, compared to 𝑚, it is expected that the partition

of X will not affect significantly the final clustering obtained by CURE.
• CURE can, in principle, reveal clusters of non-spherical or elongated shapes,

as well as clusters of wide variance in size.
• CURE can be implemented efficiently using the heap and the k-d tree data

structures.

