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CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
A. Generalized Hard Algorithmic Scheme (GHAS) — k-means algorithm

N m
minimizey oJ (U, 0) = Z z Ujj ||xl- — 9]-||2
=14 j=1
subject to (a) u;; € {0,1}, i =1,..,N,j =1,...,m, and (b) Z;-’;luij =1i=1,..,N.

The Isodata or k-Means or c-Means algorithm
* Choose arbitrary initial estimates 6; (0) for the Oj’ s, J=1,...,m.
e t=0
* Repeat
—Fori =1to N % Determination of the partition
oForj=1tom

o L i g = 0,17 = ming=q, mllxi — 04(D)]]?
w0 =1, .
, otherwise
o End {For-j}
— End {For-i}
—-t=t+1
—For j = 1 tom % Parameter updating
o Set N
0;(t) = S = D% 5y m
iz1 Wij(t—1)
— End {For-j}

* Until no change in 8;" s occurs between two successive iterations



CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
B. Generalized Fuzzy Algorithmic Scheme (GFAS) — Fuzzy c-means algorithm

N m
minimizey o] (U, 0) = Z Z u;; ||xl- — 9j||2
=14 j=1
subject to (a) u;; € (0,1), i =1,...,N,j =1,..,m,and (b) Z}-’Lluij =1i=1,..,N.

* Choose 0;(0) as initial estimates for 6}, j=1,...,m.

e t=0

* Repeat

—Fori =1toN % Determination of ulfjs
oForj=1tom
1
u;(t) = T

m [ 4(x;,6;(t) 171
=1\ d (0, (2))

o End {For-j}

— End {For-i}
—t=t+1
—For j = 1 tom % Parameter updating
o Set N
A u..q t— 1Dx:
Hj(t)= L7V1 tj s ) l’j= om
iz Wit —1)
— End {For-j}

e Until a termination criterion is met.



CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
C. Generalized Probabilistic Algorithmic Scheme (GPrAS) — the normal pdfs case

N m
minimizeg pJ(0, P) = —Zi 12,- 1P(]'le-) In(p(x;|j; 6;)P;)
Itis (a)P(jlx;) € (0,1), i=1,...,N,j =1,..,m,and (b) Z;-’;lP(ilxi) =1i=1,..,N.
* Choose 1£;(0), Z;(0), P;(0) as initial estimates for u;,Z;, Pj,resp.,j = 1,..,m
e t=0
* Repeat
—Fori =1to N % Expectation step

ofForj=1tom
pin.(O\p.
P(j|x; 00, P10y = p(x;lj;0;")P;®

™ p(xi]q;6¢ ) Pg®

= Vji(t)

o End {For-j}
— End {For-i}
—t=t+1
—For j = 1 to m % Parameter updating — Maximization step
o Set
© =i
J

£V=1 Vji(t_l) ’

1) N o (=D (. _ _nu\T
i=1Vji (xi—pj) (xi—pj)°
Zj(t) == j=1,..,m

§V=1 Vji(t_l)

u

® 1V 1)
=1

- End {For-j} 4
e Until a termination criterion is met.



CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering
(point representatives, squared Euclidean distance)
Consider the GPrAS cost function

N m
j©R == D PUx)Ip(xl:6)R)

o= 9i=1{m.%} -

with e O
T
p(xi|]; 0]) — l lexp . L ] é l ]
(2m)z|z;]2
B VOV
ItisJ(@,P) = —YN, 1P(jlxl) ln( 7 exp (— (xi=ny) Zé (x: ”f)) P]> —
(2”)2|21|2

Term A Zl 121 1P(]lxl) ln( 1 l)

(2m)z|%;|2
m
Term B +E§: 1?_ P(]lxl)(xl ”j)TZj_l(xi _”'f)
i= j=1

N m
Term C _z Z P(jlx;) lnPj
=1 bmed j=1




CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
Assumption 1: Zj = X = constant, j =1, ...,m. Then

1
= —Nln — | = constant
(2m)2|Z]2

Assumption 2: P] = %, j=1,..,m. Then

Term C

1
p l—=—l— P' ) =—NIln— = tant
Zl 12} , (lx;) In n 7 7 (lx;) n— = constan




CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
Based on the previous two results, it follows that

N m
minimize (—Zi:1 zj:1P(i|xi) ln(p(xi |j; BJ)P])) — ]
;=

)
minimize (21::1 211 P(i|xi)(xi — ﬂj)TZ_l(xi - ﬂj))

Assumption 3(a): Approximate P (j|x;) as
1, P(ilxi) = MaXg=1,, mP(Slxi)
P = = 9.
Ulx) = { otherwise (= uy)

In this case, GPTAS & k means for 2 = o?I)

WARNING: Valid ONLY from a
mathematical formulation point of
view. NOT from a conceptual point of

view.

Assumption 3(b): Approximate P(j|x;) as
P(lx;) =

1

m [ d(x;,0;(t)) q%l
k=1 (d(xi» Bk(t))>

In this case, GPrAS fUZZy C —meansi forr = o?I)




CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering
(point representatives, squared Euclidean distance)

Remarks:

The hard, fuzzy and probabilistic CFO clustering algorithms (with point
representatives and squared Euclidean distance) :

e are partition algorithms.

 they share the “sum-to-one” constraint.

 they can be related to each other (due to the “sum-to-one” constraint).

The possibilistic CFO clustering algorithms (point representatives and squared

Euclidean distance) :

* are mode seeking algorithms

* no “sum-to-one” constraint is associated with them

* they can not be related to the hard, fuzzy and probabilistic CFO clustering
algorithms (due to the absence of the sum-to-one constraint).




CFO clustering algorithms: Final remarks (2)
The role of g in the fuzzy clustering

Consider the minimization problem for fuzzy clustering ;[ d;; = d(x;,0)) J
ij — i Yj

N m
minimizey o] (U, 6) = Z Z w9 dy;
=14 j=1
subject to (a) u;; € (0,1), i =1,...,N,j =1,..,m,and (b) Z?Lluij =1i=1,..,N.

Expanding J(U, @), we have

up9dys + ugp9di + 0 Uy ddiy

Uu,9d-; + u--9d-,- + .. U-,.,,9d
J(U,8) = %21 :21 22 :22 Zm: 2m

uy1ldys + up2fdyz, + 0 uymdym

Assumption: d;;’s are fixed.

Then, due to the sum-to-one constraint, /(U, @) is minimized if each of the
summation in the rows of the above expansion is minimized.

Let Si. disi = minj=1’___,mdl-j,i = 1, ,N

Then,
m
uilqdi1+...+uiquim2 z 1uijq disi .
]:



CFO clustering algorithms: Final remarks (2)
The role of g in the fuzzy clustering

m
Ai = uilqdi1+...+uiquim > <z uijq> diSi

j=1

Forg = 1,itis X721 u;; = 1. Thus
Ai = uildi1+... +Uim dim = disi
Clearly, the equality holds for u;;, = 1and u;; = 0,forj =1,..,m,j #s;

In other words the minimum possible value of 4; is achieved for the hard cluster
solution. Thus, no fuzzy clustering (where more than one u;;’s are positive) minimizes
the Ai'

For g > 1, in the hard clustering case, the minimum possible value of A; is still d;s. .

For g > 1, in the fuzzy clustering case, it is Z}f’iluijq < 1. Thus

m
dis; > ( E , uijq) dis;
j=1

Thus, in this cases, there are choices for u;;’s with more than one of them being

positive (fuzzy case) that achieve lower value for 4; than the best hard clustering.
The larger the value of g, the more fuzzy clusterings achieve for 4; value < d,. 1



CFO clustering algorithms: Final remarks (2)

The role of g in the fuzzy clustering A
Example: X = {x{, X5, X3, X4} ®
0 )

xl — [OJO]T) xZ — [Z;O]T, x3 —_ [O,S]T, x4 == [2,3]T x3 ’ x4
6, =[1,0]", 8, = [1,3]" (fixed)

I
q = 1 (hard case): Best solution U4, = (1) (1) s Jnharda = 4

10 1] xl' 01‘ ‘xz g

q = 2 (fuzzy case): Focus on x:
Question: Is it possible to have ;% -1 + u,% - v10 < 1? (A)
Since u1, = 1 — u44, (A) becomes = (1,3)
u;” 1+ (1 -uy)?-vio <l e x;=(00) di;=1 d,,=+10

2 _ _
(V10 + 1)uy,2 — 2vV10uy +V10- 1< 0 & x,=20) dy=1 d,=vi0
U111 € (052,1) = U1 (S (0,048)

x3=(03) dy; =V10 d3zz=1

For example, if uy; = 0.7 (1, = 0.3), itiis X, =(23) dyy, =v10 dyx=1
U112'1+u122'\/1 :0721+O32 V1 =0.77<1

11



CFO clustering algorithms: Final remarks (3)

The role of g in the possibilistic clustering
Consider the minimization problem for possibilistic clustering

N N
mmlmlzeU,@](uj, 9]) = . 1uijqdij + T]J ' 1(1 — uu)
1= 1=
subject to u;; € 01),i=1,..,N,j=1,..,m.

Forg = 1,](uj, 9]-) is written as

J(w;,8;) = zlivzl[uij(dij —1;) +nj

Thus, minimizing](uj, 9]-) is equivalent to minimizing

N
z. 1uij(dij = ;)
=
For fixed 0;(= fixed d(xl-, 9]-) = d,;), the latter achieves it minimum (negative) value

by selecting u;; = 1, for d;; < n;
andu;; = 0, ford;; > n;.

However, in the above situation, all points having distance less than 17; from 6;, they
all have the same weight in the determination of 8;, while all the other points have no

influence in the determination of Hj. .



CFO clustering algorithms: Final remarks (3)

The role of g in the possibilistic clustering
Consider the minimization problem for possibilistic clustering

N N
mmlmlzeU,@](uj, 9]) = . 1uijqdij + T]J ' 1(1 — uu)
1= 1=
subject to u;; € 01),i=1,..,N,j=1,..,m.

» Forq > 1, (for fixed 6;(= fixed d(x;,0;) = d;;)) itis
1

d;i\a-1
1+ (J)
mj

Thus, points for which d;; > 7n; have u;; > 0.

uij =

» Furthermore, as q — o, (for fixed 6;(= fixed d(xl-, Hj) = d;j))itis

1
'U,U—>E

Thus, all points have the same degree of compatibility with all clusters.

13



CFO clustering algorithms: Final remarks (4)
The role of g in the parameters updating in fuzzy and possibilistic clustering

let 0 <uy <u, <1,
We define Au = u, —uy and Au? = u,? —u (g > 1).

Forg = 2, itis Au® = uy? —u.? = Au(u, + uy).

If u, + 14 > 1 (the respective points are “close” to the representative under
consideration), then Au? > Au

Therefore, the function f (1) = u, enhances the difference between two
values of wu.

If u, + 1y < 1 (the respective points are “away” from the representative
under consideration), then Au? < Au

Therefore, the function f(u) = u, diminishes the difference between two

values of u. y



CFO clustering algorithms: Final remarks (4)
The role of g in the parameters updating in fuzzy and possibilistic clustering

Consider the updating equation for the point representative case and the

squared Euclidean distance case (fuzzy and 15t possibilistic clust. algorithms)
8,(t) = ioq uy 1t — D i=1.m

YiLjuyde-1) 7

For g > 1, and since u;; € (0,1), the previous observation indicates that the

x;'s with high (low) u;;, will have more (much less) significant contribution to

the estimation of 8;(t), compared with the g = 1 case.

Example: Let x; = [0,0]" and x, = [10,10]", and u;; = 0.1, u,; = 0.9. Then

_ uljxl + uzsz

9= Upj + Uy :[3] (@=1)

and

_ uquxl + uzjqxz

9.9
9. — = = 2
J uqu + uZ]’q [99] (q )

15



Optimization theory — Basic concepts

Let /(w) be a continuous function of w.

Problem (P1): Determine the position wW* where the function J(w) achieves
its minimum value.

A simple method for solving (P1) is that of gradient descent.
-Initialize w = w(0)

_t — O )
-Repeat .
aJ(w)
w(t+1) =wt) - p L2 |
St=t+ st SOTNY )
-Until convergence llf_-.lq' o
i -2.01




Optimization theory — Basic concepts

-An example: Let w = [w,w,]|Tand J(w) = (w; — 1)? 4+ (w, — 1)2. Clearly,

the minimum value of J(w) is met at w* = [1, 1] 7.

-It is w(0) = (0,5)

ow | 2w, —2

-Applying the gradient descent algorithm
forw(0) =[0,5]7, and u = 0.1, we have

oW

5| 1 8| |42 WH) (—G.Z,D.S)\

AT (w)
— L — = (0.2,-0.5
|-L Ew |w-1|-'|:|:|:| I: :'

w(l) =(0.2,4.2)

= (L])

-Thus, w(1) comes closer to w*.

|

P |wowoy = (0.2,70.8)
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Optimization theory — Basic concepts

Remarks for gradient descent:

-The value of 1 should be chosen not too large, in order to avoid oscillations
around the minimum and not too small in order to avoid unnecessary

delays in the convergence

-If J(w) has more than one local minima, the gradient descent will converge
(in general) to the one that is closest to w(0).

-If the algorithm is trapped to a local minimum that correspond to a poor
solution, the only way to escape from it is to re-initialize the algorithm from

another initial position.

-1t can be proved that, under
certain conditions, the algorithm
converges asymptotically to a
local minimum of J(w).

Jw)!

O Initial point
o Final point

\* / | % Optimum

v



Optimization theory — Basic concepts

Let /(W) be a continuous function of w.
Problem (P2): Determine the position w* where the function /(w) achieves
its minimum value, under the constraint that w satisfies some equality

constraints.

For linear equality constraints, the problem is stated as follows

*Minimize J(w)
*Subject to the constraints

Aw = b, where A an mxl
matrix and b an m-dim. Vector.

Solution: Lagrange multipliers
Minimize

-L(w) =J(w) + AT(Aw — b)

- Ais an m-dim vector that is
estimated through the
constraints Aw = b

?.
[




Optimization theory — Basic concepts

Let /(w) be a continuous function of w.

Problem (P3): Determine the position w* where the function J(w) achieves
its minimum value, under the constraint that w satisfies some inequality
constraints.

For linear inequality constraints, the problem is stated as follows

*Minimize /] (w) & /
*Subject to the constraints i
Aw > b, where A an mxl L0 ,f“
matrix and b an m-dim. Vector. i E& S
Diiatibds |
Pogzlon . ’
o |
l'l.




Hierarchical Clustering Algorithms

v" They produce a hierarchy of (hard) clusterings instead of a single
clustering.

v They find applications in:
» Social sciences
» Biological taxonomy
» Modern biology
» Medicine
» Archaeology
» Computer science and engineering



Hierarchical Clustering Algorithms

Let X — {xl, ...,xN}, xl — [xll, ...,xil]T.
Recall that:
» In hard clustering each vector belongs exclusively to a single cluster.
» An m-(hard) clustering of X, ‘R, is a partition of X into m sets (clusters)
Cy - Gy, SO that:
= G#0,j=1,...m
u Uj=1m C] = X
= NG =0,i#j,i,j=12,,...,m

By the definition: R = {C,,j = 1, ...m}



Hierarchical Clustering Algorithms

» Definition: A clustering R, consisting of K clusters is said to be nested in
the clustering R, consisting of r (< k) clusters, if each cluster in R, is a
subset of a cluster in R,

We write ‘R, £ R,
Example: Let Ry = {{xy, x5}, {x,}, {x, x5}}, Ry = {{x, x5, x4}, {x5, %53},
Ry = {{xg, 24} {23} {2, X1} Ry = {{x1, x5 24} {23, x5 1}
Itis R, LN, but not R L N3, R LR, R LR,



Hierarchical Clustering Algorithms

Remarks:
e Hierarchical clustering algorithms produce a hierarchy of nested clusterings.

e They involve N steps at the most.
e At each step t, the clustering ‘R is produced by R,_;.

» Main strategies:

hierarchical hierarchical
clustering algorithms clustering algorithms

Ro = {x1}, - {xn}} Ry = {{xy, -, xp}}

Ry-1 = {{xy, .., 2y} Ry-1 =}
Rl . ZRy_4 Ry-1, Mo



Agglomerative Clustering Algorithms

Let g(C;, C;) a proximity function between two clusters (; and (; of X.

Generalized Agglomerative Scheme (GAS)
» Initialization
* Choose R, = {{x,}, ..., {xy}}

e t=0
» Repeat
c t=t+1

* Choose (C;, C;) in R;_; such that

(C.C) = min, sg(Cy, Cs), if g is adisim. function
N0 = \max, 59(Cr, Cs),  if g is a sim. function

* Define C, = (;U(; and produce R, = (iRt_l —{C;, Cj}) U {Cy4}

» Until all vectors lie in a single cluster.



Agglomerative Clustering Algorithms

Remarks:

e If two vectors come together into a single cluster at level t of the hierarchy,
they will remain in the same cluster for all subsequent clusterings. As a
consequence, there is no way to recover a “poor” clustering that may have
occurred in an earlier level of hierarchy.

e Number of operations: O(N?)



Agglomerative Clustering Algorithms

Definitions of some useful quantities:
Let X = {x,,X,, ..., X}, with x; = [x;1, Xi2, ..., Xi1]" .

» Pattern matrix (D (X)): An NxI matrix whose i-th row is x; (transposed).

» Proximity (similarity or dissimilarity) matrix (P(X)): An NxN matrix whose
(i,j) element equals the proximity @ (x;, x;) (similarity s(x;, x;),
dissimilarity d(x;, x;)).

Example 1: Let X = {x, x,, X3, X,, X}, with
x,=[1,1]" x, =[2,1]", x; = [5,4]", x, = [6,5], x; = [6.5,6]"
Pattern matrix Euclidean distance Tanimoto distance

R (0 1 5 64 74 T 1 075 026 021 0.18]
2 1 10 42 57 6.7 075 1 044 035 0.20
DX)=| 5 4] P(X)=5 42 0 14 25| p(x)=/026 044 1 096 0.90
6 5 64 57 14 0 1.1 021 035 096 1 0.98
6.5 6] 74 67 25 1.1 0 0.18 020 090 098 1 |




Agglomerative Clustering Algorithms

Definitions of some useful quantities:

>Threshold dendrogram (or dendrorgram): It is an effective way of
representing the sequence of clusterings, which are produced by an
agglomerative algorithm.

Example 1 (cont.): If d;,*° (Cy, C; ) is employed as the distance measure
between two sets and the Euclidean one as the distance measure between
two vectors, the following series of clusterings are produced

{0 D0 D 3 by X1 X,j X4 X5
BERE {{xxh I X 3 {x 3} ‘Lj
2 1 {{x % X {Xa X3}
D(X)=| 5 4
6 5 {{X X b X3 X4 X5 1}
| 6.5 6] X1 XX 3. X 4. X5} }
(0 1 5 64 74]

0 42 57 67
P(X)=| 5 42 0 14 25
64 57 14 0 1.1
74 67 25 1.1 0




Agglomerative Clustering Algorithms

Definitions of some useful quantities:

»Proximity (dissimilarity or similarity) dendrogram: A dendrogram that

takes into account the level of proximity (dissimilarity or similarity)
where two clusters are merged for the first time.

Example 1 (cont.): In terms of the previous example, the proximity
dendrograms that correspond to P'(X) and P(X) are

jLLJ

P(X)=

0
1
5

1
0
4.2

6.4 5.7

74 67 2.5

64 74]
42 57 6.7
14 25

0
1.1

Similarity scale

1 _
0.9 +
0.8
0.7
0.6 -
0.5 1
0.4 ~
0.3
0.2
0.1 1

0 -

I

Dissimilarity scale

Xy

Xy Xg

L]

. (2) , , (b)
Remark: One can readily observe the level in which a cluster Is formed
and the level in which it is absorbed in a larger cluster (indication of the
natural clustering).



Agglomerative Clustering Algorithms

Example:
x1 Xz X_1 X X6
33}t
32}
X1 X2

3 ® ® X7

3+
29F X3 N
28F & 5
27t @

Xg
26f &
X4

25}
24

Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.




Agglomerative Clustering Algorithms

Example:

33F

32

31

3F

29+

28¢

271

26}

251

24

Agglomerative philosophy:

X1 X2

X3

X7

0

*In the initial clustering all data vectors belong to different clusters.
*At each step a new clustering is defined by merging the two most similar clusters to

one.

*At the final clustering all vectors belong to the same cluster.



Agglomerative Clustering Algorithms

Example:

33F

32

31

3F

29+

28¢

271

26}

251

24

Agglomerative philosophy:

X1 X2

X3

X7

X5

i

X6

0

*In the initial clustering all data vectors belong to different clusters.
*At each step a new clustering is defined by merging the two most similar clusters to

one.

*At the final clustering all vectors belong to the same cluster.



Agglomerative Clustering Algorithms

Example:

33F

32+
X1 X2

3k X7
3+
29t Xgl
28} X5
27} /
X5
26F &

251

24

Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.




Agglomerative Clustering Algorithms

Example:
Xl XZ X3 X4 XS X6 X7
1.4
24 [ 15 |
1.8
33F
321
X1 X2 2.2

31t r—-. X7

3+
291 X3
281 X5
27F

X
26F & 6
X4

25F
2.4

Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.




Agglomerative Clustering Algorithms

Example:
Xl Xz X3 X4 XS X6 X7
14
L1 ] [ 1s |
1.8
33k
32+
X1 X9 2.2

31k

X7

| 3.1
291 X3
28+ X5
27F
X
26 6
X4

AT S
2.4

Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.




Agglomerative Clustering Algorithms

Example:
X, X, X, X X Xs X,
14
L 15 |
1.8
33F
321
X1 X2 2.2

3AF

X7

| 3.1
29+ X3
281 X5
27F
X
26 6
X

25} 4 9.1
2.4

Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.




Agglomerative Clustering Algorithms

Example:
X X, X, X, X, Xs X,
1.4
L2 [ a5 |
1.8
33F
32F
X1 X2 2.2

31F

X7

| 3.1
29+ X3
281+ X5
27} / /
X
26F 6
X

25} * 9.1
2.4

Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.




Agglomerative Clustering Algorithms

According to the mathematical tools used for their expression, agglomerative
algorithms are divided into:

* Algorithms based on matrix theory.

* Algorithms based on graph theory.
NOTE: In the sequel we consider only dissimilarity measures.

» Algorithms based on matrix theory.
* They take as input the NxN dissimilarity matrix P, = P(X).

* At each level t where two clusters C; and C; are merged to ', the
dissimilarity matrix P, is extracted from P,_4 by:

—Deleting the two rows and columns of P, that correspond to C; and C;.

—Adding a new row and a new column that contain the distances of
newly formed €, = C;UC; from each of the remaining clusters C, via a
relation of the form

d(C, Cs) = f(d(C,;, C5),d(C, C5),d(C;, G))



Agglomerative matrix theory based Clustering Algorithms
e A number of distance functions comply with the following update equation

d(C, Cs) = a;d(C,, Cs) + a,(d(C;, Cs) + bd(C,, ;) + c|d(C,, Cs) — d(C;, Cs)|
(1)

Algorithms that follow the above equation are:
»Single link (SL) algorithm (a; = 1/2,a; = 1/2,b = 0,¢ = —1/2). In this case
d(C, Cs) = min{d(C; Cs),d(C;, C5)} (2)

»Complete link (CL) algorithm (a; = 1/2, a;=1/2,b=0,c =1/2).Inthis
case

d(C, Cs) = max{d(C, C), d(C; Cs)}

Remarks:

e Single link forms clusters at low dissimilarities while complete link forms
clusters at high dissimilarities.

e Single link tends to form elongated clusters (chaining effect ) while complete
link tends to form compact clusters.

e The rest algorithms are compromises between these two extremes.



Agglomerative matrix theory based Clustering Algorithms

Example: 1 1112 131415
X, X, Xy X, X5 Xy Xy

(a) The data set X.

(b) The single link
algorithm dissimilarity
dendrogram.

(c) The complete link
algorithm dissimilarity
dendrogram.
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Agglomerative matrix theory based Clustering Algorithms
» Weighted Pair Group Method Average (WPGMA) (a; = 1/2, a=1/2,b =

0,c = 0). In this case: q(C,, C;I = d(C, Cs) + a(d(C, Cy) + bd(C, C))
= — + (€, C) —d(CC)| -

d(C, Cs) = (d(C, C5) + d(C;,Cy))

» Unweighted Pair Group Method Average (UPGMA) (a; = n;/(n; + ny), a; =
n;/(n; +n;),b = 0,c = 0, where n,; is the cardinality of C,). In this case:

d(C,Cs) = d(C, C

d(C;, Cs)

l J

» Unweighted Pair Group Method Centroid (UPGMC) (a; = n;/(n; + n)),
a;=n;/(n;+n;),b =—-n;n;/(n; + n)?c = 0). In this case:
n; le

dis + ——
n; +n; n; +n;

nin]-

dqs - (nl-+nj)2

d;s —

For the UPGMC, if d;; is defined as the squared Euclidean distance between
the means of C; and (;,
then it holds that d ¢ = |[m, — m| |2, where m_ is the mean of C_ .



Agglomerative matrix theory based Clustering Algorithms
» Weighted Pair Group Method Centroid (WPGMC) (a; = 1/2, a,=1/2,b =

—

— 1/4,¢ = 0). In this case R CGy
dys = ~dig + - djy -7 dy, — 4+ hd(C,G) +cld(C, C) = d(CLC

qs
For WPGMC there are cases where d_ < max{d;s, d;;} (crossover)

» Ward or minimum variance algorithm. Here the distanced’;; between C;
and C; is defined as

nin;
d'j = ——" ||m; —my]|? (3)

ni+nj

d’ ;s can be expressed in terms of d';5, d'j5, d';j as

J = n; + ng n; + ng Ng
qs —

,l
is

!

js

!/

tj

ni+nj+ns ni+nj+ns _ni+nj+ns
Remark: Ward’s algorithm forms R, 1 by merging the two clusters that

lead to the smallest possible increase of the total variance, i.e.,

N-t
=S jrmmr
r=1 XECy



Agglomerative matrix theory based Clustering Algorithms
Example 3: Consider the following dissimilarity matrix (Euclidean

distance) 0 1 2 26 37
1 0 3 25 36

P=/2 3 0 16 25

26 25 16 0 1.5

37 36 25 15 0

Io={{x 5 {3 X3 X3 {Xs3}
I ={{Xy, Xo b {Xa} (X} {Xs3}

I={{X1, Xo} {Xa}: {X4, X5},
9?32{{X1, Xo, Xg}l {X41 XS}}v

.‘}?4={{X]_1 X21 X?,! X4l X5}}

All the algorithms produce the same sequence of clusterings shown
above, yet at different proximity levels:

SL CL WPGMA | UPGMA | WPGMC | UPGMC Ward
I, 0 0 0 0 0 0
o, 1 1 1 1 1 1 0.5
9, 1.5 1.5 1.5 1.5 1.5 1.5 0.75
I, 2 3 2.5 2.5 2.25 2.25 1.5
7, 16 37 25.75 27.5 24.69 26.46 31.75




Agglomerative matrix theory based Clustering Algorithms

Example 3 (in detail): (a) The single-link case A 2}, (xa]) =
(C = C UC d(C C ) — min(d(cu CS) d( )) mln(d({xll}’ {x23}’) d(:zxz} {x3})

= min(2,3) = 2
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1»425 5 -
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3 0O 16 25
6 25 16 0 15
37 36 25 15 O

min(37,36) = 36
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r-h-\
e
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~
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—

d({x1 X2} {x4, X5}) =

(3 |5 (v () | L) | () () ) SRS
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0 2 25 36 [kAray O 2 -- m1n€162§)i16
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Agglomerative matrix theory based Clustering Algorithms

Example 3 (in detail): (a) The single-link case
(Cq = C; UG, d(Cy, Cs) = min(d(C;, C),d(C, C))

&

Mo E. o
CEEE o on
8 2 o Lol E o e

¥Rl = 6o [CEEmEmEE

d({xli x21x3}1 {x4l xS}) —
- = min(25,16) = 16

—
T e [ e x| xs)
I={{x 3 {3 {Xs} {Xs}, {Xs3}, (0)
_ (X1, Xy X3, X, Xo) Ih={{X%, X} X} {%u} {Xs3} (1)
Py: I ={{xy, Xo} {Xa} {Xar X533} (1.5)
I={{X1, X, X} {X4s %53}, (2)
I0,={{X1, X91 X3, X4, X5} }, (16)

{x1; X2, X3, X4, xS}



Agglomerative matrix theory based Clustering Algorithms

Example 3 (in detail): (b) The complete-link case A %) (xa)) =
(C, =CUC d(C C ) = max(d(C;, Cs), d(C;, )) max(d({xll}, e, d(t), (s

= max(2,3) = 3
- -

5 o ----- )
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3 0O 16 25
6 25 16 0 15
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max(37,36) = 37
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d({x1, x5}, {x4,x5}) =

{x3} - max(26,37) = 37
3

: % 37 [EA] o 3 --iiiizié’;‘;fi}é;
¥ - 3 0 (16

% 16 0 15 ----

7 2 15 o [[ESHIEEEEEE



Agglomerative matrix theory based Clustering Algorithms

Example 3 (in detail): (b) The complete-link case
(Cq = Ci U C], d(Cq, CS) = max(d(Ci, CS), d(C], CS))

&

T i oz -
CEEE o v,
g ;o Coa o s

DEE] v s o [EEElNEE o

d({xli x21x3}1 {x4l xS}) —
- = max(37,25) = 37

—
T e [ e x| xs)
37 o EESHIEEE

I={{x 3 {3 {Xs} {Xs}, {Xs3}, (0)
_ (X1, Xy X3, X, Xo) Ih={{X%, X} X} {%u} {Xs3} (1)

Py: I ={{xy, Xo} {Xa} {Xar X533} (1.5)

I={{X1, X, X3} {X4s %53} (3)

I0,={{X1, X91 X3, X4, Xs}}, (37)

{x1; X2, X3, X4, xS}



