
Clustering algorithms 
Konstantinos Koutroumbas 

Unit 7 
– CFO clustering algorithms: Discussion 
– Hierarchical clustering algorithms:  
• the agglomerative case (based on matrix theory) 

1 koutroum@noa.gr  

mailto:koutroum@noa.gr


CFO clustering algorithms: Final remarks  (1) 

2 

Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
A. Generalized Hard Algorithmic Scheme (GHAS) – k-means algorithm 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
| 𝒙𝑖 − 𝜽𝑗 |2 

subject to (a) 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚, and (b)  𝑢𝑖𝑗
𝑚
𝑗=1 = 1, 𝑖 = 1,… ,𝑁. 

 
The Isodata or k-Means or c-Means algorithm 
• Choose arbitrary initial estimates 𝜽𝑗(0) for the 𝜽𝑗’ s, j=1,…,m. 
• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of the partition 
o For 𝑗 = 1 to 𝑚 

𝑢𝑖𝑗(𝑡) =  
1, 𝑖𝑓 ||𝒙𝒊 − 𝜽𝑗(𝑡)||

2 = 𝑚𝑖𝑛𝑞=1,…,𝑚||𝒙𝒊 − 𝜽𝑞(𝑡)||
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o End {For-𝑗} 
 End {For-𝑖} 
 𝑡 = 𝑡 + 1 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗 𝑡 =
 𝑢𝑖𝑗(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗(𝑡 − 1) 𝑁
𝑖=1

, 𝑗 = 1, … ,𝑚 

 End {For-𝑗} 
• Until no change in 𝜽𝑗’ s occurs between two successive iterations 



CFO clustering algorithms: Final remarks  (1) 

3 

Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
B. Generalized Fuzzy Algorithmic Scheme (GFAS) – Fuzzy c-means algorithm 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
| 𝒙𝑖 − 𝜽𝑗 |2 

subject to (a) 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚, and (b)  𝑢𝑖𝑗
𝑚
𝑗=1 = 1, 𝑖 = 1,… , 𝑁. 

 
• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, j=1,…,m. 

• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of 𝑢𝑖𝑗
′ 𝑠 

o For 𝑗 = 1 to 𝑚 

𝑢𝑖𝑗(𝑡) =
1

 
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))
𝑑(𝒙𝑖 , 𝜽𝑘(𝑡))

1
𝑞−1

𝑚
𝑘=1

 

o End {For-𝑗} 
 End {For-𝑖} 
𝑡 = 𝑡 + 1 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗(𝑡) =
 𝑢𝑖𝑗

𝑞(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑁

𝑖=1

, 𝑗 = 1,… ,𝑚 

 End {For-𝑗} 
• Until a termination criterion is met. 



CFO clustering algorithms: Final remarks  (1) 

4 

Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
C. Generalized Probabilistic Algorithmic Scheme (GPrAS) – the normal pdfs case 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒Θ,𝑃𝐽 𝛩, 𝑃 = −  𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

It is (a)𝑃 𝑗 𝒙𝑖 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚, and (b)  𝑃 𝑗 𝒙𝑖
𝑚
𝑗=1 = 1, 𝑖 = 1,… , 𝑁. 

• Choose 𝝁𝑗(0), Σ𝑗(0), 𝑃𝑗(0) as initial estimates for 𝝁𝑗,Σ𝑗 , 𝑃𝑗 , resp. , 𝑗 = 1,… ,𝑚 

• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Expectation step 
o For 𝑗 = 1 to 𝑚 

                                    𝑃(𝑗|𝒙𝑖; 𝛩
𝑡 , 𝑃(𝑡)) =

𝑝(𝑥𝑖|𝑗;𝜃𝑗
𝑡 )𝑃𝑗

(𝑡)

 𝑝(𝑥𝑖|𝑞;𝜃𝑞
𝑡 )𝑃𝑞

(𝑡)𝑚
𝑞=1

≡ 𝛾𝑗𝑖
(𝑡) 

o End {For-𝑗} 
 End {For-𝑖} 
𝑡 = 𝑡 + 1 
 For 𝑗 = 1 to 𝑚 % Parameter updating – Maximization step 

o Set 

𝝁𝑗
(𝑡) =

 𝛾𝑗𝑖
(𝑡−1)𝒙𝒊

𝑁
𝑖=1

 𝛾𝑗𝑖
(𝑡−1)𝑁

𝑖=1

, 𝛴𝑗
(𝑡) =

 𝛾𝑗𝑖
(𝑡−1)(𝒙𝒊−𝝁𝒋)

𝑁
𝑖=1 (𝒙𝒊−𝝁𝒋)

𝑻

 𝛾𝑗𝑖
(𝑡−1)𝑁

𝑖=1

 𝑗 = 1,… ,𝑚 

 

𝑃𝑗
(𝑡) =

1

𝑁
 𝛾𝑗𝑖

(𝑡−1)
𝑁

𝑖=1
, 𝑗 = 1, … ,𝑚 

- End {For-𝑗} 
• Until a termination criterion is met. 



CFO clustering algorithms: Final remarks (1)  

5 

Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
Consider the GPrAS cost function  

𝐽 𝛩, 𝑃 = −  𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

with  

𝑝 𝒙𝑖 𝑗; 𝜽𝑗 =
1

2𝜋
𝑙
2 Σ𝑗

1
2

𝑒𝑥𝑝 −
𝒙𝑖 − 𝝁𝑗

𝑇
Σ𝑗

−1 𝒙𝑖 − 𝝁𝑗

2
 

It is 𝐽 𝛩, 𝑃 = −  𝑃 𝑗 𝒙𝑖 ln
1

2𝜋
𝑙
2 Σ𝑗

1
2

𝑒𝑥𝑝 −
𝒙𝑖−𝝁𝑗

𝑇
Σ𝑗

−1 𝒙𝑖−𝝁𝑗

2
𝑃𝑗

𝑚
𝑗=1

𝑁
𝑖=1 = 

−  𝑃 𝑗 𝒙𝑖 ln
1

2𝜋
𝑙
2 Σ𝑗

1
2

𝑚

𝑗=1

𝑁

𝑖=1

+
1

2
  𝑃 𝑗 𝒙𝑖 𝒙𝑖 − 𝝁𝑗

𝑇
Σ𝑗

−1 𝒙𝑖 − 𝝁𝑗

𝑚

𝑗=1

𝑁

𝑖=1

−  𝑃 𝑗 𝒙𝑖 ln 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

𝜽𝑗 = 𝝁𝑗 , Σ𝑗  

Term A 

Term B 

Term C 



CFO clustering algorithms: Final remarks (1)  

6 

Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
Assumption 1: Σ𝑗 = Σ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑗 = 1,… ,𝑚. Then 

𝑇𝑒𝑟𝑚 𝑨 = −  𝑃 𝑗 𝒙𝑖 ln
1

2𝜋
𝑙
2 Σ

1
2

𝑚

𝑗=1

𝑁

𝑖=1

= − ln
1

2𝜋
𝑙
2 Σ

1
2

  𝑃 𝑗 𝒙𝑖
𝑚

𝑗=1

𝑁

𝑖=1
= − ln

1

2𝜋
𝑙
2 Σ

1
2

 1
𝑁

𝑖=1

= −𝛮 ln
1

2𝜋
𝑙
2 Σ

1
2

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Assumption 2: 𝑃𝑗 =
1

𝑚
, 𝑗 = 1,… ,𝑚. Then 

𝑇𝑒𝑟𝑚 𝑪

= −  𝑃 𝑗 𝒙𝑖 ln
1

𝑚
= − ln

1

𝑚
  𝑃 𝑗 𝒙𝑖

𝑚

𝑗=1
= −𝑁 ln

1

𝑚
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑁

𝑖=1

𝑚

𝑗=1

𝑁

𝑖=1
 

 



CFO clustering algorithms: Final remarks (1)  

7 

Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
Based on the previous two results, it follows that 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −  𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

⇕ 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑃 𝑗 𝒙𝑖 𝒙𝑖 − 𝝁𝑗
𝑇
Σ−1 𝒙𝑖 − 𝝁𝑗

𝑚

𝑗=1

𝑁

𝑖=1
 

 
Assumption 3(a): Approximate 𝑃 𝑗 𝒙𝑖  as 

𝑃 𝑗 𝒙𝑖  =  
1, 𝑃 𝑗 𝒙𝑖 = 𝑚𝑎𝑥𝑠=1,…,𝑚𝑃 𝑠 𝒙𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

≡ 𝑢𝑖𝑗  

In this case, 𝐺𝑃𝑟𝐴𝑆 ⇔ 𝑘 −𝑚𝑒𝑎𝑛𝑠(for 𝛴 = 𝜎2𝛪) 

 
Assumption 3(b): Approximate 𝑃 𝑗 𝒙𝑖  as 

𝑃 𝑗 𝒙𝑖  =
1

 
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))
𝑑(𝒙𝑖 , 𝜽𝑘(𝑡))

1
𝑞−1

𝑚
𝑘=1

≡ 𝑢𝑖𝑗  

In this case, 𝐺𝑃𝑟𝐴𝑆 ⇔ 𝑓𝑢𝑧𝑧𝑦 𝑐 − 𝑚𝑒𝑎𝑛𝑠(for 𝛴 = 𝜎2𝛪) 

Σ𝑗 = Σ 

WARNING: Valid ONLY from a 
mathematical formulation point of 

view. NOT from a conceptual point of 
view. 



CFO clustering algorithms: Final remarks (1)  

8 

Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
 
Remarks:  
The hard, fuzzy and probabilistic CFO clustering algorithms (with point 
representatives and squared Euclidean distance) : 
• are partition algorithms.  
• they share the “sum-to-one” constraint.  
• they can be related to each other (due to the “sum-to-one” constraint). 
 
The possibilistic CFO clustering algorithms (point representatives and squared 
Euclidean distance) : 
• are mode seeking algorithms 
• no “sum-to-one” constraint is associated with them 
• they can not be related to the hard, fuzzy and probabilistic CFO clustering 

algorithms (due to the absence of the sum-to-one constraint). 



CFO clustering algorithms: Final remarks (2)  

9 

The role of 𝑞 in the fuzzy clustering  
Consider the minimization problem for fuzzy clustering 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
𝑑𝑖𝑗  

subject to (a) 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚, and (b)  𝑢𝑖𝑗
𝑚
𝑗=1 = 1, 𝑖 = 1,… , 𝑁. 

 
Expanding 𝐽 𝑈, 𝛩 , we have 

𝐽 𝑈, 𝛩 =

𝑢11
𝑞𝑑11 + 𝑢12

𝑞𝑑12 +

𝑢21
𝑞𝑑21 + 𝑢22

𝑞𝑑22 +

… 𝑢1𝑚
𝑞𝑑1𝑚

… 𝑢2𝑚
𝑞𝑑2𝑚

⋮ ⋮
𝑢𝑁1

𝑞𝑑𝑁1 + 𝑢𝑁2
𝑞𝑑𝑁2 +

⋱ ⋮
⋯ 𝑢𝑁𝑚

𝑞𝑑𝑁𝑚

 

 
Assumption: 𝑑𝑖𝑗’s are fixed. 

Then, due to the sum-to-one constraint, 𝐽 𝑈, 𝛩  is minimized if each of the 
summation in the rows of the above expansion is minimized. 
 
Let 𝑠𝑖:  𝑑𝑖𝑠𝑖 = 𝑚𝑖𝑛𝑗=1,…,𝑚𝑑𝑖𝑗 , 𝑖 = 1,… ,𝑁 

Then,  

𝑢𝑖1
𝑞𝑑𝑖1+…+𝑢𝑖𝑚

𝑞𝑑𝑖𝑚 ≥  𝑢𝑖𝑗
𝑞

𝑚

𝑗=1
𝑑𝑖𝑠𝑖  

𝑑𝑖𝑗 = 𝑑 𝒙𝑖 , 𝜽𝑗  



CFO clustering algorithms: Final remarks (2)  

10 

The role of 𝑞 in the fuzzy clustering  

𝐴𝑖 = 𝑢𝑖1
𝑞𝑑𝑖1+…+𝑢𝑖𝑚

𝑞𝑑𝑖𝑚 ≥  𝑢𝑖𝑗
𝑞

𝑚

𝑗=1
𝑑𝑖𝑠𝑖  

For 𝑞 = 1, it is  𝑢𝑖𝑗
𝑚
𝑗=1 = 1. Thus 

𝐴𝑖 = 𝑢𝑖1𝑑𝑖1+… +𝑢𝑖𝑚 𝑑𝑖𝑚 ≥ 𝑑𝑖𝑠𝑖  

Clearly, the equality holds for 𝑢𝑖𝑠𝑖 = 1 and 𝑢𝑖𝑗 = 0, for 𝑗 = 1,… ,𝑚, 𝑗 ≠ 𝑠𝑖 

 
In other words the minimum possible value of 𝐴𝑖 is achieved for the hard cluster 
solution. Thus, no fuzzy clustering (where more than one 𝑢𝑖𝑗’s are positive) minimizes 

the 𝐴𝑖. 
 
For 𝑞 > 1, in the hard clustering case, the minimum possible value of 𝐴𝑖 is still 𝑑𝑖𝑠𝑖. 

 
For 𝑞 > 1, in the fuzzy clustering case, it is  𝑢𝑖𝑗

𝑞𝑚
𝑗=1 < 1. Thus 

𝑑𝑖𝑠𝑖 >  𝑢𝑖𝑗
𝑞

𝑚

𝑗=1
𝑑𝑖𝑠𝑖  

Thus, in this cases, there are choices for 𝑢𝑖𝑗’s with more than one of them being 

positive (fuzzy case) that achieve lower value for 𝐴𝑖 than the best hard clustering. 
The larger the value of 𝑞, the more fuzzy clusterings achieve for 𝐴𝑖 value < 𝑑𝑖𝑠𝑖. 



CFO clustering algorithms: Final remarks (2)  

11 

The role of 𝑞 in the fuzzy clustering  
Example: 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4  
𝒙1 = 0,0 𝑇, 𝒙2 = 2,0 𝑇, 𝒙3 = 0,3 𝑇, 𝒙4 = 2,3 𝑇 
𝜽1 = 1,0 𝑇, 𝜽2 = 1,3 𝑇 (fixed) 

𝒒 = 𝟏 (hard case): Best solution 𝑈ℎ𝑎𝑟𝑑 =

1 0
1 0
0 1
0 1

, 𝐽ℎ𝑎𝑟𝑑 = 𝟒 

𝒒 = 𝟐 (fuzzy case): Focus on 𝒙1: 

Question: Is it possible to have 𝑢11
2 ∙ 1 + 𝑢12

2 ∙ 10 < 1?   (A) 
Since 𝑢12 = 1 − 𝑢11, (A) becomes 

𝑢11
2 ∙ 1 + 1 − 𝑢11

2 ∙ 10 < 1 ⇔ 

 10 + 1 𝑢11
2 − 2 10𝑢11 + 10 − 1 < 0 ⇔ 

 𝑢11 ∈ (0.52,1) ⇒ 𝑢12 ∈ (0,0.48) 
 
For example, if 𝑢11 = 0.7 (𝑢12 = 0.3), it is  

𝑢11
2 ∙ 1 + 𝑢12

2 ∙ 10 = 0.72 ∙ 1 + 0.32 ∙  10 = 0.77 < 1 

𝒙1 𝒙2 

𝒙3 𝒙4 

𝜽1 

𝜽2 

𝑑 𝒙𝑖 , 𝜽𝑗  𝜽1 = 1,0  𝜽𝟐 = 1,3  

𝒙1 = (0,0) 𝑑11 = 1 𝑑12 = 10 

𝒙2 = (2,0) 𝑑21 = 1 𝑑22 = 10 

𝒙3 = (0,3) 𝑑31 = 10 𝑑32 = 1 

𝒙4 = (2,3) 𝑑41 = 10 𝑑42 = 1 



CFO clustering algorithms: Final remarks (3)  

12 

The role of 𝑞 in the possibilistic clustering  
Consider the minimization problem for possibilistic clustering 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝒖𝑗 , 𝜽𝑗 =  𝑢𝑖𝑗
𝑞𝑑𝑖𝑗

𝑁

𝑖=1
+ 𝜂𝑗  1− 𝑢𝑖𝑗

𝑞𝑁

𝑖=1
 

subject to  𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚. 

 
For 𝑞 = 1, 𝐽 𝒖𝑗 , 𝜽𝑗  is written as 

𝐽 𝒖𝑗 , 𝜽𝑗 =  𝑢𝑖𝑗 𝑑𝑖𝑗 − 𝜂𝑗 + 𝜂𝑗
𝑁

𝑖=1
 

Thus, minimizing 𝐽 𝒖𝑗 , 𝜽𝑗  is equivalent to minimizing  

 𝑢𝑖𝑗 𝑑𝑖𝑗 − 𝜂𝑗
𝑁

𝑖=1
 

For fixed 𝜽𝑗(⇒ fixed 𝑑 𝒙𝑖 , 𝜽𝑗 ≡ 𝑑𝑖𝑗), the latter achieves it minimum (negative) value 

by selecting 𝑢𝑖𝑗 = 1, for 𝑑𝑖𝑗 < 𝜂𝑗 

and 𝑢𝑖𝑗 = 0, for 𝑑𝑖𝑗 > 𝜂𝑗.  

 
However, in the above situation, all points having distance less than 𝜂𝑗 from 𝜽𝑗, they 

all have the same weight in the determination of 𝜽𝑗, while all the other points have no 

influence in the determination of 𝜽𝑗. 



CFO clustering algorithms: Final remarks (3)  

13 

The role of 𝑞 in the possibilistic clustering  
Consider the minimization problem for possibilistic clustering 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝒖𝑗 , 𝜽𝑗 =  𝑢𝑖𝑗
𝑞𝑑𝑖𝑗

𝑁

𝑖=1
+ 𝜂𝑗  1− 𝑢𝑖𝑗

𝑞𝑁

𝑖=1
 

subject to  𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚. 

 
 For 𝑞 > 1, (for fixed  𝜽𝑗(⇒ fixed 𝑑 𝒙𝑖 , 𝜽𝑗 ≡ 𝑑𝑖𝑗)) it is 

𝑢𝑖𝑗 =
1

1 +
𝑑𝑖𝑗

𝜂𝑗

1
𝑞−1

 

      Thus, points for which 𝑑𝑖𝑗 > 𝜂𝑗 have 𝑢𝑖𝑗 > 0.  

 

 Furthermore, as 𝑞 → ∞, (for fixed  𝜽𝑗(⇒ fixed 𝑑 𝒙𝑖 , 𝜽𝑗 ≡ 𝑑𝑖𝑗)) it is  

𝑢𝑖𝑗 →
1

2
 

 
      Thus, all points have the same degree of compatibility with all clusters.  



CFO clustering algorithms: Final remarks (4)  

14 

The role of 𝑞 in the parameters updating in fuzzy and possibilistic clustering  
 
Let 0 < 𝑢1 < 𝑢2 < 1.  
We define 𝛥𝑢 = 𝑢2 − 𝑢1 and 𝛥𝑢𝑞 = 𝑢2

𝑞 − 𝑢1
𝑞 (𝑞 > 1). 

 
For 𝑞 = 2, it is 𝛥𝑢2 = 𝑢2

2 − 𝑢1
2 = 𝛥𝑢 𝑢2 + 𝑢1 . 

 
If 𝑢2 + 𝑢1 > 1 (the respective points are “close” to the representative under 
consideration), then 𝛥𝑢2 > 𝛥𝑢 
 
Therefore, the function 𝑓(𝑢) = 𝑢𝑞, enhances the difference between two 
values of 𝑢. 
 
If 𝑢2 + 𝑢1 < 1 (the respective points are “away” from the representative 
under consideration), then 𝛥𝑢2 < 𝛥𝑢 
 
Therefore, the function 𝑓(𝑢) = 𝑢𝑞, diminishes the difference between two 
values of 𝑢. 



CFO clustering algorithms: Final remarks (4)  

15 

The role of 𝑞 in the parameters updating in fuzzy and possibilistic clustering  
 
Consider the updating equation for the point representative case and the 
squared Euclidean distance case (fuzzy and 1st possibilistic clust. algorithms) 

𝜽𝑗(𝑡) =
 𝑢𝑖𝑗

𝑞(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑁

𝑖=1

, 𝑗 = 1,… ,𝑚 

For 𝑞 > 1, and since 𝑢𝑖𝑗 ∈ (0,1), the previous observation indicates that the 

𝒙𝑖’s with high (low) 𝑢𝑖𝑗, will have more (much less) significant contribution to 

the estimation of 𝜽𝑗(𝑡), compared with the 𝑞 = 1 case. 

 
Example: Let 𝒙1 = 0, 0 𝑇 and 𝒙2 = 10, 10 𝑇, and 𝑢1𝑗 = 0.1, 𝑢2𝑗 = 0.9. Then 

𝜽𝑗 =
𝑢1𝑗𝒙1 + 𝑢2𝑗𝒙2

𝑢1𝑗 + 𝑢2𝑗
=

9
9

   (𝑞 = 1) 

and 

𝜽𝑗 =
𝑢1𝑗

𝑞𝒙1 + 𝑢2𝑗
𝑞𝒙2

𝑢1𝑗
𝑞 + 𝑢2𝑗

𝑞 =
9.9
9.9

   (𝑞 = 2) 

 



Optimization theory – Basic concepts 

Let 𝐽(𝒘) be a continuous function of 𝒘. 
Problem (P1): Determine the position w* where the function J(w) achieves 
its minimum value. 
 
A simple method for solving (P1) is that of gradient descent. 
-Initialize 𝒘 = 𝒘(0) 
-𝑡 = 0 
-Repeat 

- 𝒘 𝑡 + 1 = 𝒘 𝑡 − 𝜇
𝜕𝐽 𝒘

𝜕𝒘
|𝒘=𝒘 𝑡  

        -  𝑡 = 𝑡 + 1 
-Until convergence 



Optimization theory – Basic concepts 

-An example: Let 𝒘 = [𝑤1, 𝑤2]
𝑇 and 𝐽(𝒘) = (𝑤1 − 1)2 + (𝑤2 − 1)2. Clearly, 

the minimum value of 𝐽(𝒘) is met at 𝒘∗ = [1, 1]
 𝑇. 

-It is 
 
-Applying the gradient descent algorithm 
for 𝒘(0) = [0, 5]

 𝑇, and 𝜇 = 0.1, we have 
 
 
 
 

-Thus, 𝒘(1) comes closer to 𝒘∗. 



















22

22)(

2

1

w

wJ

w

w





























2.4

2.0

8

2
1.0

5

0
)1(w



Optimization theory – Basic concepts 



Optimization theory – Basic concepts 

Remarks for gradient descent: 
-The value of 𝜇 should be chosen not too large, in order to avoid oscillations 
around the minimum and not too small in order to avoid unnecessary 
delays in the convergence 

-If 𝐽(𝒘) has more than one local minima, the gradient descent will converge 
(in general) to the one that is closest to 𝒘(0). 

-If the algorithm is trapped to a local minimum that correspond to a poor 
solution, the only way to escape from it is to re-initialize the algorithm from 
another initial position. 

-It can be proved that, under 
certain conditions, the algorithm 
converges asymptotically to a 
local minimum of 𝐽(𝒘). 



Optimization theory – Basic concepts 

Let 𝐽(𝒘) be a continuous function of 𝒘. 
Problem (P2): Determine the position 𝒘∗ where the function 𝐽(𝒘) achieves 
its minimum value, under the constraint that 𝒘 satisfies some equality 
constraints. 
 
For linear equality constraints, the problem is stated as follows 
•Minimize 𝐽(𝒘) 
•Subject to the constraints 
𝐴𝒘 = 𝒃, where 𝐴 an 𝑚𝑥𝑙 
matrix and 𝒃 an 𝑚-dim. Vector. 

 
Solution: Lagrange multipliers 
Minimize 
- 𝐿(𝒘) = 𝐽(𝒘) + 𝝀Τ(𝐴𝒘 − 𝒃) 
- 𝝀 is an 𝑚-dim vector that is 
estimated through the 
constraints 𝐴𝒘 = 𝒃 



Optimization theory – Basic concepts 

Let 𝐽(𝒘) be a continuous function of 𝒘. 
Problem (P3): Determine the position 𝒘∗ where the function J(w) achieves 
its minimum value, under the constraint that w satisfies some inequality 
constraints. 
 
For linear inequality constraints, the problem is stated as follows 

•Minimize 𝐽(𝒘) 
•Subject to the constraints 
𝐴𝒘 ≥ 𝒃, where 𝐴 an 𝑚𝑥𝑙 
matrix and 𝒃 an 𝑚-dim. Vector. 



Hierarchical Clustering Algorithms 

 They produce a hierarchy of (hard) clusterings instead of a single 
clustering. 
 

 They find applications in: 
 Social sciences 
 Biological taxonomy 
 Modern biology 
 Medicine 
 Archaeology 
 Computer science and engineering 



Hierarchical Clustering Algorithms 

Let 𝑋 = {𝒙1, … , 𝒙𝑁},   𝒙𝑖 = [𝑥𝑖1, … , 𝑥𝑖𝑙]
𝑇.  

Recall that: 
 In hard clustering each vector belongs exclusively to a single cluster. 
 An 𝑚-(hard) clustering of 𝑋, , is a partition of X into m sets (clusters) 

𝐶1, … , 𝐶𝑚  
, so that: 

 
 𝐶𝑗 ≠ ∅, 𝑗 = 1,… ,𝑚 

 
 ∪𝑗=1

𝑚 𝐶𝑗 = 𝑋 

 
 𝐶𝑖 ∩ 𝐶𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, , … ,𝑚 

 
     By the definition:  = {𝐶𝑗, 𝑗 = 1,…𝑚} 

 



Hierarchical Clustering Algorithms 

 Definition: A clustering 1 consisting of k clusters is said to be nested in 
the clustering 2 consisting of 𝑟 (< 𝑘) clusters, if each cluster in 1 is a 
subset of a cluster in 2. 

We write 1 2 

 

 
Example: Let 1 = {{𝒙1, 𝒙3}, {𝒙4}, {𝒙2, 𝒙5}}, 2 = {{𝒙1, 𝒙3, 𝒙4}, {𝒙2, 𝒙5}},  
 
          3 = {{𝒙1, 𝒙4}, {𝒙3}, {𝒙2, 𝒙5}}, 4 = {{𝒙1, 𝒙2, 𝒙4}, {𝒙3, 𝒙5}}. 
 
                   It is 1 2, but not 1 3, 1 4, 1 1. 

 



Hierarchical Clustering Algorithms 

Remarks: 
• Hierarchical clustering algorithms produce a hierarchy of nested clusterings. 

 
• They involve 𝑁 steps at the most. 

 
• At each step 𝑡, the clustering 𝑡 is produced by 𝑡−1. 
 
  Main strategies: 

Agglomerative hierarchical 
clustering algorithms 

Divisive hierarchical 
clustering algorithms 

0 = {{𝒙1}, … , {𝒙𝑁}} 0 = {{𝒙1, … , 𝒙𝑁}} 

.   .   . .   .   . 

𝑁−1 = {{𝒙1, … , 𝒙𝑁}} 𝑁−1 = {{𝒙1}, … , {𝒙𝑁}} 

0 …  𝑁−1 𝑁−1 …  
0 



Agglomerative Clustering Algorithms 

Let 𝑔(𝐶𝑖 , 𝐶𝑗) a proximity function between two clusters 𝐶𝑖  and 𝐶𝑗  of X. 

 

Generalized Agglomerative Scheme (GAS) 

 Initialization 
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}} 
•  𝑡 = 0 

 Repeat 
•  𝑡 = 𝑡 + 1 

• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that 

 

 𝑔 𝐶𝑖 , 𝐶𝑗 =  
𝑚𝑖𝑛𝑟,𝑠𝑔 𝐶𝑟 , 𝐶𝑠 , 𝑖𝑓 𝑔 𝑖𝑠 𝑎 𝑑𝑖𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑟,𝑠𝑔 𝐶𝑟 , 𝐶𝑠 , 𝑖𝑓 𝑔 𝑖𝑠 𝑎 𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
 

 

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗  and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞} 

 

 Until all vectors lie in a single cluster. 



Agglomerative Clustering Algorithms 

Remarks: 
• If two vectors come together into a single cluster at level 𝑡 of the hierarchy, 

they will remain in the same cluster for all subsequent clusterings. As a 
consequence, there is no way to recover a “poor” clustering that may have 
occurred in an earlier level of hierarchy. 
 

• Number of operations: 𝑂(𝑁3) 



Agglomerative Clustering Algorithms 

Definitions of some useful quantities: 
Let 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁}, with 𝒙𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑙]

𝑇. 

 

 Pattern matrix (𝐷(𝑋)): An 𝑁x𝑙 matrix whose 𝑖-th row is  𝒙𝑖 (transposed). 
 

 Proximity (similarity or dissimilarity) matrix (𝑃(𝑋)): An 𝑁x𝑁 matrix whose 
(𝑖, 𝑗) element equals the proximity (𝒙𝑖, 𝒙𝑗) (similarity 𝑠(𝒙𝑖, 𝒙𝑗), 
dissimilarity 𝑑(𝒙𝑖, 𝒙𝑗)).  
 

Example 1: Let 𝑋 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}, with  
       𝒙1 = [1, 1]𝑇, 𝒙2 = [2, 1]𝑇, 𝒙3 = [5, 4]𝑇, 𝒙4 = [6, 5]𝑇, 𝒙5 = [6.5, 6]𝑇 

   Pattern matrix            Euclidean distance                         Tanimoto distance 

























65.6

56

45

12

11

)(XD

























01.15.27.64.7

1.104.17.54.6

5.24.102.45

7.67.52.401

4.74.6510

)(XP

























198.090.020.018.0

98.0196.035.021.0

90.096.0144.026.0

20.035.044.0175.0

18.021.026.075.01

)(' XP



Agglomerative Clustering Algorithms 
Definitions of some useful quantities: 
Threshold dendrogram (or dendrorgram): It is an effective way of 
representing the sequence of clusterings, which are produced by an 
agglomerative algorithm. 

Example 1 (cont.): If 𝑑𝑚𝑖𝑛
𝑠𝑠 𝐶𝑖 , 𝐶𝑗  is employed as the distance measure 

between two sets and the Euclidean one as the distance measure between 
two vectors, the following series of clusterings are produced:  

























65.6

56

45

12

11

)(XD

























01.15.27.64.7

1.104.17.54.6

5.24.102.45

7.67.52.401

4.74.6510

)(XP

x1 x2
x3 x4 x5{{ },{ },{ },{ },{ }}x x x x x1 2 3 4 5

{{ , },{ },{ },{ }}x x x x x1 2 3 4 5

{{ , },{ },{ , }}x x x x x1 2 3 4 5

{{ , },{ , , }}x x x x x1 2 3 4 5

{{ , , , , }}x x x x x1 2 3 4 5



Agglomerative Clustering Algorithms 
Definitions of some useful quantities: 
Proximity (dissimilarity or similarity) dendrogram:  A dendrogram that 
takes into account the level of proximity (dissimilarity or similarity) 
where two clusters are merged for the first time. 
 
Example 1 (cont.): In terms of the previous example, the proximity 
dendrograms that correspond to 𝑃΄(𝑋) and 𝑃(𝑋) are 
 
 
 
 
 
 
 
 
 
Remark: One can readily observe the level in which a cluster is formed 
and the level in which it is absorbed in a larger cluster (indication of the 
natural clustering). 

























01.15.27.64.7

1.104.17.54.6

5.24.102.45

7.67.52.401

4.74.6510

)(XP

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

S
im

il
a
ri

ty
 s

c
al

e

x1 x2 x3 x4 x5

10

0

1

2

3

4

5

9

8

7

6

D
is

si
m

il
a
ri

ty
 s

c
al

e

x1 x2 x3 x4 x5

(a) (b)



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.5 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.8 

1.5 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.8 

1.5 

2.2 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.8 

1.5 

3.1 

2.2 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.8 

1.5 

3.1 

2.2 

9.1 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.8 

1.5 

3.1 

2.2 

9.1 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 
According to the mathematical tools used for their expression, agglomerative 
algorithms are divided into: 

• Algorithms based on matrix theory. 
• Algorithms based on graph theory. 

NOTE: In the sequel we consider only dissimilarity measures. 
 
 Algorithms based on matrix theory. 

• They take as input the 𝑁x𝑁 dissimilarity matrix 𝑃0 = 𝑃(𝑋). 
 

• At each level 𝑡 where two clusters 𝐶𝑖 and 𝐶𝑗 are merged to 𝐶𝑞, the 
dissimilarity matrix 𝑃𝑡 is extracted from 𝑃𝑡−1 by: 
 
Deleting the two rows and columns of 𝑃𝑡 that correspond to 𝐶𝑖 and 𝐶𝑗. 

 
Adding a new row and a new column that contain the distances of 

newly formed 𝐶𝑞 = 𝐶𝑖𝐶𝑗 from each of the remaining clusters 𝐶𝑠, via a 

relation of the form 
 𝑑(𝐶𝑞, 𝐶𝑠) = 𝑓(𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠), 𝑑(𝐶𝑖, 𝐶𝑗)) 



Agglomerative matrix theory based Clustering Algorithms 
•A number of distance functions comply with the following update equation 

 
𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠) + 𝑏𝑑(𝐶𝑖, 𝐶𝑗) + 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)| 
 
Algorithms that follow the above equation are: 
 
 Single link (SL) algorithm (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 = 0, 𝑐 = −1/2). In this case 

 
  𝑑(𝐶𝑞, 𝐶𝑠) = min {𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠)}  (2) 
 
 Complete link (CL) algorithm (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 = 0, 𝑐 = 1/2). In this 
case 

 
  𝑑(𝐶𝑞, 𝐶𝑠) = max {𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠)} 
Remarks: 
• Single link forms clusters at low dissimilarities while complete link forms 

clusters at high dissimilarities. 
• Single link tends to form elongated clusters (chaining effect ) while complete 

link tends to form compact clusters. 
• The rest algorithms are compromises between these two extremes. 

(1) 



Agglomerative matrix theory based Clustering Algorithms 
Example: 

(a) The data set 𝑋.  

(b) The single link 
algorithm dissimilarity 
dendrogram.  

(c) The complete link 
algorithm dissimilarity 
dendrogram. 



Agglomerative matrix theory based Clustering Algorithms 
  Weighted Pair Group Method Average (WPGMA) (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 =
0, 𝑐 = 0). In this case: 
 

         𝑑(𝐶𝑞, 𝐶𝑠) =
1

2
(𝑑(𝐶𝑖, 𝐶𝑠)  +  𝑑(𝐶𝑗, 𝐶𝑠)) 

 
  Unweighted Pair Group Method Average (UPGMA) (𝑎𝑖 = 𝑛𝑖/(𝑛𝑖 + 𝑛𝑗), 𝑎𝑗 =
𝑛𝑗/(𝑛𝑖 + 𝑛𝑗), 𝑏 = 0, 𝑐 = 0, where 𝑛𝑖 is the cardinality of 𝐶𝑖). In this case: 
 

          𝑑(𝐶𝑞, 𝐶𝑠) =
𝑛𝑖

𝑛
𝑖
+𝑛

𝑗
 
𝑑(𝐶𝑖, 𝐶𝑠)  +

𝑛𝑗

𝑛
𝑖
+𝑛

𝑗

 𝑑(𝐶𝑗, 𝐶𝑠) 

 
  Unweighted Pair Group Method Centroid (UPGMC) (𝑎𝑖 = 𝑛𝑖/(𝑛𝑖 + 𝑛𝑗),
𝑎𝑗 = 𝑛𝑗/(𝑛𝑖 + 𝑛𝑗), 𝑏 = −𝑛𝑖 

𝑛𝑗/(𝑛𝑖 + 𝑛𝑗)
2, 𝑐 = 0). In this case: 

 

𝑑𝑞𝑠 =
𝑛𝑖

𝑛𝑖 + 𝑛𝑗
𝑑𝑖𝑠 +

𝑛𝑗

𝑛𝑖 + 𝑛𝑗
𝑑𝑗𝑠 −

𝑛𝑖𝑛𝑗

(𝑛𝑖+𝑛𝑗)
2 𝑑𝑖𝑗 

  
For the UPGMC, if 𝑑𝑖𝑗 is defined as the squared Euclidean distance between 
the means of 𝐶𝑖  and 𝐶𝑗,  
then it holds that  𝑑𝑞𝑠 = ||𝒎𝑞 −𝒎𝑠||

2, where 𝒎𝑞 is the mean of 𝐶𝑞 . 

𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠) + 𝑏𝑑(𝐶𝑖, 𝐶𝑗)

+ 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)| 



Agglomerative matrix theory based Clustering Algorithms 
  Weighted Pair Group Method Centroid (WPGMC) (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 =
− 1/4, 𝑐 = 0). In this case 

  𝑑𝑞𝑠 =
1

2
𝑑𝑖𝑠 +

1

2
 𝑑𝑗𝑠 –

1

4
𝑑𝑖𝑗 

    For WPGMC there are cases where 𝑑𝑞𝑠 max {𝑑𝑖𝑠, 𝑑𝑗𝑠} (crossover) 
 

  Ward or minimum variance algorithm. Here the distance𝑑′
𝑖𝑗 between 𝐶𝑖 

and 𝐶𝑗 is defined as 

  𝑑′
𝑖𝑗 =

𝑛𝑖𝑛𝑗

𝑛𝑖+𝑛𝑗
 ||𝒎𝑖 −𝒎𝑗||

2 

 

𝑑′
𝑞𝑠 can be expressed in terms of 𝑑′

𝑖𝑠, 𝑑′
𝑗𝑠, 𝑑′

𝑖𝑗 as 

𝑑′
𝑞𝑠 =

𝑛𝑖 + 𝑛𝑠  
𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠

𝑑′
𝑖𝑠  +

𝑛𝑗 + 𝑛𝑠

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠
𝑑′

𝑗𝑠 –
𝑛𝑠

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠
𝑑′

𝑖𝑗 

 
Remark: Ward’s algorithm forms 𝑡+1 by merging the two clusters that 
lead to the smallest possible increase of the total variance, i.e., 

𝐸𝑡 =   | 𝒙 −𝒎𝑟 |2
𝒙∈𝐶𝑟

𝑁−𝑡

𝑟=1
 

(3) 

𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠)
+ 𝑏𝑑(𝐶𝑖, 𝐶𝑗) + 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)| 



Agglomerative matrix theory based Clustering Algorithms 
Example 3: Consider the following dissimilarity matrix (Euclidean 
distance) 
 
 
 
 
 
 All the algorithms produce the same sequence of clusterings shown 
above, yet at different proximity levels:  

 

0={{x1}, {x2}, {x3}, {x4}, {x5}}, 

1={{x1, x2}, {x3}, {x4}, {x5}},  

2={{x1, x2}, {x3}, {x4, x5}}, 

3={{x1, x2, x3}, {x4, x5}},  

4={{x1, x2, x3, x4, x5}} 
























05.1253637

5.10162526

2516032

3625301

3726210

0P

SL CL WPGMA UPGMA WPGMC UPGMC Ward 

0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 0.5 

2 1.5 1.5 1.5 1.5 1.5 1.5 0.75 

3 2 3 2.5 2.5 2.25 2.25 1.5 

4 16 37 25.75 27.5 24.69 26.46 31.75 



Agglomerative matrix theory based Clustering Algorithms 
Example 3 (in detail): (a) The single-link case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = min (𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠)) 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1} 0 1 2 26 37 

{𝒙2} 1 0 3 25 36 

{𝒙3} 2 3 0 16 25 

{𝒙4} 26 25 16 0 1.5 

{𝒙5} 37 36 25 1.5 0 

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1, 𝒙2} 0 2 25 36 

{𝒙3} 2 0 16 25 

{𝒙4} 25 16 0 1.5 

{𝒙5} 36 25 1.5 0 

𝑃0: 

𝑃1: 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1} 0 1 2 26 37 

{𝒙2} 1 0 3 25 36 

{𝒙3} 2 3 0 16 25 

{𝒙4} 26 25 16 0 1.5 

{𝒙5} 37 36 25 1.5 0 

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1, 𝒙2} 0 2 25 36 

{𝒙3} 2 0 16 25 

{𝒙4} 25 16 0 1.5 

{𝒙5} 36 25 1.5 0 

𝑑 𝒙1, 𝒙2 , 𝒙3 = 
min (𝑑 𝒙1 , 𝒙3 , 𝑑 𝒙2 , 𝒙3  

= min 2,3 = 2 

𝑑 𝒙1, 𝒙2 , 𝒙4 = 
min 26,25 = 25 

𝑑 𝒙1, 𝒙2 , 𝒙5 = 
min 37,36 = 36 

𝑑 𝒙1, 𝒙2 , 𝒙4, 𝒙5 = 
min 25,36 = 25 

𝑑 𝒙3 , 𝒙4, 𝒙5 = 
min 16,25 = 16 



Agglomerative matrix theory based Clustering Algorithms 
Example 3 (in detail): (a) The single-link case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = min (𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠)) 

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2} 0 2 25 

{𝒙3} 2 0 16 

{𝒙4, 𝒙5} 25 16 0 

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑} 0 16 

{𝒙4, 𝒙5} 16 0 

{𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4, 𝒙5} 0 

𝑃2: 

𝑃3: 

𝑃4: 

𝑑 𝒙1, 𝒙2, 𝒙3 , 𝒙4, 𝒙5 = 
= min 25,16 = 16 

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2} 0 2 25 

{𝒙3} 2 0 16 

{𝒙4, 𝒙5} 25 16 0 

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑} 0 16 

{𝒙4, 𝒙5} 16 0 

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎) 

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏) 

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓) 

3={{x1, x2, x3}, {x4, x5}}, (𝟐) 

4={{x1, x2, x3, x4, x5}}, (𝟏𝟔) 



Agglomerative matrix theory based Clustering Algorithms 
Example 3 (in detail): (b) The complete-link case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = max (𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠)) 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1} 0 1 2 26 37 

{𝒙2} 1 0 3 25 36 

{𝒙3} 2 3 0 16 25 

{𝒙4} 26 25 16 0 1.5 

{𝒙5} 37 36 25 1.5 0 

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1, 𝒙2} 0 3 26 37 

{𝒙3} 3 0 16 25 

{𝒙4} 26 16 0 1.5 

{𝒙5} 37 25 1.5 0 

𝑃0: 

𝑃1: 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1} 0 1 2 26 37 

{𝒙2} 1 0 3 25 36 

{𝒙3} 2 3 0 16 25 

{𝒙4} 26 25 16 0 1.5 

{𝒙5} 37 36 25 1.5 0 

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1, 𝒙2} 0 3 26 37 

{𝒙3} 3 0 16 25 

{𝒙4} 26 16 0 1.5 

{𝒙5} 37 25 1.5 0 

𝑑 𝒙1, 𝒙2 , 𝒙3 = 
max (𝑑 𝒙1 , 𝒙3 , 𝑑 𝒙2 , 𝒙3  

= max 2,3 = 3 

𝑑 𝒙1, 𝒙2 , 𝒙4 = 
max 26,25 = 26 

𝑑 𝒙1, 𝒙2 , 𝒙5 = 
max 37,36 = 37 

𝑑 𝒙1, 𝒙2 , 𝒙4, 𝒙5 = 
max 26,37 = 37 

𝑑 𝒙3 , 𝒙4, 𝒙5 = 
max 16,25 = 25 



Agglomerative matrix theory based Clustering Algorithms 
Example 3 (in detail): (b) The complete-link case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = max (𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠)) 

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2} 0 3 37 

{𝒙3} 3 0 25 

{𝒙4, 𝒙5} 37 25 0 

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑} 0 37 

{𝒙4, 𝒙5} 37 0 

{𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4, 𝒙5} 0 

𝑃2: 

𝑃3: 

𝑃4: 

𝑑 𝒙1, 𝒙2, 𝒙3 , 𝒙4, 𝒙5 = 
= max 37,25 = 37 

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2} 0 3 37 

{𝒙3} 3 0 25 

{𝒙4, 𝒙5} 37 25 0 

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑} 0 37 

{𝒙4, 𝒙5} 37 0 

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎) 

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏) 

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓) 

3={{x1, x2, x3}, {x4, x5}}, (𝟑) 

4={{x1, x2, x3, x4, x5}}, (𝟑𝟕) 


