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Dynamic similarity measures 
• These are useful for cases where the two vectors to be compared have 

different lengths. 
 

• Such a situation may arise e.g., when comparing two strings stemming from 
two different texts. 
 

• A simple example: The Edit distance. 
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Missing data 
• For some vectors of the data set 𝑋, some features values are unknown. 

 
• This issue arises very often in practice. 

 
• It may be caused by a measurement device failure, inability to take measure 

due to specific physical conditions etc. 
 

• Ways to deal with this situation: 
 
 Discard all vectors with missing values (not recommended for small data 

sets). 
 

 Find the mean value 𝑚𝑘 of the available 𝑘-th feature values over that 
data set and substitute the missing 𝑘-th feature values with 𝑚𝑘. 
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Missing data 
• Ways to deal with this situation: 
 Define 𝑏𝑘 = 0, if both the k-th features 𝑥𝑘, 𝑦𝑘  are available and 1 

otherwise. Then  

℘ 𝒙, 𝒚 =
𝑙

𝑙 −  𝑏𝑘
𝑙
𝑘=1

 𝜙(𝑥𝑘 , 𝑦𝑘)

𝑎𝑙𝑙 𝑘: 𝑏𝑘=0

 

 
where 𝜙(𝑥𝑘 , 𝑦𝑘) denotes the proximity measure between two scalars 𝑥𝑘, 
𝑦𝑘. 
NOTE: The proximity is based only on the features for which both 𝑥𝑘, 𝑦𝑘  

are available. 
 

 For the 𝑘-th feature, 𝑘 = 1,2, … , 𝑙, find the average proximity 𝜙𝑎𝑣𝑔 𝑘  
among all available values along the feature vectors in X. Then 

℘ 𝒙, 𝒚 =  𝜓 𝑥𝑘 , 𝑦𝑘 ,
𝑙

𝑘=1
 

 

where 𝜓 𝑥𝑘 , 𝑦𝑘 =  
𝜙 𝑥𝑘 , 𝑦𝑘 , 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑥𝑘 , 𝑦𝑘 𝑎𝑟𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝜙𝑎𝑣𝑔 𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Missing data 
Exercise 4: Consider the data set 𝑋 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}, with 
𝒙𝟏 = [0,0]𝑇 , 𝒙𝟐 = [1,∗]𝑇, 𝒙𝟑 = [0,∗]𝑇, 𝒙𝟒 = [2,2]𝑇, 𝒙𝟓 = [3,1]𝑇  
(“*” stands for missing values). 
(a) Compute the 𝑙1 distances between all pairs of vectors, using all the four 
techniques for dealing with missing data. 
(b) In which of these techniques, the computed distances are dependent on 
the specific data set? 
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Remark: Having in mind that a cluster is actually a set 𝐶, a proximity function 
between a point x and a set 𝐶 actually quantifies the resemblance/relation of 
x with the cluster 𝐶. 
 
Let 𝑋 = {𝒙1, … , 𝒙𝑁} and 𝒙 ∈ 𝑋, 𝐶 ⊂ 𝑋 
 
Definitions of ℘ 𝒙, 𝐶 : 
 
(a) All points of C contribute to the definition of ℘ 𝒙, 𝐶 . 
- Max proximity function 

℘𝑝𝑠
𝑚𝑎𝑥 𝒙, 𝐶 = 𝑚𝑎𝑥𝒚∈𝐶℘(𝒙, 𝒚) 

 
- Min proximity function 

℘𝑝𝑠
𝑚𝑖𝑛 𝒙, 𝐶 = 𝑚𝑖𝑛𝒚∈𝐶℘(𝒙, 𝒚) 

 
- Average proximity function 

℘𝑝𝑠
𝑎𝑣𝑔 𝒙, 𝐶 =

1

𝑛𝐶
 ℘(𝒙, 𝒚)

𝒚∈𝐶

 
𝑛𝐶 is the 
cardinality of 𝐶.  
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Definitions of ℘ 𝒙, 𝐶  (cont.): 
(b) A representative of 𝐶, 𝑟𝐶,  contributes to the definition of ℘ 𝒙, 𝐶 . 
 In this case 
 
Typical point representatives are: 
- The mean vector 

𝒎𝑝 =
1

𝑛𝐶
 𝒚

𝒚∈𝐶

 

- The mean center 
𝒎𝐶  ∈ 𝐶:  𝑑(𝒚∈𝐶  𝒎𝑪, 𝒚) ≤  𝑑(𝒚∈𝐶 𝒛, 𝒚), ∀ 𝒛 ∈ 𝐶 

 
- The median center 

𝒎𝑚𝑒𝑑  ∈ 𝐶:𝑚𝑒𝑑(𝑑(𝒎𝑚𝑒𝑑 , 𝒚)|𝒚 ∈ 𝐶)  ≤ 𝑚𝑒𝑑(𝑑(𝒛, 𝒚)|𝒚 ∈ 𝐶), ∀ 𝒛 ∈ 𝐶 
 
 

℘ 𝒙, 𝐶 = ℘ 𝒙, 𝑟𝐶  

𝑛𝐶 is the 
cardinality of 𝐶.  

𝑑: dissimilarity 
measure. 



Proximity functions between a point and a set 

8 

Definitions of ℘ 𝒙, 𝐶  (cont.): 
(b) A representative of 𝐶, 𝑟𝐶,  contributes to the definition of ℘ 𝒙, 𝐶 . 
 In this case 
 
Exercise 5: Let 𝐶 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}, where 𝒙1 = [1,1]𝑇, 𝒙2 = [3,1]𝑇 , 𝒙3 =
[1,2]𝑇, 𝒙4 = [1,3]𝑇, 𝒙5 = [3,3]𝑇. All points lie in the discrete space 
{0,1,2,… , 6}2. Use the Euclidean distance to measure the dissimilarity 
between two vectors in C. 
(a) Determine the mean vector, the mean center and the median center of 𝐶. 
(b) Compute the distance of point 𝒙 = [6,4]𝑇 from 𝐶 using the above defined 

representatives (where it is valid). 

℘ 𝒙, 𝐶 = ℘ 𝒙, 𝑟𝐶  
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Definitions of ℘ 𝒙, 𝐶  (cont.): 
(b) A representative of 𝐶, 𝑟𝐶,  contributes to the definition of ℘ 𝒙, 𝐶 . 
 In this case 
 
Linear-shaped clusters: 
• Such clusters occur e.g., in computer vision applications. 
• In this case, a hyperplane is a better representative of such clusters 
• Equation of a hyperplane 𝐻: 

 𝑎𝑗𝑥𝑗 + 𝑎0 = 𝒂𝑇𝒙 + 𝑎0 = 0
𝑙

𝑗=1
 

 
where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑙]

𝑇 , 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑙]
𝑇 is the direction vector of H 

and 𝑎0 is its offset. 
 
• Distance of a point 𝒙 from H: 𝑑 𝒙,𝐻 = 𝑚𝑖𝑛𝒛∈𝐻𝑑(𝒙, 𝒛) 
• If 𝑑(𝒙, 𝒛) is the Euclidean distance, it is 

𝑑 𝒙,𝐻 =
|𝒂𝑇𝒙 + 𝑎0|

| 𝒂 |
 

 

℘ 𝒙, 𝐶 = ℘ 𝒙, 𝑟𝐶  

𝒂 =  𝛼𝑗
2

𝑙

𝑗=1
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Definitions of ℘ 𝒙, 𝐶  (cont.): 
(b) A representative of 𝐶, 𝑟𝐶,  contributes to the definition of ℘ 𝒙, 𝐶 . 
 In this case 
 
Hyperspherical clusters: 
• Such clusters occur e.g., in computer vision applications. 
• In this case, a hypersphere is a better representative of such clusters 
• Equation of a hypersphere 𝑄: 

𝒙 − 𝒄 𝑇 𝒙 − 𝒄 = 𝑟2 
where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑙]

𝑇 , 𝒄 = [𝑐1, 𝑐2, … , 𝑐𝑙]
𝑇 is the center of Q and 𝑟 is its 

radius. 
 
• Distance of a point 𝒙 from 𝑄: 𝑑 𝒙, 𝑄 = 𝑚𝑖𝑛𝒛∈𝑄𝑑(𝒙, 𝒛) 

 
• For Euclidean distance between two points, 𝑑 𝒙, 𝑄  has 
a geometric insight. 
 
• However, other non-geometric alternatives have also been proposed. 

℘ 𝒙, 𝐶 = ℘ 𝒙, 𝑟𝐶  
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Number of possible clusterings 
Let 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁  be a set of data points. 
 
Question: In how many ways the 𝑁 points of 𝑋 can be assigned into 𝑚 groups? 
 
Answer: 
 
Examples: 
• 𝑆(15,3)  =  2,375,101 
• 𝑆(20,4)  =  45,232,115,901 
• 𝑆(25,8)  =  690,223,721,118,368,580 
• 𝑆(100,5)  ≈ 1068!! 

 
NOTE: The above calculations are for fixed 𝑚. If this varies, then we have to 
enumerate all clusterings, for all possible values of 𝑚!! 
 
Evaluating all possible clusterings is impractical even for moderate values of 𝑁. 

𝑆 𝑁,𝑚 =
1

𝑚!
 −1 𝑚−1 𝑚

𝑖
𝑖𝑁

𝑚

𝑖=0
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• Clustering algorithms may be viewed as schemes that provide us with 
sensible clusterings by considering only a small fraction of all possible 
partitions of X. 
 

• This fraction depends on the adopted criteria. 
 

• Thus a clustering algorithm is a learning procedure that tries to identify 
clusters formed by the data vectors, in accordance to the adopted criteria. 

Data set A “less sensible” clustering A “sensible” clustering 
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Major categories of clustering algorithms 
A vast amount of algorithms exists based on very diverse criteria  
 Strict categorization is extremely difficult (rather impossible). 
 
A rough categorization: 
• Sequential: A single clustering is produced. One or few sequential passes on 

the data. 
 

• Hierarchical: A sequence of (nested) clusterings is produced. 
Agglomerative 

Matrix theory 
Graph theory 

Divisive 
Combinations of the above (e.g., the Chameleon algorithm.) 
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Major categories of clustering algorithms 
A rough categorization: 
Cost function optimization.  
 For most of the cases a  single clustering is obtained. 
 They can be further categorized through the notion of “belongness”. 

Hard clustering (each point belongs exclusively to a single cluster): 
 
 
 
 
 
 
 
 
Probabilistic clustering (a hard clustering case where probabilistic 
framework is utilized) 
Fuzzy clustering (each point belongs to more than one clusters 
simultaneously). 
Possibilistic clustering (it is based on the notion of the “degree of 
compatibility” of a point with a cluster). 

• Basic hard clustering 
algorithms (e.g., k-means) 

•  k-medoids algorithms 
• Mixture decomposition  
• Branch and bound  
• Simulated annealing 

• Deterministic annealing 
• Boundary detection 
• Mode seeking 
• Genetic clustering 

algorithms 
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Major categories of clustering algorithms 
A rough categorization: 
Other. 
• Algorithms based on graph theory (e.g., Spectral clustering, Minimum 

Spanning Tree, regions of influence, directed trees). 
• Density-based algorithms. 
• Competitive learning algorithms (basic competitive learning scheme, 

Kohonen self organizing maps). 
• Subspace clustering algorithms. 
• Ensemble of clusterings 
• Kernel-based methods. 
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The common traits shared by  the sequential clustering algorithms are: 
 
• One or very few passes on the data are required. 

 
• The number of clusters 𝑚 is not known a-priori, except (possibly) an upper 

bound, 𝑞. 
 

• The clusters are defined with the aid of 
 An appropriately defined distance 𝑑 (𝑥, 𝐶) of a point from a cluster. 
 A threshold Θ associated with the distance. 
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Basic Sequential Clustering Algorithm (BSAS) 
•𝑚 = 1  \{number of clusters}\ 
•𝐶𝑚 = 𝒙1  

•For 𝑖 = 2 to 𝑁 

Find 𝐶𝑘:  𝑑(𝒙𝑖, 𝐶𝑘) = min1𝑗𝑚 
𝑑(𝒙𝑖, 𝐶𝑗) 

If (𝑑(𝒙𝑖, 𝐶𝑘) > 𝛩) 𝐴𝑁𝐷 (𝑚 < 𝑞) then 
 𝑚 = 𝑚 + 1 

 𝐶𝑚 = {𝒙𝑖} 
Else 

 𝐶𝑘 = 𝐶𝑘{𝒙𝑖} 
 Where necessary, update representatives (*) 

End {if} 
•End {for} 

---------------------------------- 
(*) When the mean vector 𝒎𝐶 is used as representative of the cluster 𝐶 with 
𝑛𝐶 elements, the updating in the light of a new vector 𝒙 becomes 

𝒎𝐶
𝑛𝑒𝑤 = (𝑛𝐶 𝒎𝐶

𝑜𝑙𝑑  +  𝒙) / (𝑛𝐶 + 1) 

𝑋 = {𝒙1, … , 𝒙𝑁} 
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Basic Sequential Clustering Algorithm (BSAS) 
 
Remarks: 
•The order of presentation of the data in the algorithm plays important role in 

the clustering results. Different order of presentation may lead to totally 
different clustering results, in terms of the number of clusters as well as the 
clusters themselves. 
 

•The clustering results depend on the choice of the value of 𝛩. 
 

• In BSAS the decision for a vector 𝒙 is reached prior to the final cluster 
formation.  
 

•BSAS perform a single pass on the data. Its complexity is 𝑂(𝑁) (when point 
representatives are used). 
 

• If clusters are represented by point representatives, compact clusters are 
favored. 
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Basic Sequential Clustering Algorithm (BSAS) 
Estimating the number of clusters in the data set:  
Let 𝐵𝑆𝐴𝑆(𝛩) denote the BSAS algorithm when the dissimilarity threshold is 𝛩. 

•For 𝛩 = 𝑎 to 𝑏 step 𝑐 

Run 𝑠 times 𝐵𝑆𝐴𝑆(𝛩), each time presenting the data in a different 
order. 
Estimate the number of clusters 𝑚𝛩, as the most frequent number 
resulting from the s runs of 𝐵𝑆𝐴𝑆(𝛩). 

•Next 𝛩 

•Plot 𝑚𝛩 versus 𝛩 and identify the number of clusters 𝑚 as the one 
corresponding to the widest flat region in the above graph. 
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MBSAS, a modification of BSAS 
• In BSAS a decision for a data vector 𝒙 is reached prior to the final cluster 

formation, which is determined after all vectors have been presented to the 
algorithm. 

 
•MBSAS deals with this issue, at the cost of processing the data twice. 

 
•MBSAS consists of: 
A cluster determination phase (first pass on the data),  

which is the same as BSAS with the exception that no vector is assigned to 
an already formed cluster. At the end of this phase, each cluster consists of 
a single element. 

A pattern classification phase (second pass on the data),  
where each one of the unassigned vectors is assigned to its closest cluster. 
 

Remarks: 
• In MBSAS, a decision for a vector 𝒙 during the pattern classification phase 

is reached taking into account all clusters. 
•MBSAS is  sensitive to the order of presentation of the vectors. 
•MBSAS requires two passes on the data. Its complexity is 𝑂(𝑁). 

Exercise: Write the pseudocode for MBSAS (in the 
spirit of the BSAS pseudocode). 
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Refinement stages 
 
The problem of closeness of clusters: “In all the above algorithms it may 
happen that two formed clusters lie very close to each other”. 
(they may be parts of the same physical cluster) 
 
A simple merging procedure 

(A) Find 𝐶𝑖, 𝐶𝑗 (𝑖 < 𝑗) such that 𝑑 𝐶𝑖, 𝐶𝑗 = 𝑚𝑖𝑛𝑘,𝑟=1,⋯,𝑚,𝑘≠𝑟  
𝑑(𝐶𝑘, 𝐶𝑟) 

If 𝑑(𝐶𝑖, 𝐶𝑗)𝑀1 then \{ M1 is a user-defined threshold \} 

Merge 𝐶𝑖, 𝐶𝑗 to Ci and eliminate 𝐶𝑗 . 
If necessary, update the cluster representative of 𝐶𝑖 . 
Rename the clusters 𝐶𝑗+1, … , 𝐶𝑚 to 𝐶𝑗, … , 𝐶𝑚−1, respectively. 

𝑚 = 𝑚 − 1 

Go to (A) 
Else 
Stop 

End {if} 
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Refinement stages 
 
The problem of sensitivity to the order of data presentation: 
“A vector 𝒙 may have been assigned to a cluster 𝐶𝑖 at the current stage but 
another cluster 𝐶𝑗 may be formed at a later stage that lies closer to 𝒙” 
 
A simple reassignment procedure 
• For 𝑖 = 1 to 𝑁 

Find 𝐶𝑗 such that 𝑑 𝑥𝑖, 𝐶𝑗 = 𝑚𝑖𝑛𝑘=1,⋯,𝑚 𝑑(𝑥𝑖, 𝐶𝑘) 

Set 𝑏(𝑖) = 𝑗  \{ b(i) is the index of the cluster that lies closest to xi \} 
• End {for} 
 
• For 𝑗 = 1 to 𝑚 

Set 𝐶𝑗 = {𝒙𝑖𝑋:  𝑏(𝑖) = 𝑗} 
If necessary, update representatives 

• End {for} 
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A two-threshold sequential scheme (TTSAS) 
• The formation of the clusters, as well as the assignment of vectors to clusters, 

is carried out concurrently (like BSAS and unlike MBSAS)  
• Two thresholds 𝛩1 and 𝛩2 (𝛩1 < 𝛩2) are employed. 
• The general idea is the following: 

 
If the distance 𝑑(𝒙, 𝐶) of 𝒙 from its closest cluster, 𝐶, is greater than 𝛩2 then: 
A new cluster represented by 𝒙 is created. 

Else if 𝑑(𝑥, 𝐶) < 𝛩1 then 
x is assigned to 𝐶. 

Else 
The decision is postponed to a later stage. 

End {if} 
 
• The unassigned vectors are presented iteratively to the algorithm until all of 

them are classified. 
Remarks: 
•In practice, a few passes (2) of the data set are required.  
•TTSAS is less sensitive to the order of data presentation, compared to BSAS. 
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The maxmin algorithm 
 
Let 𝑊 be the set of all points that have been chosen to define clusters up to 
the current iteration step. The definition of clusters is carried out as follows: 
 
• For each 𝒙𝑋 −𝑊 determine 𝑑𝒙 = 𝑚𝑖𝑛𝒛𝑊 𝑑(𝒙, 𝒛) 
• Determine 𝒚:  𝑑𝒚 = 𝑚𝑎𝑥𝑥∈𝑋−𝑊𝑑𝒙 

• If 𝑑𝒚 is greater than a prespecified threshold (𝛩) then 
 𝒚 defines a new cluster 

• else 
the cluster determination phase of the algorithm terminates. 

• End {if} 
 

• After the definition of the clusters, each unassigned vector is assigned to its 
closest cluster. 

Remarks: 
•The maxmin algorithm is more computationally demanding than MBSAS. 
•However, it is expected to produce better clustering results than MBSAS. 
•Its performance may be degraded in the presence of noise. 

𝑊 may be initialized by (a) the two most distant points or 
(b) the mean of the data set. 
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Example in MATLAB 1: 
Consider the data vectors depicted in the figure below and perform a “visual” 
clustering on it. 
1. Apply the BSAS algorithm on 𝑋, presenting its elements in the order x8, x6, 

x11, x1, x5, x2, x3, x4, x7, x10, x9, x12, x13, x14, x15, for 𝛩 = 2.5 and 𝑞 = 15. 
 

2. Repeat step 1, now with the order of presentation to the algorithm as x7, x3, 
x1, x5, x9, x6, x8, x4, x2, x10, x15, x13, x14, x11, x12. 

 
3. Repeat step 1, now with 𝛩 = 1.4. 
 
4. Repeat step 1, now with 𝑞 = 2. 
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Example in MATLAB 2: 
Generate and plot a data set 𝑋1, that consists of 𝑁 = 400 2-dim. data vectors. 
These vectors form four groups, each one of which contains vectors that stem 
from Gaussian distributions with means 𝒎1 = [0, 0]𝑇, 𝒎2 = [4, 0]𝑇, 
𝒎3 = [0, 4]𝑇, 𝒎4 = [5, 4]𝑇, respectively, and respective covariance matrices 

𝑆1 = 𝐼, 𝑆2 =
1 0.2
0.2 1.5

,  𝑆3 =
1 0.4
0.4 1.1

, 𝑆2 =
0.3 0.2
0.2 0.5

. Then do the 

following: 
 
1. Determine the number of clusters formed in 𝑋1 by doing the following: 

 
a. Determine the maximum, 𝑑𝑚𝑎𝑥, and the minimum, 𝑑𝑚𝑖𝑛, distances 

between any two points in the data set. 
b. Determine the values of 𝛩 for which the BSAS will run. These may be 

defined as 𝛩𝑚𝑖𝑛, 𝛩𝑚𝑖𝑛 + 𝑠, 𝛩𝑚𝑖𝑛 + 2𝑠,...,𝛩𝑚𝑎𝑥, where 

𝛩𝑚𝑖𝑛 = 0.25
𝑑𝑚𝑖𝑛+𝑑𝑚𝑎𝑥

2
, 𝛩𝑚𝑎𝑥 = 1.75

𝑑𝑚𝑖𝑛+𝑑𝑚𝑎𝑥

2
 and 𝑠 =

𝛩𝑚𝑖𝑛+𝛩𝑚𝑎𝑥

𝑛𝛩
 , 𝑛𝛩 

is the number of successive values of Θ that will be considered. Use 
𝑛𝛩 = 50. 
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Example in MATLAB 2 (cont.): 
c. For each of the previously defined values of 𝛩, run the BSAS algorithm 
𝑛𝑡𝑖𝑚𝑒𝑠 = 10, so that the data vectors are presented with different ordering 
to BSAS in each run. From the 𝑛𝑡𝑖𝑚𝑒𝑠 estimates of the number of clusters, 
select the most frequently met value, 𝑚𝛩, as the most accurate. Let 𝒎𝑡𝑜𝑡 

be the 𝑛𝛩-dimensional vector, which contains the 𝑚𝛩 values. 
d. Plot 𝑚𝛩 versus 𝛩. Determine the widest flat region, 𝑟, of 𝛩’s (excluding 

the one that corresponds to the single-cluster case) and let 𝑛𝑟 be the 
number of 𝛩’s in {𝛩𝑚𝑖𝑛, 𝛩𝑚𝑖𝑛 + 𝑠,… , 𝛩𝑚𝑎𝑥} that also lie in 𝑟. If 𝑛𝑟 is 
“significant” (e.g., greater than 10% of 𝑛𝛩), the corresponding number of 
clusters, 𝑚𝑏𝑒𝑠𝑡, is selected as the best estimate and the mean of the values 
of Θ in r is chosen as the corresponding best value for 𝛩 (𝛩𝑏𝑒𝑠𝑡). 
Otherwise, the single-cluster clustering is adopted. 

 
2. Run the BSAS algorithm for 𝛩 = 𝛩𝑏𝑒𝑠𝑡  and plot the data set using different 

colors and symbols for points from different clusters. 
 
3. Apply the reassignment procedure on the clustering results obtained in the 

previous step and plot the new clustering. 


