Clustering algorithms Konstantinos Koutroumbas

Unit 7

- CFO clustering algorithms: Discussion
- Hierarchical clustering algorithms: - the agglomerative case (based on matrix theory)

CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

 (point representatives, squared Euclidean distance)A. Generalized Hard Algorithmic Scheme (GHAS) - k-means algorithm

$$
\operatorname{minimize}_{U, \Theta} J(U, \Theta)=\sum_{i=1}^{N} \sum_{j=1}^{m} u_{i j}\left\|\boldsymbol{x}_{i}-\boldsymbol{\theta}_{j}\right\|^{2}
$$

subject to (a) $u_{i j} \in\{0,1\}, i=1, \ldots, N, j=1, \ldots, m$, and (b) $\sum_{j=1}^{m} u_{i j}=1, i=1, \ldots, N$.

The Isodata or k-Means or c-Means algorithm

- Choose arbitrary initial estimates $\boldsymbol{\theta}_{j}(0)$ for the $\boldsymbol{\theta}_{j}^{\prime} \mathrm{s}, j=1, \ldots, m$.
- $t=0$
- Repeat
- For $i=1$ to $N \%$ Determination of the partition
o For $j=1$ to m

$$
u_{i j}(t)=\left\{\begin{array}{cc}
1, & \text { if }\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\theta}_{j}(t)\right\|^{2}=\min _{q=1, \ldots, m}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\theta}_{q}(t)\right\|^{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

o End \{For-j\}

- End \{For-i\}
$-t=t+1$
- For $j=1$ to m Parameter updating
o Set

$$
\boldsymbol{\theta}_{j}(t)=\frac{\sum_{i=1}^{N} u_{i j}(t-1) \boldsymbol{x}_{i}}{\sum_{i=1}^{N} u_{i j}(t-1)}, j=1, \ldots, m
$$

- End \{For-j\}
- Until no change in $\boldsymbol{\theta}_{\boldsymbol{j}}$ ' s occurs between two successive iterations

CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

 (point representatives, squared Euclidean distance)B. Generalized Fuzzy Algorithmic Scheme (GFAS) - Fuzzy c-means algorithm

$$
\operatorname{minimize}_{U, \Theta} J(U, \Theta)=\sum_{i=1}^{N} \sum_{j=1}^{m} u_{i j}^{q}\left\|\boldsymbol{x}_{i}-\boldsymbol{\theta}_{j}\right\|^{2}
$$

subject to (a) $u_{i j} \in(0,1), i=1, \ldots, N, j=1, \ldots, m$, and (b) $\sum_{j=1}^{m} u_{i j}=1, i=1, \ldots, N$.

- Choose $\boldsymbol{\theta}_{j}(0)$ as initial estimates for $\boldsymbol{\theta}_{j}, j=1, \ldots, m$.
- $t=0$
- Repeat
- For $i=1$ to $N \%$ Determination of $u_{i j}^{\prime} S$
o For $j=1$ to m

$$
u_{i j}(t)=\frac{1}{\sum_{k=1}^{m}\left(\frac{d\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}(t)\right)}{d\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{k}(t)\right)}\right)^{\frac{1}{q-1}}}
$$

o End \{For-j\}

- End \{For-i\}
$-t=t+1$
- For $j=1$ to m \% Parameter updating
o Set

$$
\boldsymbol{\theta}_{j}(t)=\frac{\sum_{i=1}^{N} u_{i j}^{q}(t-1) \boldsymbol{x}_{i}}{\sum_{i=1}^{N} u_{i j}^{q}(t-1)}, j=1, \ldots, m
$$

- End \{For-j\}
- Until a termination criterion is met.

CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

 (point representatives, squared Euclidean distance)C. Generalized Probabilistic Algorithmic Scheme (GPrAS) - the normal pdfs case

$$
\operatorname{minimize}_{\Theta, P} J(\Theta, P)=-\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right) P_{j}\right)
$$

It is $(\mathbf{a}) P\left(j \mid \boldsymbol{x}_{i}\right) \in(0,1), i=1, \ldots, N, j=1, \ldots, m$, and (b) $\sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right)=1, i=1, \ldots, N$.

- Choose $\boldsymbol{\mu}_{j}(0), \Sigma_{j}(0), P_{j}(0)$ as initial estimates for $\boldsymbol{\mu}_{j}, \Sigma_{j}, P_{j}$, resp. $, j=1, \ldots, m$
- $t=0$
- Repeat
- For $i=1$ to $N \%$ Expectation step
o For $j=1$ to m

$$
P\left(j \mid x_{i} ; \Theta^{(t)}, P^{(t)}\right)=\frac{p\left(x_{i} \mid j ; \theta_{j}{ }^{(t)}\right) P_{j}{ }^{(t)}}{\sum_{q=1}^{m} p\left(x_{i} \mid q ; \theta_{q}^{(t)}\right) P_{q}^{(t)}} \equiv \gamma_{j i}{ }^{(t)}
$$

o End \{For-j\}

- End \{For-i\}
$-t=t+1$
- For $j=1$ to m \% Parameter updating - Maximization step o Set

$$
\boldsymbol{\mu}_{j}^{(t)}=\frac{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)} \boldsymbol{x}_{\boldsymbol{i}}}{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}}, \quad \sum_{j}{ }^{(t)}=\frac{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)^{\boldsymbol{T}}}{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}} j=1, \ldots, m
$$

$$
P_{j}^{(t)}=\frac{1}{N} \sum_{i=1}^{N} \gamma_{j i}^{(t-1)}, j=1, \ldots, m
$$

- End \{For-j\}
- Until a termination criterion is met.

CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering (point representatives, squared Euclidean distance)
Consider the GPrAS cost function

$$
J(\Theta, P)=-\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right) P_{j}\right)
$$

with

$$
p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right)=\frac{1}{(2 \pi)^{\frac{l}{2}}\left|\Sigma_{j}\right|^{\frac{1}{2}}} \exp \left(-\frac{\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right)^{T} \Sigma_{j}^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right)}{2}\right)
$$

It is $J(\Theta, P)=-\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid x_{i}\right) \ln \left(\frac{1}{\left.(2 \pi)^{\frac{l}{2}} \Sigma_{j}\right|^{\frac{1}{2}}} \exp \left(-\frac{\left(x_{i}-\mu_{j}\right)^{T} \Sigma_{j}{ }^{-1}\left(x_{i}-\mu_{j}\right)}{2}\right) P_{j}\right)=$ Term A

$$
-\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid x_{i}\right) \ln \left(\frac{1}{(2 \pi)^{\frac{l}{2}}\left|\Sigma_{j}\right|^{\frac{1}{2}}}\right)
$$

Term B

$$
+\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right)^{T} \Sigma_{j}^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right)
$$

Term C

$$
-\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid x_{i}\right) \ln P_{j}
$$

CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
Assumption 1: $\Sigma_{j}=\Sigma=$ constant, $j=1, \ldots, m$. Then

$$
\begin{aligned}
\text { Term } A & =-\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid x_{i}\right) \ln \left(\frac{1}{(2 \pi)^{\frac{l}{2}|\Sigma|^{\frac{1}{2}}}}\right) \\
& =-\ln \left(\frac{1}{(2 \pi)^{\frac{l}{2}}|\Sigma|^{\frac{1}{2}}}\right) \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid x_{i}\right)=-\ln \left(\frac{1}{(2 \pi)^{\frac{l}{2}}|\Sigma|^{\frac{1}{2}}}\right) \sum_{i=1}^{N} 1 \\
& =-N \ln \left(\frac{1}{(2 \pi)^{\frac{l}{2}}|\Sigma|^{\frac{1}{2}}}\right)=\text { constant }
\end{aligned}
$$

Assumption 2: $P_{j}=\frac{1}{m}, j=1, \ldots, m$. Then Term C
$=-\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid x_{i}\right) \ln \frac{1}{m}=-\ln \frac{1}{m} \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid x_{i}\right)=-N \ln \frac{1}{m}=$ constant

CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering (point representatives, squared Euclidean distance)
Based on the previous two results, it follows that

$$
\begin{aligned}
& \operatorname{minimize}\left(-\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right) P_{j}\right)\right) \Sigma_{j}=\Sigma \\
& \operatorname{minimize}\left(\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right)^{T} \Sigma^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right)\right)
\end{aligned}
$$

Assumption 3(a): Approximate $P\left(j \mid x_{i}\right)$ as

$$
P\left(j \mid x_{i}\right)=\left\{\begin{array}{lc}
1, & P\left(j \mid \boldsymbol{x}_{i}\right)=\max _{s=1, \ldots, m} P\left(s \mid \boldsymbol{x}_{i}\right) \\
0, & \text { otherwise }
\end{array}\left(\equiv u_{i j}\right)\right.
$$

In this case, $G \operatorname{Pr} A S \Leftrightarrow k-\operatorname{means}\left(\right.$ for $\left.\Sigma=\sigma^{2} I\right)$
WARNING: Valid ONLY from a
Assumption 3(b): Approximate $P\left(j \mid \boldsymbol{x}_{i}\right)$ as

$$
P\left(j \mid \boldsymbol{x}_{i}\right)=\frac{1}{\sum_{k=1}^{m}\left(\frac{d\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}(t)\right)}{d\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{k}(t)\right)}\right)^{\frac{1}{q-1}}}
$$

mathematical formulation point of view. NOT from a conceptual point of view.

In this case, $G \operatorname{Pr} A S \Leftrightarrow$ fuzzy $c-\operatorname{means}\left(\right.$ for $\left.\Sigma=\sigma^{2} I\right)$

CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering (point representatives, squared Euclidean distance)

Remarks:

The hard, fuzzy and probabilistic CFO clustering algorithms (with point representatives and squared Euclidean distance) :

- are partition algorithms.
- they share the "sum-to-one" constraint.
- they can be related to each other (due to the "sum-to-one" constraint).

The possibilistic CFO clustering algorithms (point representatives and squared Euclidean distance) :

- are mode seeking algorithms
- no "sum-to-one" constraint is associated with them
- they can not be related to the hard, fuzzy and probabilistic CFO clustering algorithms (due to the absence of the sum-to-one constraint).

CFO clustering algorithms: Final remarks (2)

The role of q in the fuzzy clustering
Consider the minimization problem for fuzzy clustering

$$
\operatorname{minimize}_{U, \Theta} J(U, \Theta)=\sum_{i=1}^{N} \sum_{j=1}^{m} u_{i j}^{q} d_{i j}
$$

subject to (a) $u_{i j} \in(0,1), i=1, \ldots, N, j=1, \ldots, m$, and (b) $\sum_{j=1}^{m} u_{i j}=1, i=1, \ldots, N$.

Expanding $J(U, \Theta)$, we have

$$
J(U, \Theta)=\begin{array}{cccc}
u_{11}{ }^{q} d_{11}+ & u_{12}{ }^{q} d_{12}+ & \ldots & u_{1 m}{ }^{q} d_{1 m} \\
u_{21}^{q} d_{21}+ & u_{22}{ }^{q} d_{22}+ & \ldots & u_{2 m}{ }^{q} d_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1}{ }^{q} d_{N 1}+ & u_{N 2}{ }^{q} d_{N 2}+ & \cdots & u_{N m} d_{N m}
\end{array}
$$

Assumption: $d_{i j}$'s are fixed.
Then, due to the sum-to-one constraint, $J(U, \Theta)$ is minimized if each of the summation in the rows of the above expansion is minimized.

Let $s_{i}: d_{i s_{i}}=\min _{j=1, \ldots, m} d_{i j}, i=1, \ldots, N$
Then,

$$
u_{i 1}^{q} d_{i 1}+\ldots+u_{i m}^{q} d_{i m} \geq\left(\sum_{j=1}^{m} u_{i j}^{q}\right) d_{i s_{i}}
$$

CFO clustering algorithms: Final remarks (2)

The role of q in the fuzzy clustering

$$
A_{i}=u_{i 1}{ }^{q} d_{i 1}+\ldots+u_{i m}{ }^{q} d_{i m} \geq\left(\sum_{j=1}^{m} u_{i j}{ }^{q}\right) d_{i s_{i}}
$$

For $q=1$, it is $\sum_{j=1}^{m} u_{i j}=1$. Thus

$$
A_{i}=u_{i 1} d_{i 1}+\ldots+u_{i m} d_{i m} \geq d_{i s_{i}}
$$

Clearly, the equality holds for $u_{i s_{i}}=1$ and $u_{i j}=0$, for $j=1, \ldots, m, j \neq s_{i}$
In other words the minimum possible value of A_{i} is achieved for the hard cluster solution. Thus, no fuzzy clustering (where more than one $u_{i j}$'s are positive) minimizes the A_{i}.

For $q>1$, in the hard clustering case, the minimum possible value of A_{i} is still $d_{i s_{i}}$.
For $q>1$, in the fuzzy clustering case, it is $\sum_{j=1}^{m} u_{i j}{ }^{q}<1$. Thus

$$
d_{i s_{i}}>\left(\sum_{j=1}^{m} u_{i j}^{q}\right) d_{i s_{i}}
$$

Thus, in this cases, there are choices for $u_{i j}{ }^{\prime}$'s with more than one of them being positive (fuzzy case) that achieve lower value for A_{i} than the best hard clustering. The larger the value of q, the more fuzzy clusterings achieve for A_{i} value $<d_{i s_{i}}$. ${ }^{10}$

CFO clustering algorithms: Final remarks (2)

The role of q in the fuzzy clustering
Example: $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right\}$
$\boldsymbol{x}_{1}=[0,0]^{T}, \boldsymbol{x}_{2}=[2,0]^{T}, \boldsymbol{x}_{3}=[0,3]^{T}, \boldsymbol{x}_{4}=[2,3]^{T}$
$\boldsymbol{\theta}_{1}=[1,0]^{T}, \boldsymbol{\theta}_{2}=[1,3]^{T}$ (fixed)
$\boldsymbol{q}=\mathbf{1}$ (hard case): Best solution $U_{\text {hard }}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right], J_{\text {hard }}=\mathbf{4}$

$\boldsymbol{q}=\mathbf{2}$ (fuzzy case): Focus on \boldsymbol{x}_{1} :
Question: Is it possible to have $u_{11}^{2} \cdot 1+u_{12}^{2} \cdot \sqrt{10}<1$? (A)
Since $u_{12}=1-u_{11}$, (A) becomes

$$
\begin{aligned}
& u_{11}^{2} \cdot 1+\left(1-u_{11}\right)^{2} \cdot \sqrt{10}<1 \Leftrightarrow \\
& (\sqrt{10}+1) u_{11}^{2}-2 \sqrt{10} u_{11}+\sqrt{10}-1<0 \Leftrightarrow \\
& u_{11} \in(0.52,1) \Rightarrow u_{12} \in(0,0.48)
\end{aligned}
$$

$$
\text { For example, if } u_{11}=0.7\left(u_{12}=0.3\right) \text {, it is } \quad x_{4}=(2,3) \quad d_{41}=\sqrt{10} \quad d_{42}=1
$$

$$
u_{11}^{2} \cdot 1+u_{12}^{2} \cdot \sqrt{10}=0.7^{2} \cdot 1+0.3^{2} \cdot \sqrt{10}=0.77<1
$$

CFO clustering algorithms: Final remarks (3)

The role of q in the possibilistic clustering
Consider the minimization problem for possibilistic clustering

$$
\operatorname{minimize}_{U, \Theta} J\left(\boldsymbol{u}_{j}, \boldsymbol{\theta}_{j}\right)=\sum_{i=1}^{N} u_{i j}^{q} d_{i j}+\eta_{j} \sum_{i=1}^{N}\left(1-u_{i j}\right)^{q}
$$

subject to $u_{i j} \in(0,1), i=1, \ldots, N, j=1, \ldots, m$.

For $q=1, J\left(\boldsymbol{u}_{j}, \boldsymbol{\theta}_{j}\right)$ is written as

$$
J\left(\boldsymbol{u}_{j}, \boldsymbol{\theta}_{j}\right)=\sum_{i=1}^{N}\left[u_{i j}\left(d_{i j}-\eta_{j}\right)+\eta_{j}\right]
$$

Thus, minimizing $J\left(\boldsymbol{u}_{j}, \boldsymbol{\theta}_{j}\right)$ is equivalent to minimizing

$$
\sum_{i=1}^{N} u_{i j}\left(d_{i j}-\eta_{j}\right)
$$

For fixed $\boldsymbol{\theta}_{j}\left(\Rightarrow\right.$ fixed $\left.d\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}\right) \equiv d_{i j}\right)$, the latter achieves it minimum (negative) value by selecting $u_{i j}=1$, for $d_{i j}<\eta_{j}$ and $u_{i j}=0$, for $d_{i j}>\eta_{j}$.

However, in the above situation, all points having distance less than η_{j} from $\boldsymbol{\theta}_{j}$, they all have the same weight in the determination of $\boldsymbol{\theta}_{j}$, while all the other points have no influence in the determination of $\boldsymbol{\theta}_{j}$.

CFO clustering algorithms: Final remarks (3)

The role of q in the possibilistic clustering
Consider the minimization problem for possibilistic clustering

$$
\operatorname{minimize}_{U, \Theta} J\left(\boldsymbol{u}_{j}, \boldsymbol{\theta}_{j}\right)=\sum_{i=1}^{N} u_{i j}^{q} d_{i j}+\eta_{j} \sum_{i=1}^{N}\left(1-u_{i j}\right)^{q}
$$

subject to $u_{i j} \in(0,1), i=1, \ldots, N, j=1, \ldots, m$.
$>$ For $q>1,\left(\right.$ for fixed $\boldsymbol{\theta}_{j}\left(\Rightarrow\right.$ fixed $\left.\left.d\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}\right) \equiv d_{i j}\right)\right)$ it is 1

$$
u_{i j}=\frac{}{1+\left(\frac{d_{i j}}{\eta_{j}}\right)^{\frac{1}{q-1}}}
$$

Thus, points for which $d_{i j}>\eta_{j}$ have $u_{i j}>0$.
$>$ Furthermore, as $q \rightarrow \infty$, (for fixed $\boldsymbol{\theta}_{j}\left(\Rightarrow\right.$ fixed $\left.\left.d\left(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}\right) \equiv d_{i j}\right)\right)$ it is

$$
u_{i j} \rightarrow \frac{1}{2}
$$

Thus, all points have the same degree of compatibility with all clusters.

CFO clustering algorithms: Final remarks (4)

The role of q in the parameters updating in fuzzy and possibilistic clustering

Let $0<u_{1}<u_{2}<1$.
We define $\Delta u=u_{2}-u_{1}$ and $\Delta u^{q}=u_{2}{ }^{q}-u_{1}{ }^{q}(q>1)$.
For $q=2$, it is $\Delta u^{2}=u_{2}{ }^{2}-u_{1}{ }^{2}=\Delta u\left(u_{2}+u_{1}\right)$.
If $u_{2}+u_{1}>1$ (the respective points are "close" to the representative under consideration), then $\Delta u^{2}>\Delta u$

Therefore, the function $f(u)=u^{q}$, enhances the difference between two values of u.

If $u_{2}+u_{1}<1$ (the respective points are "away" from the representative under consideration), then $\Delta u^{2}<\Delta u$

Therefore, the function $f(u)=u^{q}$, diminishes the difference between two values of u.

CFO clustering algorithms: Final remarks (4)

The role of q in the parameters updating in fuzzy and possibilistic clustering

Consider the updating equation for the point representative case and the squared Euclidean distance case (fuzzy and $1^{\text {st }}$ possibilistic clust. algorithms)

$$
\boldsymbol{\theta}_{j}(t)=\frac{\sum_{i=1}^{N} u_{i j}{ }^{q}(t-1) \boldsymbol{x}_{i}}{\sum_{i=1}^{N} u_{i j}{ }^{q}(t-1)}, j=1, \ldots, m
$$

For $q>1$, and since $u_{i j} \in(0,1)$, the previous observation indicates that the $\boldsymbol{x}_{i}{ }^{\prime}$'s with high (low) $u_{i j}$, will have more (much less) significant contribution to the estimation of $\boldsymbol{\theta}_{j}(t)$, compared with the $q=1$ case.

Example: Let $\boldsymbol{x}_{1}=[0,0]^{T}$ and $\boldsymbol{x}_{2}=[10,10]^{T}$, and $u_{1 j}=0.1, u_{2 j}=0.9$. Then

$$
\boldsymbol{\theta}_{j}=\frac{u_{1 j} \boldsymbol{x}_{1}+u_{2 j} \boldsymbol{x}_{2}}{u_{1 j}+u_{2 j}}=\left[\begin{array}{l}
9 \\
9
\end{array}\right] \quad(q=1)
$$

and

$$
\boldsymbol{\theta}_{j}=\frac{u_{1 j}^{q} \boldsymbol{x}_{1}+u_{2 j}^{q} \boldsymbol{x}_{2}}{u_{1 j}^{q}+u_{2 j}^{q}}=\left[\begin{array}{l}
9.9 \\
9.9
\end{array}\right] \quad(q=2)
$$

Optimization theory - Basic concepts

Let $J(\boldsymbol{w})$ be a continuous function of \boldsymbol{w}.
Problem ($\mathbf{P 1}$): Determine the position w^{*} where the function $J(w)$ achieves its minimum value.

A simple method for solving ($\mathbf{P 1}$) is that of gradient descent. -Initialize $\boldsymbol{w}=\boldsymbol{w}(0)$
$-t=0$
-Repeat
$-\boldsymbol{w}(t+1)=\boldsymbol{w}(t)-\left.\mu \frac{\partial J(\boldsymbol{w})}{\partial \boldsymbol{w}}\right|_{\boldsymbol{w}=\boldsymbol{w}(t)}$

- $t=t+1$
-Until convergence

Optimization theory - Basic concepts

-An example: Let $\boldsymbol{w}=\left[w_{1}, w_{2}\right]^{T}$ and $J(\boldsymbol{w})=\left(w_{1}-1\right)^{2}+\left(w_{2}-1\right)^{2}$. Clearly, the minimum value of $J(\boldsymbol{w})$ is met at $\boldsymbol{w}^{*}=[1,1]^{T}$.
-It is $\frac{\partial J(\boldsymbol{w})}{\partial \boldsymbol{w}}=\left[\begin{array}{l}2 w_{1}-2 \\ 2 w_{2}-2\end{array}\right]$
-Applying the gradient descent algorithm for $w(0)=[0,5]^{T}$, and $\mu=0.1$, we have

$$
w(0)=(0,5) \left\lvert\, \begin{aligned}
& -\left.\mu \frac{\partial J(w)}{\partial w}\right|_{w-w(0)}=(0.2,-0.8) \\
& w(1)=(0.2,4.2)
\end{aligned}\right.
$$

$\boldsymbol{w}(1)=\left[\begin{array}{l}0 \\ 5\end{array}\right]-0.1\left[\begin{array}{c}-2 \\ 8\end{array}\right]=\left[\begin{array}{l}0.2 \\ 4.2\end{array}\right]$

$$
\left.\mu \frac{\partial J(w)}{\partial w}\right|_{w=w(0)}=(-0.2,0.8)
$$

$$
w^{*}=(1,1)
$$

-Thus, $\boldsymbol{w}(1)$ comes closer to \boldsymbol{w}^{*}.

$$
\left.v_{-\mu} \frac{\partial J(w)}{\partial w}\right|_{w-w(0)}=(0.2,-0.8)
$$

Optimization theory - Basic concepts

Optimization theory - Basic concepts

Remarks for gradient descent:

-The value of μ should be chosen not too large, in order to avoid oscillations around the minimum and not too small in order to avoid unnecessary delays in the convergence
-If $J(\boldsymbol{w})$ has more than one local minima, the gradient descent will converge (in general) to the one that is closest to $\boldsymbol{w}(0)$.
-If the algorithm is trapped to a local minimum that correspond to a poor solution, the only way to escape from it is to re-initialize the algorithm from another initial position.
-It can be proved that, under certain conditions, the algorithm converges asymptotically to a local minimum of $J(\boldsymbol{w})$.

Optimization theory - Basic concepts

Let $J(\boldsymbol{w})$ be a continuous function of \boldsymbol{w}.
Problem (P2): Determine the position w^{*} where the function $J(w)$ achieves its minimum value, under the constraint that w satisfies some equality constraints.

For linear equality constraints, the problem is stated as follows - Minimize $J(\boldsymbol{w})$
-Subject to the constraints $A \boldsymbol{w}=\boldsymbol{b}$, where A an $m x l$ matrix and \boldsymbol{b} an m-dim. Vector.

Solution: Lagrange multipliers Minimize
$-L(\boldsymbol{w})=J(\boldsymbol{w})+\lambda^{\mathrm{T}}(A \boldsymbol{w}-\boldsymbol{b})$

- $\boldsymbol{\lambda}$ is an m-dim vector that is estimated through the constraints $A \boldsymbol{w}=\boldsymbol{b}$

Optimization theory - Basic concepts

Let $J(\boldsymbol{w})$ be a continuous function of \boldsymbol{w}.
Problem (P3): Determine the position w^{*} where the function $J(w)$ achieves its minimum value, under the constraint that w satisfies some inequality constraints.

For linear inequality constraints, the problem is stated as follows

- Minimize $J(\boldsymbol{w})$
- Subject to the constraints $A \boldsymbol{w} \geq \boldsymbol{b}$, where A an $m x l$ matrix and \boldsymbol{b} an m-dim. Vector.

Hierarchical Clustering Algorithms

\checkmark They produce a hierarchy of (hard) clusterings instead of a single clustering.
\checkmark They find applications in:
$>$ Social sciences
$>$ Biological taxonomy
$>$ Modern biology
> Medicine
> Archaeology
> Computer science and engineering

Hierarchical Clustering Algorithms

Let $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}, \quad \boldsymbol{x}_{i}=\left[x_{i 1}, \ldots, x_{i l}\right]^{T}$.
Recall that:
$>$ In hard clustering each vector belongs exclusively to a single cluster.
$>$ An m-(hard) clustering of X, \mathfrak{R}, is a partition of X into m sets (clusters) C_{1}, \ldots, C_{m}, so that:

- $C_{j} \neq \emptyset, j=1, \ldots, m$
- $\mathrm{U}_{j=1}{ }^{m} C_{j}=X$
- $C_{i} \cap C_{j}=\emptyset, i \neq j, i, j=1,2,, \ldots, m$

By the definition: $\Re=\left\{C_{j}, j=1, \ldots m\right\}$

Hierarchical Clustering Algorithms

> Definition: A clustering \Re_{1} consisting of k clusters is said to be nested in the clustering \Re_{2} consisting of $r(<k)$ clusters, if each cluster in \Re_{1} is a subset of a cluster in \mathfrak{R}_{2}.
We write $\Re_{1} \angle \Re_{2}$

Example: Let $\mathfrak{R}_{1}=\left\{\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{3}\right\},\left\{\boldsymbol{x}_{4}\right\},\left\{\boldsymbol{x}_{2}, \boldsymbol{x}_{5}\right\}\right\}, \mathfrak{R}_{2}=\left\{\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right\},\left\{\boldsymbol{x}_{2}, \boldsymbol{x}_{5}\right\}\right\}$,

$$
\mathfrak{R}_{3}=\left\{\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{4}\right\},\left\{\boldsymbol{x}_{3}\right\},\left\{\boldsymbol{x}_{2}, \boldsymbol{x}_{5}\right\}\right\}, \mathfrak{R}_{4}=\left\{\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{4}\right\},\left\{\boldsymbol{x}_{3}, \boldsymbol{x}_{5}\right\}\right\} .
$$

It is $\mathfrak{R}_{1} \angle \mathfrak{R}_{2}$, but not $\mathfrak{R}_{1} \angle \mathfrak{R}_{3}, \mathfrak{R}_{1} \angle \mathfrak{R}_{4}, \mathfrak{\Re}_{1} \angle \mathfrak{R}_{1}$.

Hierarchical Clustering Algorithms

Remarks:

- Hierarchical clustering algorithms produce a hierarchy of nested clusterings.
- They involve N steps at the most.
- At each step t, the clustering \mathfrak{R}_{t} is produced by \mathfrak{R}_{t-1}.
> Main strategies:

Agglomerative hierarchical clustering algorithms	Divisive hierarchical clustering algorithms
$\mathfrak{R}_{0}=\left\{\left\{\boldsymbol{x}_{1}\right\}, \ldots,\left\{\boldsymbol{x}_{N}\right\}\right\}$	$\mathfrak{R}_{0}=\left\{\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}\right\}$
	. .
$\mathfrak{R}_{N-1}=\left\{\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}\right\}$	$\mathfrak{R}_{N-1}=\left\{\left\{\boldsymbol{x}_{1}\right\}, \ldots,\left\{\boldsymbol{x}_{N}\right\}\right\}$
$\mathfrak{R}_{0} \angle \ldots \angle \mathfrak{R}_{N-1}$	$\mathfrak{R}_{N-1} \angle \ldots . . \angle \mathfrak{R}_{0}$

Agglomerative Clustering Algorithms

Let $g\left(C_{i}, C_{j}\right)$ a proximity function between two clusters C_{i} and C_{j} of X.

Generalized Agglomerative Scheme (GAS)
$>$ Initialization

- Choose $\mathfrak{R}_{0}=\left\{\left\{\boldsymbol{x}_{1}\right\}, \ldots,\left\{\boldsymbol{x}_{N}\right\}\right\}$
- $t=0$
$>$ Repeat
- $t=t+1$
- Choose $\left(C_{i}, C_{j}\right)$ in \Re_{t-1} such that

$$
g\left(C_{i}, C_{j}\right)=\left\{\begin{array}{lc}
\min _{r, s} g\left(C_{r}, C_{s}\right), & \text { if } g \text { is a disim. function } \\
\max _{r, s} g\left(C_{r}, C_{s}\right), & \text { if } g \text { is a sim. function }
\end{array}\right.
$$

- Define $C_{q}=C_{i} \cup C_{j}$ and produce $\mathfrak{R}_{t}=\left(\mathfrak{R}_{t-1}-\left\{C_{i}, C_{j}\right\}\right) \cup\left\{C_{q}\right\}$
> Until all vectors lie in a single cluster.

Agglomerative Clustering Algorithms

Remarks:

- If two vectors come together into a single cluster at level t of the hierarchy, they will remain in the same cluster for all subsequent clusterings. As a consequence, there is no way to recover a "poor" clustering that may have occurred in an earlier level of hierarchy.
- Number of operations: $O\left(N^{3}\right)$

Agglomerative Clustering Algorithms

Definitions of some useful quantities:
Let $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$, with $\boldsymbol{x}_{i}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i l}\right]^{T}$.
$>$ Pattern matrix $(D(X))$: An $N x l$ matrix whose i-th row is \boldsymbol{x}_{i} (transposed).
$>$ Proximity (similarity or dissimilarity) matrix $(P(X))$: An $N \mathrm{x} N$ matrix whose (i, j) element equals the proximity $\wp\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ (similarity $s\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$, dissimilarity $\left.d\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)$.

Example 1: Let $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}\right\}$, with

$$
\boldsymbol{x}_{1}=[1,1]^{T}, \boldsymbol{x}_{2}=[2,1]^{T}, \boldsymbol{x}_{3}=[5,4]^{T}, \boldsymbol{x}_{4}=[6,5]^{T}, \boldsymbol{x}_{5}=[6.5,6]^{T}
$$

Pattern matrix
Euclidean distance
Tanimoto distance
$D(X)=\left[\begin{array}{ll}1 & 1 \\ 2 & 1 \\ 5 & 4 \\ 6 & 5 \\ 6.5 & 6\end{array}\right] \quad P(X)=\left[\begin{array}{ccccc}0 & 1 & 5 & 6.4 & 7.4 \\ 1 & 0 & 4.2 & 5.7 & 6.7 \\ 5 & 4.2 & 0 & 1.4 & 2.5 \\ 6.4 & 5.7 & 1.4 & 0 & 1.1 \\ 7.4 & 6.7 & 2.5 & 1.1 & 0\end{array}\right] \quad P^{\prime}(X)=\left[\begin{array}{ccccc}1 & 0.75 & 0.26 & 0.21 & 0.18 \\ 0.75 & 1 & 0.44 & 0.35 & 0.20 \\ 0.26 & 0.44 & 1 & 0.96 & 0.90 \\ 0.21 & 0.35 & 0.96 & 1 & 0.98 \\ 0.18 & 0.20 & 0.90 & 0.98 & 1\end{array}\right]$

Agglomerative Clustering Algorithms

Definitions of some useful quantities:

Threshold dendrogram (or dendrorgram): It is an effective way of representing the sequence of clusterings, which are produced by an agglomerative algorithm.
Example 1 (cont.): If $d_{\text {min }}{ }^{\text {SS }}\left(C_{i}, C_{j}\right)$ is employed as the distance measure between two sets and the Euclidean one as the distance measure between two vectors, the following series of clusterings are $x_{x_{1}}{ }^{\text {produced }}$
\(D(X)=\left[\begin{array}{cc}1 \& 1

2 \& 1

5 \& 4

6 \& 5

6.5 \& 6\end{array}\right] \quad\)| $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}\right\},\left\{x_{4}\right\},\left\{x_{5}\right\}\right\}$ |
| :--- |
| $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}\right\},\left\{x_{4}, x_{5}\right\}\right\}$ |
| $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right\}$ |

$P(X)=\left[\begin{array}{ccccc}0 & 1 & 5 & 6.4 & 7.4 \\
1 & 0 & 4.2 & 5.7 & 6.7 \\
5 & 4.2 & 0 & 1.4 & 2.5 \\
6.4 & 5.7 & 1.4 & 0 & 1.1 \\
7.4 & 6.7 & 2.5 & 1.1 & 0\end{array}\right]$

Agglomerative Clustering Algorithms

Definitions of some useful quantities:
DProximity (dissimilarity or similarity) dendrogram: A dendrogram that takes into account the level of proximity (dissimilarity or similarity) where two clusters are merged for the first time.

Example 1 (cont.): In terms of the previous example, the proximity dendrograms that correspond to $P_{x_{1}}^{\prime}(X)$ and $P(X)$ are
$P(X)=\left[\begin{array}{ccccc}0 & 1 & 5 & 6.4 & 7.4 \\ 1 & 0 & 4.2 & 5.7 & 6.7 \\ 5 & 4.2 & 0 & 1.4 & 2.5 \\ 6.4 & 5.7 & 1.4 & 0 & 1.1 \\ 7.4 & 6.7 & 2.5 & 1.1 & 0\end{array}\right]$

 Remark: One can readily observe the level in which a cluster ${ }^{(\text {in })}$ formed
and the level in which it is absorbed in a larger cluster (indication of the natural clustering).

Agglomerative Clustering Algorithms

Example:

Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
-At each step a new clustering is defined by merging the two most similar clusters to one.
-At the final clustering all vectors belong to the same cluster.

Agglomerative Clustering Algorithms

Example:

Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
-At each step a new clustering is defined by merging the two most similar clusters to one.
-At the final clustering all vectors belong to the same cluster.

Agglomerative Clustering Algorithms

Example:

Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
- At each step a new clustering is defined by merging the two most similar clusters to one.
-At the final clustering all vectors belong to the same cluster.

Agglomerative Clustering Algorithms

Example:

Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
- At each step a new clustering is defined by merging the two most similar clusters to one.
-At the final clustering all vectors belong to the same cluster.

Agglomerative Clustering Algorithms

Example:

Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
-At each step a new clustering is defined by merging the two most similar clusters to one.
-At the final clustering all vectors belong to the same cluster.

Agglomerative Clustering Algorithms

Example:

Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
- At each step a new clustering is defined by merging the two most similar clusters to one.
-At the final clustering all vectors belong to the same cluster.

Agglomerative Clustering Algorithms

Example:

Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
- At each step a new clustering is defined by merging the two most similar clusters to one.
-At the final clustering all vectors belong to the same cluster.

Agglomerative Clustering Algorithms

Example:

Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
- At each step a new clustering is defined by merging the two most similar clusters to one.
- At the final clustering all vectors belong to the same cluster.

Agglomerative Clustering Algorithms

According to the mathematical tools used for their expression, agglomerative algorithms are divided into:

- Algorithms based on matrix theory.
- Algorithms based on graph theory.

NOTE: In the sequel we consider only dissimilarity measures.
> Algorithms based on matrix theory.

- They take as input the $N \mathrm{x} N$ dissimilarity matrix $P_{0}=P(X)$.
- At each level t where two clusters C_{i} and C_{j} are merged to C_{q}, the dissimilarity matrix P_{t} is extracted from P_{t-1} by:
- Deleting the two rows and columns of P_{t} that correspond to C_{i} and C_{j}.
- Adding a new row and a new column that contain the distances of newly formed $C_{q}=C_{i} \cup C_{j}$ from each of the remaining clusters C_{s}, via a relation of the form

$$
d\left(C_{q}, C_{s}\right)=f\left(d\left(C_{i}, C_{s}\right), d\left(C_{j}, C_{s}\right), d\left(C_{i}, C_{j}\right)\right)
$$

Agglomerative matrix theory based Clustering Algorithms

-A number of distance functions comply with the following update equation

$$
\begin{equation*}
d\left(C_{q}, C_{s}\right)=a_{i} d\left(C_{i}, C_{s}\right)+a_{j}\left(d\left(C_{j}, C_{s}\right)+b d\left(C_{i}, C_{j}\right)+c\left|d\left(C_{i}, C_{s}\right)-d\left(C_{j}, C_{s}\right)\right|\right. \tag{1}
\end{equation*}
$$

Algorithms that follow the above equation are:
\Rightarrow Single link (SL) algorithm ($\left.a_{i}=1 / 2, a_{j}=1 / 2, b=0, c=-1 / 2\right)$. In this case

$$
\begin{equation*}
d\left(C_{q}, C_{s}\right)=\min \left\{d\left(C_{i}, C_{S}\right), d\left(C_{j}, C_{s}\right)\right\} \tag{2}
\end{equation*}
$$

$>$ Complete link (CL) algorithm ($\left.a_{i}=1 / 2, a_{j}=1 / 2, b=0, c=1 / 2\right)$. In this case

$$
d\left(C_{q}, C_{s}\right)=\max \left\{d\left(C_{i}, C_{s}\right), d\left(C_{j}, C_{s}\right)\right\}
$$

Remarks:

- Single link forms clusters at low dissimilarities while complete link forms clusters at high dissimilarities.
- Single link tends to form elongated clusters (chaining effect) while complete link tends to form compact clusters.
- The rest algorithms are compromises between these two extremes.

Agglomerative matrix theory based Clustering Algorithms

(a) The data set X.
(b) The single link algorithm dissimilarity dendrogram.
(c) The complete link algorithm dissimilarity dendrogram.

(c)

Agglomerative matrix theory based Clustering Algorithms

$>$ Weighted Pair Group Method Average (WPGMA) ($a_{i}=1 / 2, a_{j}=1 / 2, b=$ $0, c=0)$. In this case: $a\left(C_{q}, C_{S}\right)=a_{i} d\left(C_{i}, C_{S}\right)+a_{j}\left(d\left(C_{j}, C_{S}\right)+b d\left(C_{i}, C_{j}\right)\right.$

$$
d\left(C_{q}, C_{S}\right)=\frac{1}{2}\left(d\left(C_{i}, C_{S}\right)+d\left(C_{j}, C_{S}\right)\right)
$$

$>$ Unweighted Pair Group Method Average (UPGMA) $\left(a_{i}=n_{i} /\left(n_{i}+n_{j}\right), a_{j}=\right.$ $n_{j} /\left(n_{i}+n_{j}\right), b=0, c=0$, where n_{i} is the cardinality of $\left.C_{i}\right)$. In this case:

$$
d\left(C_{q}, C_{S}\right)=\frac{n_{i}}{n_{i}+n_{j}} d\left(C_{i}, C_{S}\right)+\frac{n_{j}}{n_{i}+n_{j}} d\left(C_{j}, C_{S}\right)
$$

$>$ Unweighted Pair Group Method Centroid (UPGMC) $\left(a_{i}=n_{i} /\left(n_{i}+n_{j}\right)\right.$, $\left.a_{j}=n_{j} /\left(n_{i}+n_{j}\right), b=-n_{i} n_{j} /\left(n_{i}+n_{j}\right)^{2}, c=0\right)$. In this case:

$$
d_{q s}=\frac{n_{i}}{n_{i}+n_{j}} d_{i s}+\frac{n_{j}}{n_{i}+n_{j}} d_{j s}-\frac{n_{i} n_{j}}{\left(n_{i}+n_{j}\right)^{2}} d_{i j}
$$

For the UPGMC, if $d_{i j}$ is defined as the squared Euclidean distance between the means of C_{i} and C_{j},
then it holds that $d_{q s}=\left\|\boldsymbol{m}_{q}-\boldsymbol{m}_{s}\right\|^{2}$, where \boldsymbol{m}_{q} is the mean of C_{q}.

Agglomerative matrix theory based Clustering Algorithms

$>$ Weighted Pair Group Method Centroid (WPGMC) $\left(a_{i}=1 / 2, a_{j}=1 / 2, b=\right.$ $-1 / 4, c=0$). In this case

$$
\begin{aligned}
\quad d\left(C_{q}, C_{s}\right) & =a_{i} d\left(C_{i}, C_{s}\right)+a_{j}\left(d\left(C_{j}, C_{s}\right)\right. \\
& +b d\left(C_{i}, C_{j}\right)+c\left|d\left(C_{i}, C_{s}\right)-d\left(C_{j}, C_{s}\right)\right|
\end{aligned}
$$

$$
d_{q s}=\frac{1}{2} d_{i s}+\frac{1}{2} d_{j s}-\frac{1}{4} d_{i j}+b d\left(C_{i}, C_{j}\right)+c\left|d\left(C_{i}, C_{s}\right)-d\left(C_{i}, C_{s}\right)\right|
$$

For WPGMC there are cases where $d_{q s} \leq \max \left\{d_{i s}, d_{j s}\right\}$ (crossover)
$>$ Ward or minimum variance algorithm. Here the distance $d^{\prime}{ }_{i j}$ between C_{i} and C_{j} is defined as

$$
\begin{equation*}
d^{\prime}{ }_{i j}=\frac{n_{i} n_{j}}{n_{i}+n_{j}}\left\|\boldsymbol{m}_{i}-\boldsymbol{m}_{j}\right\|^{2} \tag{3}
\end{equation*}
$$

$d^{\prime}{ }_{q s}$ can be expressed in terms of $d^{\prime}{ }_{i s}, d^{\prime}{ }_{j s}, d^{\prime}{ }_{i j}$ as

$$
d_{q s}^{\prime}=\frac{n_{i}+n_{s}}{n_{i}+n_{j}+n_{s}} d^{\prime}{ }_{i s}+\frac{n_{j}+n_{s}}{n_{i}+n_{j}+n_{s}} d^{\prime}{ }_{j s}-\frac{n_{s}}{n_{i}+n_{j}+n_{s}} d^{\prime}{ }_{i j}
$$

Remark: Ward's algorithm forms \mathfrak{R}_{t+1} by merging the two clusters that lead to the smallest possible increase of the total variance, i.e.,

$$
E_{t}=\sum_{r=1}^{N-t} \sum_{x \in C_{r}}\left\|\boldsymbol{x}-\boldsymbol{m}_{r}\right\|^{2}
$$

Agglomerative matrix theory based Clustering Algorithms

Example 3: Consider the following dissimilarity matrix (Euclidean distance)

$$
P_{0}=\left[\begin{array}{ccccc}
0 & 1 & 2 & 26 & 37 \\
1 & 0 & 3 & 25 & 36 \\
2 & 3 & 0 & 16 & 25 \\
26 & 25 & 16 & 0 & 1.5 \\
37 & 36 & 25 & 1.5 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{0}=\left\{\left\{\underline{x}_{1}\right\},\left\{\underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}\right\},\left\{\underline{x}_{5}\right\}\right\}, \\
& \Re_{1}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}\right\},\left\{\underline{x}_{5}\right\}\right\}, \\
& \Re_{2}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}, \underline{x}_{5}\right\}\right\}, \\
& R_{3}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right\},\left\{\underline{x}_{4}, \underline{x}_{5}\right\}\right\}, \\
& R_{4}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}, \underline{x}_{5}\right\}\right\}
\end{aligned}
$$

All the algorithms produce the same sequence of clusterings shown above, yet at different proximity levels:

	$S L$	$C L$	WPGMA	UPGMA	WPGMC	UPGMC	Ward
\Re_{0}	0	0	0	0	0	0	0
\Re_{1}	1	1	1	1	1	1	0.5
\Re_{2}	1.5	1.5	1.5	1.5	1.5	1.5	0.75
\Re_{3}	2	3	2.5	2.5	2.25	2.25	1.5
\Re_{4}	16	37	25.75	27.5	24.69	26.46	31.75

Agglomerative matrix theory based Clustering Algorithms

Example 3 (in detail): (a) The single-link case $\left(C_{q}=C_{i} \cup C_{j}, d\left(C_{q}, C_{s}\right)=\min \left(d\left(C_{i}, C_{s}\right), d\left(C_{j}, C_{s}\right)\right)\right.$

$$
d\left(\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\},\left\{\boldsymbol{x}_{3}\right\}\right)=
$$

$$
\min \left(d\left(\left\{x_{1}\right\},\left\{x_{3}\right\}\right), d\left(\left\{x_{2}\right\},\left\{x_{3}\right\}\right)\right.
$$

	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
$\left\{x_{1}, x_{2}\right\}$	0	2	25	36
$P_{1}:$$\left\{x_{3}\right\}$ $:$ 2^{2}	0	16	25	
$\left\{x_{4}\right\}$	25	16	0	1.5
$\left\{x_{5}\right\}$	36	25	1.5	0

	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
$\left\{x_{1}, x_{2}\right\}$	0	2	25	36
$\left\{x_{3}\right\}$	2	0	16	25
$\left\{x_{4}\right\}$	25	16	0	1.5
$\left\{x_{5}\right\}$	36	25	1.5	0

Agglomerative matrix theory based Clustering Algorithms

Example 3 (in detail): (a) The single-link case

$$
\left(C_{q}=C_{i} \cup C_{j}, d\left(C_{q}, C_{s}\right)=\min \left(d\left(C_{i}, C_{s}\right), d\left(C_{j}, C_{s}\right)\right)\right.
$$

$P_{2}:$| | $\left\{x_{1}, x_{2}\right\}$ | $\left\{x_{3}\right\}$ | $\left\{x_{4}, x_{5}\right\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\{x_{1}, x_{2}\right\}$ | 0 | $\mathbf{2}$ | 25 |
| $\left\{x_{3}\right\}$ | $\mathbf{2}$ | 0 | 16 |
| $\left\{x_{4}, x_{5}\right\}$ | 25 | 16 | 0 |\rightarrow| $\left\{x_{1}, x_{2}\right\}$ | |
| :---: | :---: |
| $\left\{x_{2}\right\}$ | 0 |
| $\left\{x_{3}\right\}$ | $\left\{x_{4}, x_{5}\right\}$ |
| $\left\{x_{4}, x_{5}\right\}$ | 25 |

$$
\begin{aligned}
& d\left(\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{4}, x_{5}\right\}\right)= \\
& =\min (25,16)=16
\end{aligned}
$$

$P_{3}:$| $\left\{x_{1}, x_{2}, x_{3}\right\}$ | 0 | 16 | | |
| :---: | :---: | :---: | :---: | :---: |
| $\left\{x_{4}, x_{5}\right\}$ | 16 | 0 | $\left\{x_{1}, x_{3}\right\}$ | $\left\{x_{4}, x_{5}\right\}$ |
| | $\left.\rightarrow x_{1}, x_{2}, x_{3}\right\}$ | 0 | 16 | |
| $\left.x_{4}, x_{5}\right\}$ | 16 | 0 | | |

$P_{4}:$| | $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ |
| :---: | :---: |
| $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ | 0 |

$$
\begin{aligned}
& \Re_{0}=\left\{\left\{\underline{x}_{1}\right\},\left\{\underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}\right\},\left\{\underline{x}_{5}\right\}\right\},(\mathbf{0}) \\
& \Re_{1}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}\right\},\left\{\underline{x}_{5}\right\}\right\},(\mathbf{1}) \\
& \Re_{2}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}, \underline{x}_{5}\right\}\right\},(\mathbf{1} .5) \\
& \Re_{3}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right\},\left\{\underline{x}_{4}, \underline{x}_{5}\right\}\right\},(2) \\
& \Re_{4}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3},,_{4}, \underline{x}_{5}\right\}\right\},(\mathbf{1 6})
\end{aligned}
$$

Agglomerative matrix theory based Clustering Algorithms

Example 3 (in detail): (b) The complete-link case $\left(C_{q}=C_{i} \cup C_{j}, d\left(C_{q}, C_{s}\right)=\max \left(d\left(C_{i}, C_{s}\right), d\left(C_{j}, C_{s}\right)\right)\right.$

$$
d\left(\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\},\left\{\boldsymbol{x}_{3}\right\}\right)=
$$

$$
\max \left(d\left(\left\{x_{1}\right\},\left\{x_{3}\right\}\right), d\left(\left\{x_{2}\right\},\left\{x_{3}\right\}\right)\right.
$$

	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$		$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$	$\begin{gathered} d\left(\left\{x_{3}\right\},\left\{x_{4}, x_{5}\right\}\right)= \\ \max (16,25)=25 \end{gathered}$
$\left\{x_{1}, x_{2}\right\}$	0	3	26	37	$\left\{x_{1}, x_{2}\right\}$	0	3	26	37	
$\left\{x_{3}\right\}$	3	0	16	25	$\left\{x_{3}\right\}$	3	0	16	25	
$\left\{x_{4}\right\}$	26	16	0	1.5	$\left\{x_{4}\right\}$	26	16	0	1.5	
$\left\{x_{5}\right\}$	37	25	1.5	0	$\left\{x_{5}\right\}$	37	25	1.5	0	

Agglomerative matrix theory based Clustering Algorithms

Example 3 (in detail): (b) The complete-link case

$$
\left(C_{q}=C_{i} \cup C_{j}, d\left(C_{q}, C_{s}\right)=\max \left(d\left(C_{i}, C_{s}\right), d\left(C_{j}, C_{s}\right)\right)\right.
$$

$P_{2}:$| | $\left\{x_{1}, x_{2}\right\}$ | $\left\{x_{3}\right\}$ | $\left\{x_{4}, x_{5}\right\}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\{x_{1}, x_{2}\right\}$ | 0 | 3 | 37 | | | |
| $\left\{x_{3}\right\}$ | $\mathbf{3}$ | 0 | 25 | | $\left\{x_{1}, x_{2}\right\}$ | $\left\{x_{3}\right\}$ |
| $\left\{x_{4}, x_{5}\right\}$ | | | | | | |
| $\left\{x_{4}, x_{5}\right\}$ | 37 | 25 | 0 | $\left\{x_{3}\right\}$ | 0 | 3 |
| $\left\{x_{4}, x_{5}\right\}$ | 37 | 0 | 35 | 25 | | |

$$
\begin{gathered}
d\left(\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{4}, x_{5}\right\}\right)= \\
=\max (37,25)=37
\end{gathered}
$$

$P_{3}:$| | $\left\{x_{1}, x_{2}, x_{3}\right\}$ | $\left\{x_{4}, x_{5}\right\}$ | | |
| :---: | :---: | :---: | :---: | :---: |
| $\left\{x_{1}, x_{2}, x_{3}\right\}$ | 0 | 37 | | |
| $\left\{x_{4}, x_{5}\right\}$ | 37 | 0 | $\left\{x_{1}, x_{2}, x_{3}\right\}$ | 0 |
| $\left\{x_{4}, x_{5}\right\}$ | 37 | 0 | 0 | |

$P_{4}:$| | $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ |
| :---: | :---: |
| $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ | 0 |

$$
\begin{align*}
& \Re_{0}=\left\{\left\{\underline{x}_{1}\right\},\left\{\underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}\right\},\left\{\underline{x}_{5}\right\}\right\},(0) \tag{0}\\
& \Re_{1}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}\right\},\left\{\underline{x}_{5}\right\}\right\},(\mathbb{1}) \\
& \Re_{2}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}\right\},\left\{\underline{x}_{3}\right\},\left\{\underline{x}_{4}, \underline{x}_{5}\right\}\right\},(\mathbf{1} .5) \\
& \Re_{3}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\right\},\left\{\underline{x}_{4}, \underline{x}_{5}\right\}\right\},(3) \\
& \Re_{4}=\left\{\left\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}, \underline{x}_{5}\right\}\right\},(37)
\end{align*}
$$

