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Proximity measures: Definitions

(B) Between sets

letD; c X, i=1,..,k,andU = {D4, ..., Dy }.
A proximity measure (similarity or dissimilarity) g on U is a function
:UXU->R
For dissimilarity measure the following properties should hold
1. 3dy €R:0 < dy <d(D;,Dj) < +,VD;,D; € X

2. d(Di,Di) — dO,VDi e X
3. d(D;,D;) =d(D;,D;),vD;, D; € X

If in addition:
4. d(D;,D;) =dy < D; = D;

5. d(D;,Dy) < d(D;,D;) + d(Dj, D), VD;

d is called metric dissimilarity measure.

Question: What is the
definition when § stands for
a similarity measure?

D, Dy € X



Proximity functions between a point and a set

Remark: Having in mind that a cluster is actually a set C, a proximity function
between a point x and a set C actually quantifies the resemblance/relation of
x with the cluster C.
let X = {x41,...,xy}andx € X,C c X
Definitions of @(x, C):
(a) All points of C contribute to the definition of o (x, C).
dps  (x,C) = maxyecd(x,y)
- Max proximity function sPS (X, C) = maxyecs(x,y)
0P 10, €) = MAXyecfo(x,Y)
dps . (x,C) = miny,ecd(x,y)
- Min proximity function sPS i (%, C) = minyecs(x,y)
P in %, C) = minyecxo(x J')

- Average proximity function

TR 'S.th?
yec cardinality of C.




Proximity functions between a point and a set

Definitions of @(x, C) (cont.):
(b) A representative of C, r,, contributes to the definition of o (x, C).

In this case © o (x, C) = p(x, 1)

Typical point representatives are:

- The mean vector

m, = i ncis the

B n cardinality of C.
CyEC Yy

- The mean center
mg € C: ZyECd(mC'y) = ZyECd(Z!y)ivz €Ll
d: dissimilarity
- The median center measure.
Myeq € C:med(d(My,eq, Y)Yy €C) <med(d(z,y)|lye(C),VzeC

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in

certain applications (e.g., object identification using clustering techniques).
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Proximity functions between two sets

Remark: Having in mind that a cluster is actually a set C, a proximity function
between two sets actually quantifies the resemblance/relation between two

clusters.
Let X = {xy,...,xy}and D;, D; ¢ X withn; = |D;|, n; = |D;].
Definitions of go(Dl, ])
(a) All points of each set contribute to the definition of ¢(D;, D;).
1, Dj ) = MQXxep;,yeD; a(x,y)
- Max proximity function Sssmax(Dl’ i) = Maxeep, yep (X, ¥)

max(Dl' ]) maxxED YED

- Min proximity function

- Average proximity function




Proximity functions between two sets

Definitions of go(Dl-, Dj) (cont.):
(b) Each set D; is represented by a point representative m;.
- Mean proximity function
05 ..(Di,D;) = p(m;, m;)
dssmean(Di'Df) = d(mi'mj)
Sssmean(Di'Dj) = S(mi’mf)

NOTE: Proximity functions between a vector X and a set C may be derived
from the above functions if we set D,={x}.



Proximity measures between vectors

In the sequel we consider the cases:

(A) Real-valued vectors — dissimilarity measures (DMs

(B) Real-valued vectors — similarity measures (SMs)

(C) Discrete-valued vectors — similarity-dissimilarity measures

(D) Mixed-valued vectors — dissimilarity and similarity measures

NOTE: Some of the measures below may seem “weird”. However, they have
been tailored for certain types of applications.



Proximity measures between vectors

(A) Real-valued vectors — dissimilarity measures (DMs)

* Weighted [,, metric DMs

z Yo
dy(x,y) = (Z._lwilxi - Yi|p>

Interesting instances are obtained for:
p=1-2>d(xy) = %=1 w; |x; — y;| (I or Manhattan or city block dist.)

p=22d,(x,y) = \/Z%zl w;(x; — v;)? (I, or Euclidean distance)

p =0 2> dy(x,y) = maxj=1__W;lx; — ¥l (lcc or maximum distance)

NOTES:
v' For w; = 1, we obtain the unweighted versions of the [, metrics.

v Itholds:do (x,y) < d,(x,y) <d,(x,y) g



Proximity measures between vectors

(A) Real-valued vectors — dissimilarity measures (DMs)

* Mahalanobis distance

d(x,y) = (x—y)TB(x —y)

*Features may take positive
and/or negative values
*Normalization per feature:

B is symmetric, positive definite matrix

* Other measures
B |x; —
—dg(x,y) = —logio|1—~
=1 |b

where b; and @; are the maximum and the minimum values of the iI-th
feature, among the vectors of X (dependence on the current data set)

do(x,y) = 1zl %= i)’
Y= T Lo\ + i) O

*Featlires may take only
non-negative values
*Normalization per feature:

XitYi




Proximity measures between vectors

(B) Real-valued vectors —similarity measures (SMs)

* Inner product

l
Sinner (X, y) = xTy = z 1xiyi
i=

It is usually used either (i) for non-negative valued
vectors or (ii) for normalized vectors, i.e., ||x|| = p.
- Concerning (ii), in order to comply with the non-
negativity requirement in the definition of the
similarity measure, we may consider the similarity
measure S;ner (X, ) + p?

* Cosine similarity measure

xTy

Scosine (X, Y) = TEATRT

where ||x|| =VxTx = \/Z%:l x;% and ||}’|| =Jyly = \/Z%=1 Vi 10



Proximity measures between vectors

(B) Real-valued vectors —similarity measures (SMs)

* Pearson’s correlation coefficient

T
Xd Yd
[xgl] - ||yall

TPearson(x: y) = € [_1'1]

wherex; =[x; — %, ..,x; — X1, yqg = [y1 — ¥, ..., y; — Y] with
%Z%zl x;jand y = %Z%:l}’i; respectively.  °O()

X

correlation
(covariance)
between x, 2

A related dissimilarity measure:

1- T'Pearson(x» y) c
2

D(x,y) = [0,1]
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Proximity measures between vectors

(B) Real-valued vectors —similarity measures (SMs)

e Tanimoto distance

xTy
1x]12 + ||y]|? — xTy

ST(xr y) =

Algebraic manipulations give

The larger the

1 a
_ greement between
ST(X, J’) — ) (x — y)T(x —v) x,y, the larger the ~
+ xTy ST(xi y)

NOTE: s;(x, y) is inversely proportional to the Euclidean distance and
proportional to the inner product.

e Other measure:

AJE=-Tx -y
|1x1| + [1y1]

sc(x,y) =1 € [0,1]
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Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Let F; be the discrete set of values the i-th feature (nominal/categorical
attribute) can take

and n; be its cardinality, i = 1, ..., L.

Consider two |-dimensional vectors
X = [X1, X0, e, Xjey oo, X |T € FyxFoX oo XFi X .. XF
Y = [V, V2, e Viey oo, V1T € FixFox . XFp X ... XF)

The similarity measure s(x, y) is defined as

l
s(x,y) = z Wi Sk (XK, Vi)

k=1

where sy (X, Vi) is the feature similarity measure between the values x;,, v
of the k-th feature.

Thus, in order to define s(x, y), we need to define s, (xi, vi).

13



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Example: Let [=3 and

F, ={a,b,c}
F, = {1,2,3,4)
F3 — {A, B, C}

Consider the vectors:
X = [x1»x2»x3]T: [Cl, Z'A]T
Yy = [)’1»)’2»3’3]T: la, 3»B]T

Thatis, x; = a, y; = a,
xz — Z,yz — 3,
X3 :A,y3 = B.

Thus s1(x1,¥1) = s1(a, a)
S2(x2,¥2) = 52(2,3)
s3(x3,¥3) = s3(4,B)
and
s(x,y) =wy - si(a,a) + wy - 5,(2,3) + ws - s3(4,B) 14



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Let F; be the discrete set of values the I-th (nominal/categorical) feature can

take
and n; be its cardinality, i=1,...,/.

l

Recall that, in order to define s(x, y), we need to define s, (x, vi).

Each s, (+,") is completely defined by the associated similarity matrix.

If F,, = {1,2, ..., q}, the similarity matrix associated with the k-th feature is

-_n NOTE: (a) The similarity matrix is
sk(L1) sp(1,2) . . . sg(1,q9) completely defined if all of its entries
sk(21)  s(22) . . . sp(2,q) aredefined.

: (b) Such a similarity matrix is
associated with a similarity measure
for a single discrete-valued feature.

sk(@,1) sx(q,2) . . . sx(q,9)



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)

There are plenty of similarity measures for single discrete-valued features.

Defining such a similarity measure< filling the entries of the similarity matrix.

The entries filling may be carried out by utilizing:

 Simply 0 and 1 entries

* The size of the dataset N

 The number of attributes n involved in the current problem

* The cardinality of F;, n,.

* The number of times, f,.(j), the j-th symbol is encountered as k-th feature
in the data set

* The frequency of occurrence of the j-th symbol as k-th feature in the data

set, defined as P (j) = fx(j)/N, or, in some cases, p;2(j) = frDUFr()-1)

N(N-1)
Lt 2 ... a
T s (L) s(12) ... se(Lg)
sk(2,1)  s.(22) . . . sx(2,9)

sk(@,1) sx(q,2) . . . sx(q,9) 16



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
These similarity measures can be categorized in terms of:

v The way they fill the entries of the similarity matrix
I. Fill the diagonal entries only
Il. Fill the non-diagonal entries only
lll. Fill both diagonal and non-diagonal entries

v' The arguments they use to define the measure (information theoretic,
probabilistic etc).

17



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Indicative measures from category I: Fill the diagonal entries only.

e Overlap measure C
S (x y ) — {1, if xk = yk W = l S(x;Y) _Zk=1wksk(xkiyk .
e\l Tk 0, otherwise’ % 1 > .
°c00
e Goodall3 measure
1—pr®(xk), if xx = Vi W, = 1
. =

0, otherwise’ l
o o O

Sk (X, yi) = {

sk (X, yi) € [0,1 — |

—
e ——

N(N — 1)

Comment: It assigns a high similarity if the matching values are infrequent
regardless of the frequencies of the other values.

18



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Indicative measures from category IlI: Fill the non-diagonal entries only.

e Eskin measure { 2
. S (X, eEl-,1
1, if X =y, °© k( iYR) [3 ]

T —
Sk (Xk, Vi) = { ng*

Wy = —
Ng2+2

l

, otherwise’

Comments:
- It gives more weight to mismatches for attributes that take many values.
- It has been used for record-based network intrusion detection data

Sk (X, yie) € [ N , 1]
* Inverse Occurrence Frequency (IOF) measurs 1+ (log/j)L
: ) { 1, T X = Y .
Sk Xk» Vi) = 1 cp’r Wk =7
, otherwise l
1+logfr(xk)logfr(Vi)

Comments:

- It assigns lower similarity to mismatches on more frequent values..

- It is related to the concept of inverse document frequency which comes
from information retrieval, where it is used to signify the relative number
of documents that contain a specific word. 19



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Indicative measures from category lll: Fill both diagonal & non-diagonal entries
* Lin measure

2 logpy(xy), if xp = yi

SOtk Vie) = {2 log(Pr(xx) + Dr(yk)), otherwise’
1

\V.V4 —
T 2l (log Bi(x) +1logpi(y)
se (e, i) € [~ ZIogN 0] for match \
si(Xk, Vi) € [ Zlog— 0] for mismatch >./
Comments:
It gives

- higher weight to matches on frequent values, and
- lower weight to mismatches on infrequent values.
It has been used in word similarity procedure.

(*) S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for categorical data: A
Comparative Evaluation,” in Proc. SDM, pp. 243-254, 2008. 20



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)

-mmm Exercise 1: Consider the data set X given in the

1 - adjacent table.

X2 b 4 B Determine the similarity between the vectors
X3 3 3 B = [a, 2, A]" and
X, c 2 A y=][a3,B]" utilizing
X a 2 A
xz 3 2 B (a) The overlap measure
X, b 1 5 (b) The Goodall3 measure
. : " A (c) The Eskin measure

(d) The IOF measure
%o ° . A (e) The Lin measure.
X10 a 3 B
*11 d E A Exercise 2: Define corresponding dissimilarity
X12 b 4 C measures for the above defined similarity
X13 b 3 A measures.
X14 C 2 A
X15 a 2 C 21



Proximity measures between vectors

(D) Mixed-valued vectors —similarity measures (SMs)
Here some coordinates of the feature vectors are
real-valued, while others are discrete-valued.

How to measure the proximity between x and y?

* Adopt a proximity measure suitable for real-valued vectors (only for ordinal
discrete-valued features).

* Convert the real-valued features to discrete-valued ones (e.g., via
quantization) and employ a discrete proximity measure (again, only for

ordinal discrete-valued features).

* For the more general case where nominal, ordinal, interval-scaled and ratio-
scaled features co-exist, we treat each one of them separately, as follows:

22



Proximity measures between vectors

(D) Mixed-valued vectors —similarity measures (SMs)
The similarity between x and y is defined as:

Z;(=1 Sk (xk; yk)
Z;c:l Wk

s(x,y) =

where:
* w, = 0, if at least one of x;, and y;, is undefined or (optionally) both

X; and y; are equal to 0. Otherwise w;, = 1.

: 1, ifxy=yr=1(or x; =
* If x;, and yy, are binary, s;, (x, yi) = {O f ygthervgise ke = Vi)

Xk = Yk
otherwise’

This is the overlap J

1,
* If x;, and y;, are nominal or ordinal, s (X, V) = {O

* If x;, and y,, are interval or ratio scaled-valued

Xk — Vil .
Si(X, Vi) =1 — measure. Other options
Tk can also be used.

where I, is the width of the interval where the k-th coordinates of the
vectors of X lie. 23




Proximity measures between vectors

(D) Mixed-valued vectors —similarity measures (SMs)
Exercise 2: Consider the data set given in the following table. Each row
corresponds to a vector and each column to a feature. The first three
features are ratio scaled, the 4% one is nominal and the 5% one is ordinal.
Utilizing the previous similarity measure, compute the similarities between
any pair of feature vectors.

Company Activity | Rate of
abroad | services

0: not good
1: good
2: very good

1 (X,) 1.2 1.5 1.9 0 1

2 (X,) 0.3 0.4 0.6 0 0

3 (X3) 10 13 15 1 2

4 (X,) 6 6 7 1 1

24



Proximity measures between vectors

Fuzzy measures — an alternative perspective

* Let x € [0,1]".

* In this context, x;, is not the outcome of a
measuring device.

* Rather, it indicates the degree to which x possesses the k-th characteristic.

* The closer the x; to 1 (0), the more likely is that x possesses (does not
possess) the k-th characteristic.

* As x;. approaches 0.5, the certainty about the possession or not of the i-th
feature from X decreases.

* Let

X = [Xl,XZ, ey Xy ...,Xl]TE [0,1]l

y = [Y11y2' s Vieo '"ryl]Te [Oil]l
* A measure of similarity between x; and vy, is the following

S(x, yi) = max(min(1 — xg, 1 — yi) , min(xg, yi))

Then, as measure of similarity between x and y we can use the following

z Yaq
sl (x,y) = (z S(Xk»J’k)q) ,q € [1,+) 25

k=1



Proximity measures between vectors

Fuzzy measures — an alternative perspective
Exercise 3: Letl = 3and g = 1.

(a) Consider the vectors x; = [1,1,1]7, x, = [0,0,1]%, x5 = [%,%,i]T,
Xy = [%,%,%]T. Determine the similarities s (x;, x;),i = 1,2,3,4.

i =2 33T . = T v, =114

(b) Consider the vectors y; = [4,4,4] , Vo, = [1L,1,1], y3 = [4,4,4] ,

= [%,%,%]T. Determine the similarities sl(yi,yj), i,j =1234, i #].

(c) Draw your conclusions.
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