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Agglomerative matrix theory based Clustering Algorithms 
Monotonicity and crossover: 
 For the following dissimilarity matrix 
 
 
 
 
  

 

the dissimilarity dendrograms produced by single link, 
complete link and UPGMC (the same result is 
produced if WPGMC is employed) are:  
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{𝒙1, 𝒙2, 𝒙3, 𝒙4} is 
formed at lower 
dissimilarity level 
than {𝒙1, 𝒙2} 
(crossover) 



Agglomerative matrix theory based Clustering Algorithms 
Example (in detail): The WPGMC case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑𝑞𝑠 =

1

2
𝑑𝑖𝑠 +

1

2
𝑑𝑗𝑠 −

1

4
𝑑𝑖𝑗) 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} 

{𝒙1} 0 1.8 2.4 2.3 

{𝒙2} 1.8 0 2.5 2.7 

{𝒙3} 2.4 2.5 0 1.2 

{𝒙4} 2.3 2.7 1.2 0 

𝑃0: 

𝑃1: 

𝑑 3,4 ,1 = 1
2𝑑3,1 +

1
2𝑑4,1 −

1
4𝑑3,4 

= 1
22.4 + 1

22.3 − 1
41.2 = 2.05 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} 

{𝒙1} 0 1.8 2.4 2.3 

{𝒙2} 1.8 0 2.5 2.7 

{𝒙3} 2.4 2.5 0 1.2 

{𝒙4} 2.3 2.7 1.2 0 

𝑑 3,4 ,2 = 1
2𝑑3,2 +

1
2𝑑4,2 −

1
4𝑑3,4 

= 1
22.5 + 1

22.7 − 1
41.2 = 2.3 

{𝒙1} {𝒙2} {𝒙3, 𝒙4} 

{𝒙1} 0 1.8 2.05 

{𝒙2} 1.8 0 2.3 

{𝒙3, 𝑥𝟒} 2.05 2.3 0 

{𝒙1} {𝒙2} {𝒙3, 𝒙4} 

{𝒙1} 0 1.8 2.05 

{𝒙2} 1.8 0 2.3 

{𝒙3, 𝑥𝟒} 2.05 2.3 0 
𝑑 1,2 , 3,4 = 1

2𝑑1,(3,4) +
1
2𝑑2,(3,4) −

1
4𝑑1,2 

= 1
22.05 + 1

22.3 − 1
41.8 = 1.275 

𝑃2: 
{𝒙1, 𝒙𝟐} {𝒙3, 𝒙4} 

{𝒙1, 𝒙𝟐} 0 1.275 

{𝒙3, 𝑥𝟒} 1.275 0 {𝒙1, 𝒙2, 𝒙3, 𝒙4} 

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4} 0 
𝑃3: 

0={{x1},{x2},{x3},{x4}}, (𝟎) 

1={{x1},{x2},{x3,x4}}, (𝟏. 𝟐) 

2={{x1,x2},{x3,x4}}, (𝟏. 𝟖) 

3={{x1,x2,x3,x4}}, (𝟏. 𝟐𝟕𝟓 ‼) 



Agglomerative matrix theory based Clustering Algorithms 
  Monotonicity condition: 
   If clusters 𝐶𝑖 and 𝐶𝑗 are selected to be merged in cluster 𝐶𝑞, at the tth   

 level of the hierarchy, the condition 
    𝑑(𝐶𝑞, 𝐶𝑘)  𝑑(𝐶𝑖, 𝐶𝑗) 

  must hold for all 𝐶𝑘, 𝑘 ≠  𝑖, 𝑗 , 𝑞. 
 
   In other words, the monotonicity condition implies that a clustering is 

formed at higher dissimilarity level than any of its components. 
 
Remarks: 
• Monotonicity is a property that is exclusively related to the clustering 

algorithm and not to the (initial) proximity matrix. 
 

• An algorithm that does not satisfy the monotonicity condition, does not 
necessarily produce dendrograms with crossovers. 
 

• Single link, complete link, UPGMA, WPGMA and the Ward’s algorithm satisfy 
the monotonicity condition, while UPGMC and WPGMC do not satisfy it. 



Agglomerative matrix theory based Clustering Algorithms 
Complexity issues: 
• GAS requires, in general, 𝑂(𝑁3) operations. 

 
• More efficient implementations require 𝑂(𝑁2 log𝑁) computational time. 

 
• For a class of widely used algorithms, implementations that require 𝑂(𝑁2) 

computational time and 𝑂(𝑁2) or 𝑂(𝑁) storage have also been proposed. 
 

• Parallel implementations on SIMD machines have also been considered. 



Agglomerative graph theory based Clustering Algorithms 
Some basic definitions from graph theory:  
 
• A graph, 𝐺, is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣𝑖 , 𝑖 =
1,… ,𝑁} is a set of vertices and 𝐸 is a set of edges connecting some pairs of 
vertices. An edge connecting 𝑣𝑖 and 𝑣𝑗 is denoted by 𝑒𝑖𝑗 or (𝑣𝑖, 𝑣𝑗). 
 

• A graph is called undirected if there is no direction assigned to any of its 
edges. Otherwise, we deal with directed graphs. 
 

• A graph is called unweighted if there is  no cost associated with any of its 
edges. Otherwise, we deal with weighted graphs. 
 

• A path in  𝐺 between vertices 𝑣𝑖1
 and 𝑣𝑖𝑛 

 is a sequence of vertices and edges 
of the form 𝑣𝑖1

 

𝑒𝑖1𝑖2𝑣𝑖2
…𝑣𝑖𝑛−1 𝑒𝑖𝑛−1𝑖𝑛𝑣𝑖𝑛

. 

 
• A loop in 𝐺 is a path where 𝑣𝑖1

 and 𝑣𝑖𝑛 
 coincide. 

 
• A subgraph 𝐺´ = (𝑉´, 𝐸´) of 𝐺 = 𝑉, 𝐸  is a graph with 𝑉´ ⊆ 𝑉 and 𝐸´ ⊆ 𝐸1, 

where 𝐸1 is a subset of 𝐸 containing edges that connect vertices of 𝑉´. Every 
graph is a subgraph to itself. 



Agglomerative graph theory based Clustering Algorithms 
Some basic definitions from graph theory (cont.):  

 
• A connected subgraph 𝐺´ = (𝑉´, 𝐸´) is a subgraph where there exists at least 

one path connecting any pair of vertices in 𝑉´. 
 

• A complete subgraph 𝐺´ = (𝑉´, 𝐸’) is a subgraph where for any pair of 
vertices in 𝑉’ there exists an edge in 𝐸´ connecting them. 
 

• A maximally connected subgraph of 𝐺 is a connected subgraph 𝐺´ of 𝐺 that 
contains as many vertices of 𝐺 as possible. 
 

• A maximally complete subgraph of 𝐺 is a complete subgraph 𝐺´ of 𝐺 that 
contains as many vertices of 𝐺 as possible. 

 
Examples for the above, are shown in the following figure. 

 



Agglomerative graph theory based Clustering Algorithms 
Some basic definitions from graph theory (cont.):  



Agglomerative graph theory based Clustering Algorithms 
NOTE: In the framework of clustering, each vertex of a graph corresponds to a 
feature vector. 
 
Useful tools for the algorithms based on graph theory are the threshold graph 
and the proximity graph. 
 
•A threshold graph 𝐺(𝑎)  
is an undirected, unweighted graph with 𝑁 nodes, each one corresponding 

to a vector of 𝑋.  
No self-loops or multiple edges  between any two vertices are encountered.  
The set of edges of 𝐺(𝑎) contains those edges (𝑣𝑖 , 𝑣𝑗) for which the 

distance 𝑑(𝒙𝑖, 𝒙𝑗) between the vectors corresponding to 𝑣𝑖 and 𝑣𝑗 is less 
than or equal to 𝑎. 
 

•A proximity graph 𝐺𝑝(𝑎) is a threshold graph 𝐺(𝑎), all of whose edges 
(𝑣𝑖 , 𝑣𝑗) are weighted with the proximity measure 𝑑(𝒙𝑖, 𝒙𝑗). 



Agglomerative graph theory based Clustering Algorithms 

(a) The threshold graph 𝐺(3), (b) the proximity (dissimilarity) graph 𝐺𝑝(3), (c ) 

the threshold graph 𝐺(5), (d) the dissimilarity graph 𝐺𝑝(5), for the 

dissimilarity matrix 𝑃(𝑋) shown above. 
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Agglomerative graph theory based Clustering Algorithms 
More definitions: 
• In this framework, we consider graphs 𝐺, of 𝑁 nodes, where each node 

corresponds to a vector of 𝑋. 
• Valid clusters are connected components of G that satisfy an additional 

graph property ℎ(𝑘). 
 
  Typical graph properties for a connected component (subgraph) 𝐺´ of 𝐺 are: 
 

•Node connectivity: The largest integer 𝑘 such that all pairs of nodes of 𝐺´ 
are joined by at least 𝑘 paths having no nodes in common. 

 
•Edge connectivity: The largest integer 𝑘 such that all pairs of nodes are 
joined by at least 𝑘 paths having no edges in common. 

 
•Node degree: The largest integer 𝑘 such that each node has at least 𝑘 
incident edges. 



Agglomerative graph theory based Clustering Algorithms 

Node connectivity :  

Edge connectivity :  

Node degree          :  3

3

3



Agglomerative graph theory based Clustering Algorithms 
 Proximity function in the graph theory framework 

• The proximity function 𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠  between two clusters is defined in 

terms of 
a proximity measure between vectors (nodes)  
certain constraints imposed by property ℎ(𝑘)  on the subgraphs that are 

formed. 
 
   In mathematical language: 
  
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠 =

𝑚𝑖𝑛
𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒 G(a) 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝐶𝑟 ∪ 𝐶𝑠 is 

(a) connected and either (b1) has the property h(k) or (b2) is complete
𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

 

 
or 
 

𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠  equals to the smallest possible value a such that in the G(a) 

subgraph defined by 𝐶𝑟 ∪ 𝐶𝑠 is (a) connected and either (b1) has the 

property ℎ(𝑘) or (b2) is complete. 

(4) 



Agglomerative graph theory based Clustering Algorithms 
Example: For the dissimilarity 
matrix,  
 
 
 
 
 
 
all possible 𝐺(𝑎) graphs are shown 
next. 
Assuming that ℎ(2) is the node 
connectivity property, it is 
 
𝑔ℎ 𝑥1}, {𝑥2 = 1.2 (complete) 
𝑔ℎ 𝑥1}, {𝑥5 = 4.2 (complete) 
𝑔ℎ 𝑥1, 𝑥2}, {𝑥3 = 3 (compl.-ℎ(2) ) 
𝑔ℎ 𝑥1, 𝑥2}, {𝑥3, 𝑥5 = 3.9 (ℎ(2)) 


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G(3.0)

G(3.9)

1
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3

5
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3
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2

3

5

4

G(1.2)

G(2.0)

G(3.2)

G(4.2)



Generalized Agglomerative Scheme (GAS) 

 Initialization 
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}} 
•  𝑡 = 0 

 Repeat 
•  𝑡 = 𝑡 + 1 

• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that 

      𝑔ℎ(𝑘) 𝐶𝑖 , 𝐶𝑗 =  
𝑚𝑖𝑛  𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠𝑟,𝑠 , 𝑓𝑜𝑟 𝑑𝑖𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑚𝑎𝑥  𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠𝑟,𝑠 , 𝑓𝑜𝑟 𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
 

 

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗 and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞} 

 

 Until all vectors lie in a single cluster. 

Agglomerative graph theory based Clustering Algorithms 
Graph theory-based algorithmic scheme (GTAS): It is the GAS in the context 
of graph theory. In the context of GTAS,  the definition of the proximity 
between the clusters is based on graph theory concepts. Thus 



Agglomerative graph theory based Clustering Algorithms 
• Single link (SL) algorithm. Here 
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠
= 𝑚𝑖𝑛 𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒 G(a) 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝐶𝑟 ∪ 𝐶𝑠 is 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

 
≡ 𝑚𝑖𝑛 𝑑 𝒙, 𝒚𝒙∈𝐶𝑟,𝒚∈𝐶𝑠

 (why?) 

  
• Remarks: 
No property ℎ(𝑘) or completeness is required. 
The SL stemming from the graph theory is exactly the same with the SL 

stemming from the matrix theory. 
 
• Complete link (CL) algorithm. Here 
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠
= 𝑚𝑖𝑛 𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒 G(a) 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝐶𝑟 ∪ 𝐶𝑠 is 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

 
≡ 𝑚𝑎𝑥 𝑑 𝒙, 𝒚𝒙∈𝐶𝑟,𝒚∈𝐶𝑠

 (why?) 

 
• Remarks: 
No property ℎ(𝑘) is required. 
The CL stemming from graph theory is exactly the same with the CL 

stemming from matrix theory. 



Agglomerative graph theory based Clustering Algorithms 
Example: For the 
dissimilarity matrix,  
 
 
 
 
 
 
SL and CL produce the same 
hierarchy of clusterings at 
the levels given in the table. 


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G(3.2)

G(4.2)

Clustering SL CL 

0 = {{𝒙1}, {𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}}  0 0 

 1 = {{𝒙1, 𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}} 1.2 1.2 

 2 = 𝒙1, 𝒙2 , 𝒙3 , 𝒙4, 𝒙5  1.5 1.5 

 3 = 𝒙1, 𝒙2 , 𝒙3, 𝒙4, 𝒙5  1.8 2.0 

 4 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5  2.5 4.2 



Agglomerative graph theory based Clustering Algorithms 
 Remarks: 
• SL poses the weakest possible graph condition (connectivity) for the 

formation of a cluster, while CL poses the strongest possible graph condition 
(completeness) for the formation of a cluster.  

• A variety of graph theory-based algorithms, that lie between these two 
extremes result for various choices of ℎ(𝑘). 
For 𝑘 = 1 all these algorithms collapse to the single link algorithm. 
As 𝑘 increases, the resulting subgraphs approach completeness. 

 
Clustering algorithms based on the Minimum Spanning Tree (MST) 
Definitions: 
Spanning Tree: It is a connected graph (containing all the vertices of the 
graph), with no loops (only one path connects any two vertices). 
Weight of a Spanning Tree: The sum of the weights of its edges (provided a 
weight has been assigned to each one of them). 
Minimum Spanning Tree (MST): A spanning tree with the smallest weight 
among the spanning trees connecting all the vertices of the graph. 



Agglomerative graph theory based Clustering Algorithms 
 Remarks: 
• The MST has 𝑁 − 1 edges. 
• When all the weights are different from each other, the MST is unique. 

Otherwise, it may not be unique. 
 
 Employing the GTAS and substituting 𝑔ℎ(𝑘)  

(𝐶𝑟, 𝐶𝑠) with  

 
𝑔(𝐶𝑟, 𝐶𝑠) = 𝑚𝑖𝑛𝑖𝑗{𝑤𝑖𝑗:  𝒙𝑖𝐶𝑟, 𝒙𝑗𝐶𝑠} 

      where 𝑤𝑖𝑗 = 𝑑(𝒙𝑖 , 𝒙𝑗), we can determine the MST. 

 
 On the other hand, a hierarchy of clusterings may be obtained by the MST 

as follows:  
    The clustering 𝑡 at the 𝑡 −th level is the set of connected components of 

the MST, when only its 𝑡 smallest weights are considered. 
 
Remark: 
The hierarchy produced by MST is the same with that produced by the single 
link algorithm, at least when all 𝑤𝑖𝑗’s are different from each other. 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph. 

Minimum Spanning Tree  (MST) 

Agglomerative graph theory based Clustering Algorithms 

Example: 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph. 

Minimum Spanning Tree  (MST) 

Agglomerative graph theory based Clustering Algorithms 

Example: 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph. 

Minimum Spanning Tree  (MST) 

Agglomerative graph theory based Clustering Algorithms 

Example: 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph. 

Minimum Spanning Tree  (MST) 

Agglomerative graph theory based Clustering Algorithms 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph. 

Minimum Spanning Tree  (MST) 

Agglomerative graph theory based Clustering Algorithms 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph. 
•Retaining the edges with the t smallest weights, the resulting connected components 
define the clusters of the t clustering. 

Minimum Spanning Tree  (MST) 

Agglomerative graph theory based Clustering Algorithms 



Agglomerative graph theory based Clustering Algorithms 
 Ties in the proximity matrix 
• SL produces the same hierarchy 

of clusterings, independently of 
the order of consideration of 
edges with equal weights.  

• CL may produce different 
hierarchies, depending on the 
order of consideration of edges 
with equal weights. 

• The other graph theory-based 
algorithms behave as the CL. 

• The same trend appears in the 
matrix-based algorithms. In this 
case, ties may appear at a later 
stage of the algorithm. 
Example 6: Let 
 
 
 
 
 
 
Note that 𝑃(2,3) = 𝑃(3,4). 





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






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





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01275

10386

23039
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Agglomerative Clustering Algorithms: Cophenetic matrix 
This is an alternative way to represent a hierarchical clustering. 

Cophenetic distance between 𝒙𝑖  and 𝒙𝑗, 𝑑𝐶 𝒙𝑖 , 𝒙𝑗 : The proximity 

level, where 𝒙𝑖  and 𝒙𝑗  are found in the same cluster for the first time 

(distance metric). 
Cophenetic matrix: An 𝑁 × 𝑁 matrix containing the cophenetic 
distances associated with all pairs of data vectors. 
Example: Consider the following dissimilarity matrix (Euclidean 
distance) 
 
 
 
 
 The associated cophenetic matrix is 

𝐷𝐶 =

0 1 2
1 0 2
2 2 0

16 16
16 16
16 16

16 16 16
16 16 16

0 1.5
1.5 0
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The results of the single link 
algorithm are (in parenthesis the 
proximity level where the 
associated clustering has been 
formed): 

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎) 

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏) 

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓) 

3={{x1, x2, x3}, {x4, x5}}, (𝟐) 

4={{x1, x2, x3, x4, x5}}, (𝟏𝟔) 



Divisive Clustering Algorithms 
 Let 𝑔(𝐶𝑖 , 𝐶𝑗) be a dissimilarity function between two clusters. 

Let 𝐶𝑡𝑗  denote the 𝑗-th cluster of the 𝑡-th clustering 𝑡, 𝑡 = 0,… ,𝑁 − 1, 

𝑗 = 1,… , 𝑡 + 1. 
Generalized Divisive Scheme (GDS) 
• Initialization 
 Choose 0 = {𝑋} as the initial clustering. 
 𝑡 = 0 

• Repeat 
 𝑡 = 𝑡 + 1 
 For 𝑖 = 1 to 𝑡 

o Among all possible pairs of clusters (𝐶𝑟 , 𝐶𝑠) that form a partition of 
𝐶𝑡−1,𝑖, find the pair (𝐶1

𝑡−1,𝑖 , 𝐶
2
𝑡−1,𝑖) that gives the max. value for 𝑔. 

 End for 
 From the 𝑡 pairs defined in the previous step, choose the one that 

maximizes 𝑔. Suppose that this is (𝐶1
𝑡−1,𝑗, 𝐶

2
𝑡−1,𝑗). 

 The new clustering is: 
                           𝑡 = (𝑡−1 − {𝐶𝑡−1,𝑗}){𝐶1

𝑡−1,𝑗, 𝐶
2
𝑡−1,𝑗} 

 Relabel the clusters of 𝑡. 
• Until each vector lies in a single cluster. 

 



Divisive Clustering Algorithms 
Remarks: 
• Different choices of 𝑔 give rise to different algorithms. 

 
• The GDS is computationally very demanding even for small 𝑁. 

 
• Algorithms that rule out many partitions as not “reasonable”, under a pre-

specified criterion, have also been proposed. 
 

• Algorithms where the splitting of the clusters is based on all features of the 
feature vectors are called polythetic algorithms. Otherwise, if the splitting 
is based on a single feature at each step, the algorithms are called 
monothetic algorithms. 



Choice of the best number of clusters 
A major issue associated with hierarchical algorithms is: 
“How the clustering that best fits the data is extracted from a hierarchy of 
clusterings?” 
Some approaches: 
 Search in the proximity dendrogram for clusters that have a large lifetime 

(the difference between the proximity level at which a cluster is created 
and the proximity level at which it is absorbed into a larger cluster 
(however, this method involves human subjectivity)). 
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Choice of the best number of clusters 
A major issue associated with hierarchical algorithms is: 
“How the clustering that best fits the data is extracted from a hierarchy of 
clusterings?” 
Some approaches: 
 Define a function ℎ(𝐶) that measures the dissimilarity between the 

vectors of the same cluster 𝐶 (“self-dissimilarity”). Then, we have two 
alternatives:  
• Let 𝜃  be an appropriate threshold for ℎ(𝐶). Then 𝑡 is the final 

clustering if there exists a cluster 𝐶 in 𝑡+1 with ℎ 𝐶 > 𝜃 (extrinsic 
method).  

ℎ1 𝐶 = 𝑚𝑎𝑥 𝑑 𝒙, 𝒚 , 𝒙, 𝒚 ∈ 𝐶  

ℎ2 𝐶 = 𝑚𝑖𝑛 𝑑 𝒙, 𝒚 , 𝒙, 𝒚 ∈ 𝐶  

• If 𝜃 = 𝜇 + 𝜆𝜎, where 𝜇 is the average distance of any two vectors of 𝑋 
and 𝜎 is the associated standard deviation, then the need for specifying 
an appropriate value of 𝜃 is transferred to the choice of an appropriate 
value for 𝜆. 



Choice of the best number of clusters 
A major issue associated with hierarchical algorithms is: 
“How the clustering that best fits the data is extracted from a hierarchy of 
clusterings?” 
Some approaches: 
 Define a function ℎ(𝐶) that measures the dissimilarity between the 

vectors of the same cluster 𝐶 (“self-dissimilarity”). Then, we have two 
alternatives:  
• The final clustering 𝑡 must satisfy the following condition: 

𝑑𝑠𝑠
𝑚𝑖𝑛 𝐶𝑖 , 𝐶𝑗 > 𝑚𝑎𝑥 ℎ 𝐶𝑖 , ℎ 𝐶𝑗 ,    ∀𝐶𝑖 , 𝐶𝑗 ∈ 𝑡  

 
In words, in the final clustering, the dissimilarity between every pair of 
clusters is larger than the “self-dissimilarity” of each one of them 
(intrinsic method). 



Hierarchical Algorithms for large data sets 
Remark:  
Since the number of operations required by GAS is greater than 𝑂 𝑁2 , 
algorithms resulting by GAS are prohibitive for very large data sets 
encountered, for example, in web mining and bioinformatics. To overcome 
this drawback, various hierarchical algorithms of special type have been 
developed that are tailored  to handle large data sets. 
     
Typical examples are: 
• The CURE algorithm. 
• The ROCK algorithm. 
• The Chameleon algorithm. 



The CURE (Clustering Using Representatives) algorithm 
 In CURE: 
 Each cluster 𝐶 is represented by a set, 𝑅𝐶, of 𝑘 > 1 representatives. 
 These representatives try to “capture” the “shape “ of the cluster. 
 They are chosen at the “border” of the cluster and then, they are pushed 

toward its mean, in order to discard the irregularities of the border. 
 
     Determination of 𝑅𝐶: 

• Select 𝒙𝐶, with the maximum distance from the mean 𝒎𝐶 of 𝐶 and set 
𝑅𝐶 = {𝒙} 

• For 𝑖 = 2 to min {𝑘, 𝑛𝐶}   (𝑛𝐶  is the number of points in 𝐶) 
 Determine 𝒚𝐶 − 𝑅𝐶  that lies farthest from the points of 𝑅𝐶  and set  

 𝑅𝐶 = 𝑅𝐶{𝒚}. 
• Shrink the points 𝒙𝑅𝐶  toward the mean 𝒎𝐶 in 𝐶 by a factor 𝑎 ∈ (0,1). 

That  is 𝒙 = (1 − 𝑎) 𝒙 + 𝑎 𝒎𝐶 
,𝒙𝑅𝐶  

. 

 

 CURE is a special case of GAS (single link) where the distance between two 
clusters is    

 defined as:             𝑑 𝐶𝑖 , 𝐶𝑗 = 𝑚𝑖𝑛𝒙∈𝑅𝐶𝑖
,𝒚∈𝑅𝐶𝑗

𝑑(𝒙, 𝒚) 



The CURE (Clustering Using Representatives) algorithm 
Clustering Using REpresentatives (CURE(X)) 

 Initialization 
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}} 
•  𝑡 = 0 

 Repeat 
•  𝑡 = 𝑡 + 1 

• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that 

𝑑 𝐶𝑖 , 𝐶𝑗 = 𝑚𝑖𝑛𝑟,𝑠𝑑 𝐶𝑟 , 𝐶𝑠  

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗 and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞} 

• Determine 𝑅𝐶𝑞(*) 

 Until all vectors lie in a single cluster. 
------------- 
(*) The determination of 𝑅𝐶𝑞  may be conducted:  

(i) Either by performing the procedure of the previous slide taking into 
account all the data points of 𝐶𝑞 (more accurate but slower approach). 

(ii) Or by performing the procedure of the previous slide taking into account 
the data points in 𝑅𝐶𝑖𝑅𝐶𝑗  (the union of the representatives of the 

clusters that constitute 𝐶𝑞) (less accurate but faster approach). 

𝑑 𝐶𝑟 , 𝐶𝑠 = 𝑚𝑖𝑛𝒙∈𝑅𝐶𝑟 ,𝒚∈𝑅𝐶𝑠
𝑑(𝒙, 𝒚) 



The CURE (Clustering Using Representatives) algorithm 
 Worst case time complexity for CURE: 𝑂 𝑁2 𝑙𝑜𝑔2𝑁 . 
 This is prohibitive for very large data sets. 
 Solution: Adoption of the random sampling technique. 
     The size 𝑁´ of a sample data set 𝑋´,  created from 𝑋, via random sampling,     
     should be sufficiently large in order to ensure that the probability of  
     missing a cluster due to sampling is low. 
 
CURE utilizing random sampling 
Identification of clusters 
• Partition randomly 𝑋 into 𝑝 = 𝑁/𝑁´ sample data sets. 
• For each one of the 𝑝 sample data sets. 
Apply the original version of CURE, until 𝑁´/𝑞 clusters (at the most) are 

formed (𝑞 is user-defined). 
• Consider all the above 𝑝 ∙ (𝑁´/𝑞) clusters (at the most) and apply the 

original CURE until the required number of clusters, 𝑚, is formed. 
Assignment of points to clusters 
• For each of the m clusters select a random sample of 𝑘 representative 

points. 
• Assign each point 𝒙 that is not cluster representative to the cluster that 

contains the representative closest to it. 



The CURE (Clustering Using Representatives) algorithm 
Clustering Using Representatives- Random Sampling (CURE-RS(X)) 
 
Identification of clusters 
Partition randomly X into 𝑝 = 𝑁/𝑁´ sample data sets, 𝑋1, 𝑋2, … , 𝑋𝑝. 
For 𝑖 = 1 to 𝑝 

• Run CURE-RS(Xi) and return the 𝑘
𝑖 clustering with 𝑁´/𝑞 clusters (at 

the most (q is user-defined). 
End – For 
Set 𝑋’ = 𝑘

1 ∪𝑘
2 ∪⋯∪𝑘

𝑝 
Run CURE(X’) and determine the most appropriate clustering 𝑚′. 
 
 
 
 
 
Assignment of points to clusters 
For each of the 𝑚 clusters of 𝑚′ select a random sample of 𝑘 

representative points. 
Assign each point 𝒙 that is not cluster representative to the cluster that 

contains the representative closest to it. 

The algorithm starts from the ′

𝑝∗
𝑁′

𝑞

(≡ ′𝑁
𝑞

) 

and ends with the 𝑚′ clustering 

Only the 𝑘 representatives from each cluster 
are considered. 



The CURE (Clustering Using Representatives) algorithm 
Remarks: 
• CURE is sensitive to the parameters 𝑘, 𝑁´, 𝑎. Specifically: 
 k must be large enough to capture the geometry of each cluster. 
𝑁´ must be higher than a certain percentage of N (typically 𝑁´ ≥ 2.5% 𝑁) 
For small 𝑎 CURE behaves like the single-link algorithm, while for large 𝑎 it 

resembles the algorithms that use a single point representative for each 
cluster. 

• Worst case time complexity for CURE using random sampling: 𝑂(𝑁´2 log 𝑁´2 ) 

• The algorithm exhibits low sensitivity to outliers within the clusters. 
• A few stages before its termination, CURE checks for clusters containing very 

few data points and removes them (since they are likely to be outliers). 
• If 𝑁´/𝑞 is sufficiently large, compared to 𝑚, it is expected that the partition 

of X will not affect significantly the final clustering obtained by CURE. 
• CURE can, in principle, reveal clusters of non-spherical or elongated shapes, 

as well as clusters of wide variance in size. 
• CURE can be implemented efficiently using the heap and the k-d tree data 

structures. 


